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The article considers the preprocessing stage of nonlinear parameter estimation. The
original data is generated from the Lorenz system, and the measurements are corrupted
by an additive noise. Preprocessing of measurements is based on the application of
singular spectrum analysis (SSA). The algorithm decomposes time series into additive
components. SSA allows to extract components with different dynamics, such as trend,
periodic components and noise. In this way, SSA can be used to filtering the measurements.
The only parameter of the algorithm is the window length that controls the smoothing
level. It is important to choose a proper window length to minimize the error, which defines
the difference between the original and the filtered data. Numerical simulations shows that
the dependence of the error on the window length has a single minimum, and the optimal
values are different for each series of measurements.
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Introduction

Nonlinear dynamical systems are used for time series modelling and forecasting
in natural science, engineering and economics [1]. In all of these fields, the main
computational problem is the estimation of the model parameters from experimental
data [2]. This article considers the parameter estimation problem for the Lorenz system,
which is one of the most widely studied examples of deterministic chaos [3]. The Lorenz
system is described by the following equations:

21(t) = —pra1(t) + prra(t),
a2(t) = paw1(t) — wa(t) — w1 (t)ws(t), (1)
3(t) = —psws(t) + 2122 (D),

where x;(t), i = 1,2, 3 are the state variables, and p;, i = 1,2, 3 are the model parameters.
Originally, the system (1) was derived from a model of convection in the atmosphere. But
in the past decade, the Lorenz system has been successfully used for secure communication
and image encryption [4].

To describe the estimation problem, consider the state space representation of the
nonlinear system:

x(t) = £(x(t), p), (2)
where x(t) € R™ is the state vector, and p € R™ is the vector of model parameters. It

is assumed that the parameter vector p is unknown and the measurements of the state
vector are corrupted by additive noise:

yk:Xk—i-Vk,k:l,Q,...,N. (3)
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In this notation, x; € R" is the state vector at discrete time step k, y, € R™ is the
measurement vector, v, € R is the noise vector, and N is the number of measurements.
In the following numerical simulations, the fourth-order Runge-Kutta method is used to
obtain the discrete outputs xi, k = 1,2,..., N of the system (2) [5]. The problem is to
find the unknown parameter vector p from measured data (3). Various techniques have
been proposed for parameter estimation of nonlinear systems [2]. Since the accuracy of
the estimation depends on the noise level, it is possible to improve the results by filtering
the measurements.

This article considers preprocessing of measurements using singular spectrum analysis
(SSA), which is a useful tool for time series analysis [6, 7, 8]. In [9, 10| SSA was
applied to the analysis of time series from the Lorenz system (1). Since the input of
the SSA is a one-dimensional data, the algorithm is independently applied for each series
Yik, Kk =1,2,..., N of measurements. The algorithm decomposes time series into additive
components. It is assumed that the filtered data z; ;, k = 1,2, ..., N is the first component
that corresponds to the largest singular value of the trajectory matrix. The only parameter
of the algorithm is the window length L that defines the dimension of the trajectory matrix
and controls the smoothing level. Since the aim of preprocessing is not only to reduce the
noise level, but also to minimize the difference between the original and the filtered data,
it is important to choose a proper window length.

1. The Algorithm of SSA

Consider a one-dimensional time series y;, £k = 1,2,..., N. As mentioned above, the
only parameter of the algorithm is the window length L, such that 1 < L < N.
Step 1 (Embedding of time series). The result of embedding is the trajectory matrix

U1 Yo «o- YN-L+1
Y — 3{2 3{3 .. ny‘LJrQ ' (4)
Yo Yr+1 .- YN

Step 2 (Singular value decomposition). Consider the matrix
S=YY"

The matrix S can be presented as follows:

S = UAUT,
where U is the matrix of eigenvectors u;, : = 1,2,..., L, and A is the diagonal matrix of
the corresponding eigenvalues \;, © = 1,2,..., L. It is assumed that the eigenvalues are

ordered by decreasing value:
M > >...> A >0.

Let n < L be the number of non-zero eigenvalues. The singular value decomposition of
the trajectory matrix (4) can be defined as

Y = zn: X, (5)
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where X is the elementary matrix given by
YTUZ'

X — vy v, =
i \/)\TUZV“VZ oy

Step 3 (Grouping). Consider the set I = {1,2,...,n} of indices of the elementary
matrices. The result of grouping is disjoint subsets I; C I, j = 1,2,...,m such that

1=Jr.
j=1
Let X;; be the sum of the elementary matrices X; with indices from the set I;:

X, => X,

i€l

,1=1,2,...,n.

Thus, singular value decomposition (5) of the trajectory matrix Y can be written as
follows:

Y = ixlj. (6)

Step 4 (Diagonal averaging). Let A be the matrix of dimension L x M. Diagonal

averaging converts the matrix A into times series z;, k = 1,2,..., N, where N = L+ M —1.
The conversion is defined by the following equations.
If L < M then
( 1 k
E Zai,k,iﬂ, k= 1, 2, ey L,
i=1
| X
T = z;ai,ki+1,k:L—|—1,L+2,...,M,
1 L
T a—— ik—ivl, k=M+1,M+2,...,N.
N—k+1AZ @ k—i+1 + +
\ i=k—M+1
If L > M then
r 1 k
E Zak—i—f—l,h k= 1727 - '7M7
i=1
LM
T = M;ak—i—l—lmk:M+17M+27“‘7L7
1 M
S E— i1 k=L+1,L+2,...,N.
N—k+1,z Gh—itl, +thLt
\ i=k—L+1
Diagonal averaging is applied to each matrix X, of the decomposition (6). Thus, time
series yi, kK =1,2,..., N can be decomposed into m additive components:
yk:Z(L‘Eg)’ k:1727 7N
j=1
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2. Numerical Simulations

The aim of the numerical simulations is to evaluate the dependence of the difference
between the original and the filtered data on the window length. In order to obtain averaged
results, the tests are run 100 times. Each test consists of the following steps.

Step 1. The original data is generated from the Lorenz system (1) with the parameters
p1 = 10,py = 28,p3 = %. The fourth-order Runge-Kutta method is used with step size
h = 0.01 [5]. In the first test, the initial values are z;(0) = 10, ¢ = 1,2,3. The first 100
outputs are considered as the transient states, and the next outputs are considered as the
original data. The number of measurements is N = 400. In the next tests, the time interval
is moved forward by 100 steps. (Fig. 1).

‘ Data for test 4 :
ot ; ; -

: i Data for test 3 |

; ! Data for test 2 ! ;

.l
it

; Data for test 1
iTransient : : ‘

states !
.

-

0 100 200 300 400 500 600 70O 800 k

Fig. 1. Choosing the time intervals in the tests

Step 2. The measurements are defined by (3), where each coordinate of the noise
vector vy has normal distribution, zero mean and standard deviation o = 4. The function
randn of Matlab is used as a pseudo-random number generator.

Step 3. SSA is independently applied for each series y;x, £ = 1,2,...,N of
measurements. In the grouping step, the set I of indices is divided into two subsets I; = {1}
and I, = {2,3,...,n}, which correspond to the trend and noise, respectively. The obtained
trend is considered as the filtered data Z;x, k = 1,2,..., N (see examples in Fig. 2-4).
The difference between the original and the filtered data is evaluated by the mean-square
error defined as

1 N
51' = N Z (x’i,k — i'i,k>2'

k=1

This step is performed for each value of L from 5 to 25. Thus, the result of a single test is
dependences of the errors 9;, ¢ = 1,2, 3 on the window length L.

Fig. 5 shows the averaged results. The optimal values are L} = 11, L =9, L; = 8.
This values are used for the examples shown in Fig. 2—4.
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Fig. 2. Preprocessing of measurements of the coordinate x4,

2k
T — e

20 T e

VTN S S S S— S——

-40

0 100 200 300 400 &
Measurements Original data — Tiltered data
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Fig. 4. Preprocessing of measurements of the coordinate w3,
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Fig. 5. The dependences of the errors on the window length L (the results are averaged
over 100 tests)

Conclusion

In this article, SSA was applied to time series, which are measurements of the outputs
of the Lorenz system. It is assumed that the filtered data is the first components of
decompositions (SSA is independently applied for each series of measurements). The result
of the numerical simulations is the dependences of the errors, which defines the difference
between the original and the filtered data, on the window length L. It is shown that each
dependence has a single minimum, and the optimal values of L are different for each series.

SSA can be used for preprocessing of measurements to reduce the noise level. But it
is important to choose a proper window length, which provides the smallest difference
between the original and the filtered data. In addition, SSA has the following advantages.

1. The window length L is the only parameter of the algorithm.

2. The algorithm does not assume that the decomposition components must belong to
a certain class.

3. It allows to extract components with different dynamics, such as trend, periodic
components and noise.

4. SSA can be applied to short time series (N < 100).

The work was supported by Act 211 Government of the Russian Federation, contract
no. 02.A03.21.0011.
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IMIPUMEHEHUWE CUHI'YJIAPHOI'O CIIEKTPAJIBHOI'O
AHAJIN3A JIJId IPEIBAPUTEJIBHOII OBPABOTKI
N3MEPEHUN B 3ATAYE OLIEHUBAHIS ITAPAMETPOB
CUCTEMBI JIOPEHITA

II. E. Oauxep, A. C. Illeaydvko

B crarpe paccmarpuBaercs dTam MpeaBApPUTENIbHON 00pabOTKH M3MEpeHuit B 3ajate
OIIEHUBAHUSI TTAPAMETPOB HEJIMHEHHON Mojesn. VIcxo/iHbIe TaHHbIe SBJISIOTCS peaJin3arueit
cucreMbl Jlopeniia, a m3Mepenus — Pe3yJIbTATOM J00aBJIEHHS &I INTUBHLIX ommOoK. I1peBa-
puTesibHas 00pabOTKa M3MEPEHN OCHOBAHA, HA IIPUMEHEHUN CUHIYJISIPHOTO CIIEKTPAJIBLHOTO
anayuza (SSA). Pesynbrarom ajgropurma SSA gaB/IgeTCs Pa3JIOKEHUE BPEMEHHOTO PsJIa Ha
aJIUTUBHBIE COCTABJISIONIME. AJITOPUTM TIO3BOJISIET BBIIEIATH COCTABJISIIOIINE C PA3IUIHOM
JIMHAMUKON (TPeHJI, HeproIuvecKue KoJjebaHus, NIyM), U, TAKUM 0OPa30M, MOXKeT ObITh
UCIIOJIBL30BaH JJIst (DUILTpAIUU u3Mepennii. EnHCTBEHHBIM TTapaMeTpoM ajropurMa SSA
SIBJISIETCS JIJINHA OKHA, KOTOpasl OIPeJieJisieT CTelleHb CrylaykKuBaHusi. [Ipu 95TOM BarXXHO BbI-
O6parh ONTUMAJIBHYIO JJIMHY OKHA, KOTOPasi MUHUMU3UPYET OTKJIOHEHUE JAHHBIX, [OJIyIeH-
HBIX 110CjIe (PUIBTPAIIU, OT UCXOIHBIX. Pe3y/ibTaToM IIPOBEIEHHBIX BHIYUCIUTEIbHBIX IKC-
[IEPUMEHTOB sIBJIieTCsl TpadUK 3aBUCHMOCTH OTKJIOHEHUs OT JUIMHBI OKHa. [Tokazano, 4To
JIaHHAsT 3aBUCAMOCTD UMeEeT eJMHCTBEHHYIO TOYKY MHUHMMYMA, a ONTHMAJbHbIE 3HAYECHUS
JUIHHBI OKHA PA3JIMIHBI JIIsT KarXKJI0i cepuu m3MepeHui.

Karouesvie ca06a: cun2ysapholtl CnekmpaibHolll aHAAU3; GUADMPAUUA BPEMEHHLT P

606; HEAUHETHAA CUCTEMA.
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