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The aim of this paper is to tabulate all prime not oriented links in the thickened surface

of genus 2 having diagrams with no more than 4 crossings. A preliminary set of diagrams is

constructed based on the table of prime link projections in the surface of genus 2. In order

to remove duplicates and prove that all the rest links are not equivalent, as well as to prove

that all tabulated links admit no destabilisations, we use an invariant called the Kauffman

bracket frame, which is a simplification of the generalized Kauffman bracket polynomial.

The idea of the invariant is to consider only the values and order of coefficients and do not

take into account the powers of one of the variables. Finally, we prove that each tabulated

link can not be given by a connected sum under the hypothesis that the sum of complexities

of the terms that form the connected sum is not more than the complexity of the connected

sum.
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Introduction

In the knot theory, one of the oldest and the most important problems is to recognize
a knot (or a link), i. e., to associate the considered object with a unique tabulated one.
This problem involves the problem on complete classification of knots and links ordered
taking into account some their properties. Most of the classifications obtained during last
150 years are devoted to classical knots and links, see [12, 19, 6]. Today, developing of
the theory of global knots and links leads to tabulation of knots and links in manifolds
different from the 3-dimensional sphere. However, in contrast to the case of knots and links
in the 3-dimensional sphere, there is a gap between global knots and links in the sense of
tabulation. In order to show this gap, compare presence of classifications of global knots
and links.

As regards tabulation of global knots, note that knots in the solid torus [9] and the
thickened Klein bottle [18], as well as prime knots in the lens spaces [10] are tabulated.
In the knot theory, recent classifications consider only the so-called prime objects, which
can not be obtained by some known operations from already tabulated objects. Knots
in the thickened surfaces and virtual knots have been of particular interest during last
20 years. Hence, some classifications of such knots were also obtained. In particular, the
works [11, 20] present perfect classifications of virtual knots ordered taking into account
the number of classical crossings and obtain a list of some characteristics of each knot.
However, in these classifications, such important properties of a knot as primality and
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genus are not taken into account. Recall that genus of a virtual knot is the minimal genus
of the thickened surface which can contain the considered knot. We propose to tabulate
virtual knots with respect to both numerical characteristics, i. e. not only the number
of classical crossings as usual, but also the genus of a knot, see the articles [1, 5] for
classifications of prime knots in the thickened torus and the thickened surface of genus 2,
respectively. In a sense, such classifications can be considered as classifications of prime
virtual knots of genus 1 and 2, respectively.

As regards tabulation of global links, note classifications of links in the projective
space [7] and prime links in the thickened torus [2, 3]. Also, note a classification of virtual
links of special type, namely, alternating virtual links [21], see also [22] for the associated
database, which include alternating virtual knots as well.

In this paper, we tabulate prime not oriented links in the thickened surface of genus
2. Namely, we obtain a table of prime diagrams, i.e. classification of prime links, based on
the result of the first step [4], i.e. a classification of prime link projections in the surface
of genus 2 having no more than 4 crossings. Following [5], we apply the Kauffman bracket
frame F (·) at the steps devoted to cancellation of duplicates and proof of the fact that
all the rest links are not equivalent and admit no destabilisations and representations as
connected sums. Such an invariant is obtained as a simplification of the surface bracket
polynomial 〈·〉 [8], which generalises the Kauffman bracket [14] (see also [13] for the original
version called the Jones polynomial). The idea of the invariant is to consider only the values
and order of coefficients and do not take into account the powers of one of the variables.
Finally, we show that each tabulated link can not be given by a connected sum under the
hypothesis that the sum of complexities of the terms that form the connected sum is not
more than the complexity of the connected sum.

The paper is organized as follows. In Section 1, we present some background material.
Section 2 is devoted to a definition of the Kauffman bracket frame F (·) [5]. In Section 3,
we present main steps of the tabulation of prime links in the thickened surface of genus
2 and prove the main theorem that there exist no more than 38 pairwise not equivalent
prime such links having diagrams with no more than 4 crossings.

1. Background Material

Let T and T2 be a 2-dimensional torus and a 2-dimensional surface of genus 2,
respectively. Further, for shortness, we omit the words «a 2-dimensional».

We call a simple closed circle C ⊂ T2 cut, if the complement T2\C consists of two
components, and not cut, if the complement T2\C consists of the unique component.

Fig. 1. (a) A surface T2 endowed with oriented pairs «meridian-longitude» of its handles, (b)
destabilization of the surface T2 of genus 2

For any oriented not cut circle C ⊂ T2 and two fixed oriented pairs «meridian-
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longitude» of handles of the surface T2 (within the paper, see Fig. 1(a)), the numbers
a and c (respectively, b and d) are calculated as intersection numbers of the circle C and
the corresponding meridian (respectively, longitude) of the surface T2. Then the circle C

is associated with the ordered set of four numbers (a, b, c, d), where a, b, c, d are called
the coordinates of the circle C. In a fix basis, i.e. for the fixed four circles, homology
classes of which form a basis in the first homology group (for instance, see Fig. 1(a)),
the homology class of the circle C is uniquely defined by the coordinates of C. Since
direction of orientation of C is arbitrary, the coordinates (a, b, c, d) and (−a,−b,−c,−d)
are considered to be equal. The signs of the numbers a, b, c, d are positive, if the the
direction of orientation of C coincides with the direction of the corresponding longitude
or meridian. Note that, in contrast to the case of the torus T , where the greatest common
divisor gcd(a, b) = 1, there exist not cut circles such that gcd(a, b) 6= 1 or gcd(c, d) 6= 1.
For instance, we can consider the circle having the coordinates (2, 1, 0,−2).

Consider a surface T2 and an interval I = [0, 1]. A 3-dimensional manifold
homeomorphic to the direct product T2 × I is called a thickened surface of genus 2.

Denote by L ⊂ T2 × I an m-component link in T2 × I, which is defined as a smooth
embedding of m simple closed circles, which form a not connected 1-dimensional manifold,
in the interior of T2 × I such that the images of the circles do not intersect each other.
Note that 1-component link is said to be a knot. Two links L1 ⊂ T × I and L2 ⊂ T × I

are called equivalent, if there exists a homeomorphism of T × I onto itself that takes L1

to L2.
As in the classical case, links in T2× I can be presented by their diagrams. A diagram

D ⊂ T2 of a link L ⊂ T2 × I is defined by analogy with the diagram of the classical
link except that the link is projected into the surface T2 instead of the plane. For each
component of L, we refer to the part of D associated with this component as the component
of D.

Assume that D ⊂ T2 is a link diagram. A not cut circle C ⊂ T2 is called a cancellation
circle for the pair (D, T2), if C and D do not intersect each other. In order to perform
destabilization of the surface T2, it is sufficient to cut T2 along a cancellation circle C and
glue each obtained component of the boundary by a disk D2. Fig. 1(b) presents a torus T
as a result of destabilization of the surface T2 of genus 2.

Let us describe the following types of links in T2 × I (compare with the types of link
projections in the surface T2 presented in [4] and types of knots in T2× I presented in [5]).

A link L ⊂ T2 × I is called essential, if any diagram of L admits no destabilization. In
other words, any annulus A, which is isotopic to C × I ⊂ T2 × I, where C ⊂ T2 is a not
cut circle, has nonempty intersection with L.

A link L ⊂ T2 × I is called trivial, if L admits a diagram without crossings.
A link L ⊂ T2 × I is said to be composite, if at least one of the following three

conditions (a), (b), or (c) is satisfied.
(a) L is a connected sum of an essential link L1 ⊂ T2 × I having m1 components

and a nontrivial link L2 ⊂ S3 having m2 components, which is defined by analogy with
the classical connected sum of two classical links in the 3-dimensional sphere S3. Namely,
in T2 × I (respectively, S3), remove an open 3-dimensional ball B3 that intersects L1

(respectively, L2) by an unknotted arc. As a result, the link Li is transformed to the union
of a knotted arc and mi − 1 closed circles, i = 1, 2. Then, glue the resulting 3-dimensional
manifolds into one new T2 × I by a homeomorphism that identifies the obtained spherical
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boundaries such that endpoints of different knotted arcs are glued pairwise.
(b) L is a circular connected sum of essential links L1 ⊂ T2× I having m1 components

and L2 ⊂ T × I having m2 components, which is defined by analogy with the circular
connected sum introduced by S.V. Matveev in [17]. Namely, consider L1 and L2 to be such
that there exist annuli A1 ⊂ T2 × I and A2 ⊂ T × I, where Ai is isotopic to Ci × I (here
Ci is a not cut circle in T2 or T , respectively), and Ai intersects Li transversally at exactly
one point, i = 1, 2. Cut T2 × I along A1 and T × I along A2. As a result, the link Li is
transformed to the union of a knotted arc and mi − 1 closed circles, i = 1, 2. Then, glue
the resulting thickened surfaces (a thickened torus T oo× I with two holes and a thickened
annulus A × I) into one new T2 × I by a homeomorphism that identifies the obtained
annular boundaries such that endpoints of different knotted arcs are glued pairwise.

(c) L is a connected sum of two nontrivial links Li ⊂ T × I having mi components
defined as follows. In each T × I, remove a thickened disk D2 × I, where D2 ⊂ T , that
intersects a link by an unknotted arc. As a result, the link Li is transformed to the union
of a knotted arc and mi − 1 closed circles, i = 1, 2. Then, glue the resulting thickened
surfaces (two copies of a thickened torus T o × I with a hole) into one new T2 × I by a
homeomorphism that identifies the obtained annular boundaries such that endpoints of
different knotted arcs are glued pairwise.

For all three cases (a), (b), and (c), note that one of two terms in the sum can be a
knot, since the result is a link anyway.

A link L ⊂ T2 × I is called split, if there exists an embedded surface in the thickened
surface T2 (a 2-dimensional sphere, a torus T , or a surface T2, which is parallel to the
boundary of T × I), which does not intersect L and cuts the thickened surface T2 into two
parts such that each part contains at least one component of L.

A link L ⊂ T2×I is called prime, if L is essential, not composite, not split and contains
more than one component.

Let us explain the interest to tabulation of the prime links only. Indeed, nonessential
links correspond to links that are presented in already existing tables of links in the 3-
dimensional sphere S3 [19], [6], thickened annulus A× I (solid torus), or thickened torus
T × I [?]. Here we note that today there exist no classification of links in the solid torus,
but, as well as in the case of knots, we consider the construction of such a classification as
an independent problem, which is beyond the scope of our interests in this article. In their
turn, composite links correspond to links, which can be obtained using already known
knots and links by connected sums described in types (a) − (c). Finally, a split link can
be considered as a trivial union of already tabulated knots and links, while a link having
the unique component is a knot.

2. Kauffman Bracket Frame F (·)

Recall a definition of the Kauffman bracket frame F (·) [5] obtained as a simplification
of the surface bracket polynomial 〈·〉 proposed in [8], which generalises the Kauffman
bracket [14] (see also [13] for the original version called the Jones polynomial). The
Kauffman bracket frame F (·) is sufficient to prove that almost all tabulated links are
not equivalent, see Subsection 3.2. Moreover, in Subsection 3.3, we apply this invariant
as a tool to show both impossibility to realize any of tabulated links as a link in the
thickened surface having smaller genus and impossibility to represent any of tabulated
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links as a connected sum.
Assume that D ⊂ T2 is a diagram in the surface T2 of a link L in the thickened surface

T2 × I.
Following the rule presented in the center of Fig. 2(a), each angle of each crossing of D

is endowed with a marker A or B. Define each state s of the diagram D by a combination
of ways to smooth each crossing of D such as to join together two angles endowed with
the same markers, A or B, see Fig. 2(a) on the left and right, respectively. Obviously, for
the diagram D having n crossings, there exist exactly 2n states of D.

Fig. 2. (a) A- and B-smoothings of a crossing, (b) rules to define the sign ε(i) of the i-th crossing

Associate the union of disjoint not cut circles in each state si, i = 1, 2, 3, . . . , 2n,
with a product of the corresponding variables yj, which take values in the coordinates
(aj , bj , cj, dj) of the not cut circles that form the union associated with si, see Table 1.
Note that Table 1 includes only the coordinates (aj, bj , cj, dj) that are sufficient for the
links and basis considered in the present paper, while some new values of the variables yj
can be obtained when considering other links and / or basis.

Table 1

Values of the variables yj in terms of the coordinates (aj , bj , cj, dj) of not cut circles in T2

y1 = (0, 0, 0, 1)
y2 = (0, 0, 1, 0)
y3 = (0, 0, 1, 1)
y4 = (0, 0, 1,−1)
y5 = (0, 0, 2, 1)
y6 = (0, 1, 0, 0)
y7 = (0, 1, 0, 1)
y8 = (0, 1, 0,−1)
y9 = (0, 1, 0,−2)
y10 = (0, 1, 1, 0)
y11 = (0, 1,−1, 0)
y12 = (0, 1, 1, 1)
y13 = (0, 1, 1,−1)
y14 = (0, 1,−1, 1)
y15 = (0,−1, 1, 1)

y16 = (0, 1, 2, 0)
y17 = (0, 1, 2, 1)
y18 = (0,−1, 2, 1)
y19 = (0, 1, 2,−2)
y20 = (0, 2, 0,−1)
y21 = (0, 2, 1,−1)
y22 = (0,−2, 2, 1)
y23 = (1, 0, 0, 0)
y24 = (1, 0, 0, 1)
y25 = (1, 0, 0,−1)
y26 = (1, 0, 1, 0)
y27 = (1, 0, 1, 1)
y28 = (−1, 0, 1, 1)
y29 = (1, 1, 0, 0)
y30 = (1,−1, 0, 0)

y31 = (1, 1, 0,−1)
y32 = (1,−1, 0, 1)
y33 = (−1, 1, 0, 1)
y34 = (1, 1, 0,−2)
y35 = (1, 1, 1, 0)
y36 = (1,−1, 1, 0)
y37 = (−1, 1, 1, 0)
y38 = (1, 1, 1, 1)
y39 = (1, 1, 1,−1)
y40 = (1, 1,−1,−1)
y41 = (1,−1, 1, 1)
y42 = (1,−1, 1,−1)
y43 = (1,−1,−1, 1)
y44 = (1,−1, 2, 0)
y45 = (1,−1, 2, 1)

y46 = (2, 0, 0,−1)
y47 = (2, 0, 1,−1)
y48 = (2, 1, 0, 0)
y49 = (2,−1, 0, 0)
y50 = (2,−1, 0, 1)
y51 = (−2, 1, 0, 1)
y52 = (2, 1, 0, 2)
y53 = (2,−1, 0, 2)
y54 = (2, 1, 1, 1)
y55 = (2, 1, 1,−1)
y56 = (2,−1, 1, 1)
y57 = (2,−1, 1,−1)
y58 = (2,−1, 2, 2)
y59 = (2,−2, 1, 1)
y60 = (2,−2, 2, 1)

In order to calculate the generalised Kauffman bracket polynomial, it is necessary to
use the so-called writhe, which is defined for the oriented diagram only and is aimed to
catch the first Reidemeister move Ω1, i.e. addition and cancellation of a loop. Since our
aim is to tabulate not oriented link diagrams, then we consider orientation just as a tool
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to calculate the writhe. Therefore, we orient each component of the link diagram D in any

of two possible ways and define the writhe w(D) to be the sum w(D) =
n∑

i=1

ε(i) over all

n crossings of D that are self-crossings of the components of D, where ε(i) is the sign of
the i-th crossing of D defined by the rules presented in Fig. 2(b). Note that, in order to
calculate the writhe w(D), we use an arbitrary orientation and consider only self-crossings
of the components, because Ω1 is not defined for crossings that are intersections of different
components.

The formula of the generalised Kauffman bracket polynomial is the following:

X̃ (D) = (−a)−3w(D)
2n∑

i=1

aα(si)−β(si)(−a2 − a−2)γ(si)
∏

j

y
δj(si)
j . (1)

Here α(si) and β(si) are the numbers of markers A and B in the given state si, while γ(si)
is the number of cut circles in the surface obtained by smoothing according to the state si,
and δj(si) is the number of not cut circles having the coordinates (aj, bj , cj, dj) associated
with the variable yj, see Table 1. The sum is taken over all 2n states.

We order terms of (1) in nondecreasing order of the powers of the variable a and collect

terms having the same power of the variable a, i.e. represent (1) as
∑
m

Pma
m, where Pm is

a polynomial in the variables yj . Then, we associate the polynomial (1) with an ordered
set of nonzero polynomials Pm in the variables yj, which is called the Kauffman bracket

frame F (·) [5]. For instance, X̃ (D) = −a−12y62−2a−8y12−a−8y3y7−a−6y4y7 is associated
with F (D) = (−y62,−2y12 − y3y7,−y4y7).

We call the Kauffman bracket frames F (D1) and F (D2) inverted to each other, if
the elements of F (D1) are the corresponding elements of F (D2), where the polynomials
Pm are taken in reverse order. Such a transformation of the Kauffman bracket frames is
said to be an inversion. For instance, F (D1) = (−y62,−2y12 − y3y7,−y4y7) is inverted to
F (D2) = (−y4y7,−2y12 − y3y7,−y62).

By analogy with Lemma 1 [5], the following statement can be proved.

Lemma 1. The Kauffman bracket frame F (·) considered up to inversion, multiplication
by −1, and changes of variables yj (in the last case, some new values of the variables
yj are available) associated with changes of the corresponding the coordinates of not cut
circles in the surface T2 generated by orientation preserving homeomorphisms of T2 is an
invariant of links in the thickened surface T2 × I of genus 2.

3. Table of Prime Links

Theorem 1. In the thickened surface of genus 2, there exist no more than 38 pairwise not
equivalent prime links having diagrams with no more than 4 crossings, see Fig. 3.

Subsections 3.1 – 3.3 describe three steps of the proof of Theorem 1.

3.1. Construction of a Preliminary List of Diagrams on Prime Projections

Each projection obtained in [4] is converted to the set of corresponding diagrams
by enumeration of all possible ways to replace each crossing of a projection by either an
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31 41 42 43

44 45 46 47

48 49 410 411

412 413 414 415

416 417 418 419

420 421 422 423

424 425 426 427

428 429 430 431

432 433 434 435

436 437

Fig. 3. Diagrams 31, 41 – 437 of prime links in the thickened surface T2 × I

over- or undercrossing of a diagram. It is easy to see that each projection with n crossings
leads to 2n diagrams. Therefore, direct construction by tabulated 14 projections [4] leads
to 23 + 14 · 24 = 232 diagrams. However, such enumeration is significantly reduced by the
following ideas, see [1] and [2].

First, any diagram is converted to the equivalent one by simultaneous switching of all
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crossings. Therefore, the set of diagrams on the projection is halved by fixing the type of
a crossing of each projection.

Second, both crossings of a bigon should have the same type. Otherwise, the number
of crossings is reduced by the second Reidemeister move Ω2.

Third, each component of a diagram contains both types of crossings (under- and
over-crossings) with the union of other components, otherwise we have a split diagram.

3.2. Formation of Equivalence Classes of the Constructed Diagrams

In order to compare the constructed diagrams, we use the software «Wolfram
Mathematica» to calculate the Kauffman bracket frames for each diagram obtained in
Subsection 3.1. Therefore, we find more than 17 groups formed by diagrams with the
same Kauffman bracket frames. Each group contains from 2 to 4 diagrams, and there exist
no groups having diagrams on not equivalent projections. Then, by hand, we construct
sequences of simultaneous switching of all crossings, homeomorphisms of the surface of
genus 2 onto itself and Reidemeister moves in order to prove that diagrams with the same
Kauffman bracket frame are equivalent. At this step, we also use another representation
of the considered links called virtual link diagrams [16]. Fortunately, with the exclusion
of the pair (430, 431) discussed below, the list of the Kauffman bracket frames presented
below is sufficient to prove that all tabulated links are pairwise not equivalent.

Indeed, represent each yj by the same value y and take into account only the first
and the last elements of each Kauffman bracket frame with respect to both inversion and
simultaneous change of the sign. As a result, all the Kauffman bracket frames presented in
the list above are divided into 15 groups having from 1 to 16 elements. In the framework
of each of the obtained group, it is easy to see that all the Kauffman bracket frames are
pairwise not equivalent in the sense of powers and coefficients of y in the inner elements.

Moreover, the list of the Kauffman bracket frames is sufficient to prove that all
tabulated links admit no destabilisations, see Subsection 3.3.

As mentioned above, there exists a pair of the tabulated diagrams having the same
Kauffman bracket frames: (430, 431). In order to show that the diagrams are not equivalent,
it is sufficient to calculate and compare their generalised Alexander polynomials [15], which
takes zero value for the diagram 431 only.
F (31) = (−y13,−y15 − y26y32 − y24y35,−y13 − y54 − y56,−y12)
F (41) = (y6y8, 2y1 + y18y6, y22 + y23y25 + y5, y46 − y18y6,−y22 − y5,−y46)
F (42) = (y1, y23y25 + y5 + y6y8, y1 + y46 + y18y6, y22 − y5,−y46 − y18y6,−y22)
F (43) = (y23y25, 2y1 + y46, y22 + y5 + y6y8,−y46 + y18y6,−y22 − y5,−y18y6)
F (44) = (−y3 − y1y32 − y34 − y2y36,−y30 − y1y31 − y44,−y29 + y2y36, y30 + y44, y29)
F (45) = (−y34,−y30 − y1y31 − y44,−y29 − y1y32 − y2y36,−y30 + y44, y29 + y2y36, y30)
F (46) = (−y1y31,−y29 − y1y32 − y34,−2y30 − y44, y29 − y2y36, y30 + y44, y2y36)
F (47) = (−y1y32,−2y30 − y1y31,−y29 − y34 − y2y36, y30 − y44, y29 + y2y36, y44)
F (48) = (y1y3y32,−2y1y3 − y1y29 − 3y32 − y33,−2y31 − y45 − y26y56,−y15y26)
F (49) = (y32, y1y3−2y32,−2y1y30−y31−y45−y26y56,−y15y26−y1y29−y32−y33,−y31)
F (410) = (−y32 − y33,−y1y30 − y31 − y45 − y26y56,−y15y26 − y1y29 − y32,−y31)
F (411) = (−y33,−y1y30 − y31 − y45,−y15y26 − y1y29 − 2y32,−y31 − y26y56)
F (412) = (y41, 4y41, y3y30 + y38 + y40 + y42 + y43 + y26y8, y29y3 + 2y39 + y30y4, y29y4)
F (413) = (y41, y3y30+y40+y41+y43, y29y3+y39+y30y4+3y41, y38+y29y4+y42+y26y8, y39)
F (414) = (y3y30, y29y3+y30y4+2y41, y38+y29y4+y40+y41+y42+y43, 2y39+2y41, y26y8)

2020, vol. 7, no. 3 27



A. A. Akimova

F (415) = (y32 + y33 + y45, 2y1y30 + y31 + 2y45, y15y26 + y32 + y33 + y1y34, y31)
F (416) = (y32, y1y30 + y31 + y45, y15y26 + 2y33 + y1y34 + y45, y1y30 + y31 + y45, y32)
F (417) = (−y1y33y1y32y32 + 2y33 + y1y34 + y45, 2y31 + 2y45, y15y26)
F (418) = (y32 + y33 + y1y34, 2y1y30 + 2y31 + y45, y15y26 + y32 + y33 + y45, y45)
F (419) = (y3, y21+2y3+y47, y21+y23y28+y3+y47+y59+y15y6, y23y28+y3+y59+y15y6, y3)
F (420) = (y3, y23y28+2y3+y15y6, y21+y23y28+2y3+y47+y15y6, y21+y3+y47+y59, y59)
F (421) = (−y15y3 − y58 − y1y8,−y3y56 − 2y6 − y21y6 − y9,−2y49 − y1y7 − y1y8,−y1y51)
F (422) = (y6,−2y6−y21y6,−y15y3−y49−y58−y1y7−2y1y8,−y1y51−y3y56−y6−y9,−y49)
F (423) = (−y1y8,−y6−y21y6−y9,−y15y3−y49−y58−y1y7−y1y8,−y1y51−y3y56−y6,−y49)
F (424) = (−y15y3,−y3y56 − 2y6,−2y49 − y58 − y1y7 − y1y8,−y1y51 − y21y6 − y9,−y1y8)
F (425) = (−y15y3 − y49 − y1y7,−y1y51 − y3y56 − 2y6 − y21y6,−y49 − y58 − 2y1y8,−y9)
F (426) = (−y6,−y15y3−y49−y1y7−y1y8,−y1y51−y3y56−y6−y21y6−y9,−y49−y58−y1y8)
F (427) = (y1y49, 2y50 + y1y6, y27y37 + 2y7 + 2y8, 2y17 + y1y6, y5y6)
F (428) = (y7, y17 + y50 + y1y6, y27y37 + y1y49 + y5y6 + 2y8, y17 + y50 + y1y6, y7)
F (429) = (−2 + y21, y1y23y25 + y1y6y8,−6 + y21 + y223 + y225 + y23 + y26 + y28, −4 + y241)
F (430) = (−1,−5+y21+y225+y23+y28, y1y23y25+y1y6y8,−5+y21+y223+y241+y26,−1)
F (431) = (−1,−5+y21+y223+y23+y26, y1y23y25+y1y6y8,−5+y21+y225+y241+y28,−1)
F (432) = (−y1,−y23y25 − y6y8, y23y25 + y5 + y6y8, y1 + y20 + y46, y60)
F (433) = (y13,−3y13,−y12− y26y32− y24y35− y55− y57− y4y6,−y13− y14− y54− y56,−y15)
F (434) = (−y12 − y55 − y57,−2y13 − y14 − y54 − y56,−y15 − y26y32 − y24y35 − y4y6,−y13)
F (435) = (y41, y38+y40+y42+y43, y10y24+y11y25+y29y3+2y39+y30y4, y38+y40+y42+y43, y41)
F (436) = (y6, y1y10 + y13y4 + y52 + y53, 2y16 + 2y19 + 2y6, y10y2 + y13y4 + y48 + y49, y6)
F (437) = (−1,−7 + y225 + y23 + y231 + y28,−7 + y21 + y215 + y227 + y241,−1)

3.3. On Primality of the Tabulated Links

In order to prove that a link is prime, it is sufficient to prove that the link is
essential, not composite and not split. As regards to the latter property, we note that
when constructing the table, we remove obviously split links, while the first two properties
can be shown as follows.

First, we use the following obvious statement in order to show that each of the links
presented in Fig. 3 admits no destabilisation, i.e. is essential.

Lemma 2. Assume that the Kauffman bracket frame F (D) of a connected link diagram
D ⊂ T2 contains terms corresponding to 4 not cut circles having not equivalent coordinates
(ak, bk, ck, dk), k ∈ {1, 2, 3, 4}, such that the system of 4 linear equations of the form

bk · a− ak · b+ dk · c− ck · d = 0, k ∈ {1, 2, 3, 4},

where a, b, c, d are the variables and ak, bk, ck, dk are known coefficients, has only zero
solution. Then the link diagram D admits no destabilisation.

Lemma 2 is proved by analogy with Lemma 3 [5].
Following Lemma 2, we associate each tabulated diagram D with a set of 4 not cut

circles involved in the Kauffman bracket frame F (D), which is sufficient to prove that there
exists no cancellation circle for the corresponding link L ⊂ T2 × I. To this end, we use
the fact that the Kauffman bracket frames of the tabulated diagrams based on the same
projection are formed by the same set of the variables yj. In addition, it turned out that
the Kauffman bracket frames of some tabulated diagrams based on different projections
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(for instance, 31 and 411 [4]) involve the same sets of the variables yj, which are sufficient
to prove that the corresponding links are essential. More precisely, Table 2 gives the sets
of the variables yj involved in the Kauffman bracket frames that are sufficient to prove
that the corresponding tabulated links are essential.

Table 2

Sets of tabulated links associated with sets of 4 variables yj

31, 433, 434: y12, y32, y35, y54 48 – 411, 415 – 418: y1, y30, y31, y45

429 – 431, 437: y1, y8, y25, y41 44 – 47: y1, y29, y30, y44

412 – 414, 435: y3, y4, y30, y40 419, 420: y3, y21, y23, y47

421 – 426: y1, y3, y15, y58 427, 428: y1, y6, y37, y50

41 – 43, 432: y1, y5, y6, y25 436: y1, y6, y16, y49

In order to show that all 38 tabulated links are not composite, it is sufficient to prove
that each link can not be given by a connected sum of the type (a), (b), or (c) under the
hypothesis that the sum of complexities of the terms that form the connected sum is not
more than the complexity of the connected sum. More precisely, we assume that there
exists no a pair of nontrivial links such that the connected sum of these links admits a
diagram having number of crossings, which is smaller than a minimal sum of numbers of
crossings of the diagrams corresponding to both links formed the pair. In the framework
of the considered problem on classification of links that allow diagrams with either 3 or 4
crossings, the impossibility to represent each of the tabulated essential link as a connected
sum of the types (a), (b), or (c) is obvious, even taking into account that exactly one of
the terms in the sum can be a knot.

Indeed, for the connected sums of the types (a) and (b), we note that all essential
knots and links in T2 × I have diagrams with at least 3 crossings. Therefore, the second
term in the sum should admit a diagram with no more than 1 crossing, while all nontrivial
knots and links in S3 have diagrams with at least 3 and 2 crossings, respectively, and all
essential knots and links in T × I have diagrams with at least 2 crossings.

As regards to the connected sum of the type (c), we note that such a sum can be
obtained only in the case then the terms are given by the unique essential link 21 [2] in
T × I and / or knot 21 [1] having diagrams with no more than 2 crossings. Since at least
one of two terms should be a link and taking into account the specific form of the link
21, we note that the Kauffman bracket frame F (·) of the obtained connected sum admits
no terms associated with not cut circles having coordinates of the form (a, b, c, d), where
both pairs (a, b) and (c, d) include odd numbers. As a result, all 38 tabulated links can not
be given by the connected sum of the type (c), since the Kauffman bracket frame F (·) of
each tabulated link contains a variable that belongs to the set {y8, y10, y15, y32}.

The work is supported by the RFBR grant no. 20-01-00127.
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ТАБУЛЯЦИЯ ПРИМАРНЫХ ЗАЦЕПЛЕНИЙ
В УТОЛЩЕННОМ КРЕНДЕЛЕ РОДА 2, ИМЕЮЩИХ
ДИАГРАММЫ С НЕ БОЛЕЕ ЧЕМ 4 ПЕРЕКРЕСТКАМИ

А. А. Акимова

В настоящей работе строится таблица примарных зацеплений в утолщенном крен-

деле рода 2, имеющих диаграммы с не более чем 4 перекрестками. Прежде всего,

строится предварительный набор диаграмм на основе таблицы примарных проекций

зацеплений на кренделе рода 2. Для того, чтобы удалить дубликаты и доказать, что

все оставшиеся зацепления неэквивалентны, а также доказать, что все табличные за-

цепления не допускают дестабилизации, используется инвариант, называемый каркас

скобки Кауфмана, который является упрощением обобщенного полинома скобки Ка-

уфмана. Идея инварианта состоит в том, чтобы принимать во внимание только по-

рядок и значения коэффициентов и игнорировать степени одной из переменных. На

заключительном шаге доказывается, что ни одно из табулированных зацеплений не

может быть представлено в виде связной суммы в рамках гипотезы, что наименьшее

число перекрестков связной суммы зацеплений не меньше суммы наименьших чисел

перекрестков слагаемых.

Ключевые слова: примарное зацепление; утолщенный крендель рода 2; табуля-

ция; обобщенный полином скобки Кауфмана; каркас скобки Кауфмана.
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