
MSC 35Q93, 34H05

OPTIMAL CONTROL OF SOLUTIONS TO CAUCHY

PROBLEM FOR SOBOLEV TYPE EQUATION OF HIGHER

ORDER

O. N. Tsyplenkova, South Ural State University, Chelyabinsk, Russian Federation,
Tsyplenkova_Olga@mail.ru

An optimal control problem for the higher order Sobolev type equation with a relatively

polynomially bounded operator pencil is considered. The existence and uniqueness of a

strong solution to the Cauchy problem for this equation are proved. Sufficient conditions
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Introduction

Consider the complete Sobolev type equation of higher order

Ax(n) = Bn−1x
(n−1) + . . .+ B0x+ y + Cu, (1)

where the operators A,Bn−1, . . . , B0 ∈ L(X;Y), C ∈ L(U;Y), the function
u : [0, τ) ⊂ R+ → U, y : [0, τ) ⊂ R+ → Y (τ < ∞), X,Y and U are some Hilbert spaces.

Consider the Cauchy problem

x(m)(0) = xm, m = 0, n− 1. (2)

We are interested in the optimal control problem of finding of a pair (x̂, û), where x̂ is
a solution to problem (1), (2), and the control û belongs to Uad, and satisfies the relation

J(x̂, û) = min(x,u)∈X×Uad
J(x, u). (3)

Here J(x, u) is some specially constructed performance functional, where Uad is a closed
convex set in the space U of controls.

First the study of optimal control problems for linear Sobolev type equations was
engaged by G.A. Sviridyuk and A.A. Efremov [1]. Optimal control of solutions to the
Cauchy problem for linear Sobolev type equations was considered in [2]. This research was
continued by disciples of G.A. Sviridyuk including N.A. Manakova [3], A.V. Keller [4] and
etc. The results by A.A. Efremov initiated the study of controllability issues for Sobolev
type equations [5]. Other aspects of controllability of Sobolev type equations were studied
in [6].

1. Polynomially A-bounded operator pencils and projections

By ~B denote the pencil formed by the operators Bn−1, . . . , B0.

Definition 1. The sets

ρA( ~B) = {µ ∈ C : (µnA− µn−1Bn−1 − . . .− µB1 − B0)
−1 ∈ L(Y;X)}
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and σA( ~B) = C\ρA( ~B) are called the A-resolvent set and the A-spectrum of pencil ~B,

respectively.

Definition 2. An operator function

RA
µ (

~B) = (µnA− µn−1Bn−1 − . . .− µB1 − B0)
−1

of a complex variable µ with domain ρA( ~B) is called A-resolvent of pencil ~B.

Definition 3. An operator pencil ~B is said to be polynomially bounded with respect to
operator A (or simply polynomially A-bounded), if there exists a ∈ R+ such that for each

µ ∈ C the inequality (|µ| > a) implies the inclusion (RA
µ (

~B) ∈ L(Y;X)).

Introduce the additional condition
∫

γ

µmRA
µ ( ~B)dµ ≡ O, m = 0, n− 2, (A)

where the contour γ = {µ ∈ C : |µ| = r > a}.

Lemma 1. [2] Let a pencil ~B be polynomially A-bounded, and let condition (A) be satisfied.
Then operators

P =
1

2πi

∫

γ

RA
µ (

~B)µn−1Adµ, Q =
1

2πi

∫

γ

µn−1ARA
µ (

~B)dµ

are projections in spaces X and Y, respectively.

Set X0 = kerP, Y0 = kerQ, X1 = im P, Y1 = im Q. It follows from Lemma 1 that
X = X0 ⊕ X1, Y = Y0 ⊕ Y1. By Ak ((Bk

l ), respectively,) denote the restriction of the
operator A ((Bl), respectively,) to Xk, k = 0, 1; l = 0, n− 1.

Theorem 1. [7] Let the assumptions of Lemma 1 be satisfied. Then
(i) Ak ∈ L(Xk;Yk), k = 0, 1;
(ii) Bk

l ∈ L(Xk;Yk), k = 0, 1, l = 0, 1, . . . , n− 1;
(iii) there exists an operator (A1)−1 ∈ L(Y1;X1);
(iv) there exists an operator (B0

0)
−1 ∈ L(Y0;X0).

Let us construct the operators H0 = (B0
0)

−1A0, Hm = (B0
0)

−1B0
n−m, m = 1, n− 1,

Sm = (A1)−1B1
m, m = 0, n− 1.

Definition 4. Introduce the family of operators {K1
q , K

2
q , . . . , K

n
q } as follows:

Ks
0 = O, s 6= n,Kn

0 = I, K1
1 = H0, K

2
1 = −Hn−1, . . . , K

s
1 = −Hn+1−s, . . . , K

n
1 = −H1,

K1
q = Kn

q−1H0, K
2
q = K1

q−1 −Kn
q−1Hn−1, . . . , K

s
q = Ks−1

q−1 −Kn
q−1Hn+1−s, . . . ,

Kn
q = Kn−1

q−1 −Kn
q−1H1, q = 2, 3, . . .

Definition 5. A point ∞ is called:
(i) a removable singularity of A-resolvent of pencil ~B, if K1

1 = K2
1 = . . . = Kn

1 ≡ O;

(ii) a pole of order p ∈ N of A-resolvent of pencil ~B, if Ks
p 6≡ O, for some s, but

Ks
p+1 ≡ O for any s;

(iii) an essentially singular point of A-resolvent of pencil ~B if Kn
p 6≡ O for any p ∈ N.
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2. Strong solutions

Consider linear homogeneous Sobolev type equation

Ax(n) = Bn−1x
(n−1) + . . .+B0x. (4)

Let a pencil ~B be polynomially A-bounded, and let condition (A) be satisfied. Fix a
contour γ = {µ ∈ C : |µ| = r > a} and consider family of operators for all t ∈ R

X t
m =

1

2πi

∫

γ

RA
µ (

~B)(µn−m−1A− µn−m−2Bn−1 − ...− Bm+1)e
µtdµ,

where m = 0, n− 1.

Lemma 2. [7] (i) For every m = 0, n− 1 operator function X t
m is a propagator of

equation (4).
(ii) For every m = 0, n− 1 operator function X t

m is an integer function.
(iii)

dl

dtl
X t

m

∣

∣

∣

∣

t=0

=

{

P, l = m;
O, l 6= m;

for all m = 0, n− 1, l = 0, 1, ... .

Definition 6. A set P ⊂ X is called a phase space of equation (4), if
(i) every solution x = x(t) of equation (4) lies in P, i.e. x(t) ∈ P ∀t ∈ R.
(ii) for an arbitrary xm, m = 0, n− 1 ∈ P there exists a unique solution to problem (2),
(4).

Theorem 2. [7] Let a pencil ~B be polynomially A-bounded, condition (A) be satisfied and
∞ be a pole of order p ∈ {0} ∪ N of A-resolvent. Then the phase space of equation (4)
coincides with the image of projector P .

Proceed to linear inhomogeneous Sobolev type equation

Ax(n) = Bn−1x
(n−1) + . . .+B0x+ y. (5)

Consider sets

Mm
f = {x ∈ X : (I− P )x = −

p
∑

l=0

Kn
l (B

0
0)

−1 d
l+m

dtl+m
(I−Q)y(0)},

where m = 0, n− 1.

Theorem 3. [7] Let a pencil ~B be polynomially A-bounded, condition (A) be satisfied and
∞ be a pole of order p ∈ {0}∪N of A-resolvent. Let a vector function y : (−τ, τ) → Y be
such that y0 = (I − Q)y ∈ Cp+n((−τ, τ);Y0) and y1 = Qy ∈ C((−τ, τ);Y1). Then for an
arbitrary xm ∈ Mm

f , m = 0, n− 1 there exists a unique solution to problem (2), (5) for
t ∈ (−τ, τ) given by

x(t) = −

p
∑

q=0

Kn
q (B

0
0)

−1 d
q

dtq
y0(t) +

n−1
∑

m=0

X t
mx

1
m +

t
∫

0

X t−s
n−1(A

1)−1y1(s)ds. (6)
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Definition 7. A vector function x ∈ Hn(X) = {x ∈ L2(0, τ ;X) : x(n) ∈ L2(0, τ ;X)}
is called a strong solution to equation (5), if it makes the equation an identity almost
everywhere on interval (0, τ). A strong solution x = x(t) of equation (5) is called a strong
solution to problem (2),(5) if condition (2) holds.

This is well defined by virtue of the continuity of the embedding
Hn(X) →֒ Cn−1([0, τ ];X). The term "strong solution" has been introduced to distinguish
a solution to equation (5) in this sense from solution (6), which is usually said to be
"classical". Note that classical solution (6) is also a strong solution to problem (2), (5).

Let us construct the spaces

Hp+n(Y) = {v ∈ L2(0, τ ;Y) : v(p+n) ∈ L2(0, τ ;Y), p ∈ {0} ∪ N}.

The space Hp+n(Y) is a Hilbert space with inner product

[v, w] =

p+n
∑

q=0

∫ τ

0

〈

v(q), w(q)
〉

Y
dt.

Let y ∈ Hp+n(Y). Introduce the operators

A1y(t) = −
p
∑

q=0

Kn
q (B

0
0)

−1 dq

dtq
y0(t),

A2y(t) =
t
∫

0

X t−s
n−1(A

1)−1y1(s)ds, t ∈ (−τ, τ)

and the functions

k(t) =
n−1
∑

m=0

X t
mx

1
m.

Lemma 3. Let a pencil ~B be polynomially A-bounded, and condition (A) be satisfied.
Then

(i) A1 ∈ L(Hp+n(Y);Hn(X));
(ii) for an arbitrary xm ∈ Mm

f , m = 0, n− 1, vector-function k ∈ Cn([0, τ);X);
(iii) A2 ∈ L(Hp+n(Y);Hn(X)).

Theorem 4. Let a pencil ~B be polynomially A-bounded, let condition (A) be satisfied.
Then, for an arbitrary xm ∈ Mm

f , m = 0, n− 1 and y ∈ Hp+n(Y) there exists a unique
strong solution to problem (2), (5).

3. Optimal control

Consider the Cauchy problem (2) for linear inhomogeneous Sobolev type equation
(1), where functions x, y, u lie in the Hilbert spaces X, Y and U, respectively.

Introduce the control space

◦

H
p+n

(U) = {u ∈ L2(0, τ ;U) : u
(p+n) ∈ L2(0, τ ;U), u

(q)(0) = 0, q = 0, p},

p ∈ {0} ∪ N. It is a Hilbert space with inner product

[v, w] =

p+n
∑

q=0

∫ τ

0

〈

v(q), w(q)
〉

Y
dt.
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In the space
◦

H
p+n

(U) we single out a closed convex subset
◦

H
p+n

∂ (U), which is called
the set of admissible controls.

Definition 8. A vector function û ∈
◦

H
p+n

∂ (U) is called an optimal control of solutions to
problem (1), (2), if relation (3) holds.

Our aim is to prove the existence of a unique control û ∈
◦

H
p+n

∂ (U), minimizing the
performance functional

J(x, u) = µ

n
∑

q=0

∫ τ

0

||x(q) − x̃(q)||2dt+ ν

p+n
∑

q=0

∫ τ

0

〈

Nqu
(q), u(q)

〉

U
dt. (7)

Here µ, ν > 0, µ + ν = 1, Nq ∈ L(U), q = 0, 1, . . ., p + n, are self-adjoint positively
defined operators, and x̃(t) is the target state of the system.

Theorem 5. Let the assumptions of Theorem 4 be satisfied. Then for an arbitrary
xm ∈ Mm

f , m = 0, n− 1 and y ∈ Hp+n(Y) there exists a unique optimal control of
solutions to problem (1), (2).

Proof.
By Theorem 4, for an arbitrary y ∈ Hp+n(Y), xm ∈ X, and u ∈ Hp+n(U) there exists

a unique strong solution x ∈ Hn(X) to problem (1), (2), given by

x(t) = (A1 + A2)(y + Cu)(t) + k(t), (8)

where the operators A1, A2 and the vector function k are defined in Lemma 3.
Fix y ∈ Hp+n(Y) and xm ∈ X, and consider function (8) as a map D : u 7→ x(u). The

map D : Hp+n(U) → Hn(X) is continuous. Therefore, the performance functional depends
only on u : J(x, u) = J(u).

We write out functional (7) in the form

J(u) = ‖x(t, u)− x̃‖2Hn(X) + [v, u],

where v(q)(t) = Nqu
(q)(t), q = 0, . . . , p+ n. Hence it follows that

J(u) = π(u, u)− 2λ(u) + ‖x̃− x(t, 0)‖2Hn(X) ,

where

π(u, u) = ‖x(t, u)− x(t, 0)‖2Hn(X) + [v, u]

is a bilinear continuous coercive form on Hp+n(U) and

λ(u) = 〈x̃− x(t, 0), x(t, u)− x(t, 0)〉Hn(X)

is a linear continuous form on Hp+n(U). Therefore, the assumptions of theorem in [8, p. 13]
are satisfied. The proof of the theorem is complete.

✷
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