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NUMERICAL INVESTIGATION OF THE INVERSE
PROBLEM FOR THE BOUSSINESQ — LOVE
MATHEMATICAL MODEL

A. V. Lut, South Ural State University, Chelyabinsk, Russian Federation, lutav@susu.ru

The article is devoted to the numerical investigation of the inverse problem for the
Boussinesq — Love mathematical model, which describes longitudinal vibrations in a thin
elastic rod taking into account inertia and external load. The inverse problem is understood
as the restoration of any coefficient of the original equation, in this case, the function
responsible for the external load. To find it, the method of successive approximations
was used. The first paragraph presents the previously obtained results of an analytical
study of this problem. The second section describes step by step an algorithm for finding
an approximate solution. The third paragraph contains the results of computational
experiments presented by two examples. The given examples were obtained during the
implementation of the developed algorithm in the Maple software package. The results
of this work can be used in further research in the field of mathematical physics or
mathematical modeling.
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Introduction

Let 2 C R™ be a bounded domain with a boundary 0f2 of class C*°. In the cylinder
Q) x [0; T] consider the Boussinesq — Love equation

(A= A)vy = a(A = N + B(A = N + fq, (1)
with initial conditions
v(z,0) = vo(x), v(2,0) = vi(z), (2)
boundary condition
’U(l‘, t)’ag =0 (3)

and overdetermination condition

/ o(, ) K () dz = B(8), (4)

Q

where vg(x), vi(x), K(x), ®(t) are given functions.

Equation (1) describes longitudinal vibrations in a thin elastic rod, taking into
account the inertia and under external load. The coefficients A, a, X', 3, \” characterize the
properties of the rod material and relate such quantities as Young’s modulus, Poisson’s
ratio, material density and radius of gyration relative to the center of gravity, in addition,
the function f sets a known part of the external load (if known). The first condition
in (2) specifies the initial (at time ¢t = 0) state of the rod, and the second sets the initial
velocity. The boundary condition (3) fixes the rod ends, that is, there is no longitudinal
displacement at the rod ends. The integral overdetermination condition (4) arises at the
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moment when, in addition to finding the function wu, it is required to restore the component
of the external load q.

The Boussinesq — Love equation (1) was originally presented in 1935 [1]. This equation
is a Sobolev-type equation with respect to the second-order time derivative. Recently a
large number of studies have been devoted to Sobolev-type equations. The article |2]
presents an overview of the results devoted to optimal control problems for Sobolev-type
models with an initial-final condition or the Showalter — Sidorov condition. The article [3]
presents sufficient conditions for the existence of positive solutions to the Showalter —
Sidorov problem, as well as Cauchy for a linear abstract Sobolev type equation. The
work [4] became fundamental for this numerical study, as it contains an analytical study of
the stated problem, including the theorem on the existence and uniqueness of its solution.

The inverse problem arises when, in addition to finding the function v(z,t), it is
also necessary to recover the function ¢(t) from (1)—(4). Papers [5]-[9] are devoted
to the numerical study of inverse and direct problems. The study [5] uses various
approaches to solve the inverse problem of the two-dimensional nonstationary convection-
diffusion equation; the results of computational experiments implemented in the Matlab
environment are also presented. A numerical study of the problem with non-self-adjoint
operators is carried out in [6], continuing the study of the solution of the retrospective
inverse problem of heat conduction. The paper [7] proposes one of the effective methods
for solving a mathematical dynamic inverse problem, the possibility of its application is
discussed, and numerical results are presented. In [8] a boundary value problem for a wave
function with a nonlinear asymptotic condition, in which the unknown scattering phase
is excluded, is studied reducing it to minimization with respect to the parameters of the
functional. The paper [9] is devoted to a numerical study of the modified Boussinesq —
Love equation defined on a graph.

1. Analytical Investigation of the Mathematical Model
Problem (1)—(4) can be reduced to the problem of finding functions u € C?([0, T|;U*),
w e C*([0,T};U%), g € C*([0,T); ) from relations
u(t) = S1u/(t) + Sou(t) + (A1) Qx(t)g(t) + (A1) Qf (1), (5)
u(0) = uo, w'(0) = uy, (6)
Cu(t) = V(t) = Co(t), (7)
How"(t) = Hyw'(t) + w(t) + (By) " (I = Q)x(8)q(t) + (By) "I = Q)f(t),  (8)
w(0) = wo, w'(0) =wy, (9)

where

a(Ag —N) B\ — )

s =Y BT o So=Y P2 o

1 )\_)\k < ¥k > Pk, 0 )\_)\k <Pk > Pk,
ARFA ARFA

Uy = Z < Vo, Pk > Pr, U = Z < V1, Pk > Pk

MFA AN
w0:Z<U07§0k>80k:7 w1:Z<U1790k>80k:
)\k:)\ )\k:)‘
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A—A Mk — A
Z BA _;1/ 7%0k>90/€7 Hl Z BA'IC_)\”)) '7¢k>80k, tE[O,T]

Here {/\k} = o0(A) denotes the set of eigenvalues of the Laplace operator, numbered
nonincreasingly with regard to multiplicity, and {¢x} denotes the family of the

corresponding eigenfunctions, orthonormal with respect to the inner product < -, - >
of L?(Q).

Theorem 1. [4] Let one of the conditions A ¢ o(A) or (A€ a(A) AA=N)AN#N")

be fulfilled. Let K, wy, wi € U', f e C*[0,T;L(YV;F), ® € CY[0,T];Y),

> % #0, the condition [vi(z)K(x)dz = ®'(0) be satisfied for initial value
Q

AN
vy € U, and the initial values w,, = (I — P)v,, € U°, m = 0,1, satisfy
f(-,0)q(0)
AL =0 k= A 10
< wp + B0 — )’ P > for k ) (10)
fe(-,0)q(0) + f(-,0)¢'(0)
=0 k:Xp= A 11
<wp + B0 — V) , o >=0 for k (11)

Then there exists a unique solution (v,q) of inverse problem (1)—(4), where
q e C*[0,T;Y), v = u+ w, whence u € C*([0,T];U") is a solution of (5)~(7) and
the function w € C?([0,T);U°) is a solution of (8)—(9) given by

Z <3 )\,,)790k > @ (12)

2. Algorithm of Numerical Method

Let us describe the algorithm developed for the numerical solution of the inverse
problem for the Boussinesq — Love equation in steps corresponding to the block diagram
presented in Figures 1-3.

Start of the program.

Step 1. Input the parameters of the Boussinesq — Love equation A, X, A, «, 3; the
length of the rod [; the time limit 7, the permissible error E for the desired function ¢(t),
the required number N of terms of the Galerkin sum.

Step 2. Input functions: the known part of the external load f(x,t), the initial position
of the rod vy(z), the initial velocity v;(x), the kernel K (x) and the righthand side F'(t) of
the overdetermination condition.

Step 3. Check the fulfillment of the boundary condition for the introduced functions
vo(x) and wvy(x). If the condition is not met, then go to the next step, otherwise go to
step 5.

Step 4. Print "Input another vg(x),v1(z)". Go to step 2.

Step 5. Solution of the Sturm — Liouville problem.

Step 5.1. Find the general solution of the differential equation from the Sturm —
Liouville problem.

Step 5.2. Form a system of equations for unknown coefficients obtained from
conditions in the Sturm — Liouville problem.

Step 5.3. Calculate the determinant of the resulting system.
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Input of parameters:
Aa 1'» A"’ a, ﬂa lw T» Ea N

-

Input of function: f(x,t),
Vo(x), Vi(x), K(x), F(t)

The boundary
conditions for the functions
Vo(x), Vi(x)
are satisfied

No

Solution of the
Sturm - Liouville problem:
eigenvalues Ak,
eigenfunctions @k(x)

!

Derivation of the solution to the
Sturm — Liouville problem

«Input other Vo(x), Vi(x)»

The number of terms of the The number of terms of the
Galerkin sumn=N Galerkin sumn=k+ 1

The conditions of the
theorem on the existence of
a solution are satisfied

No

«Input other parameters
and initial functions»

Fig. 1. Diagram of the algorithm - part 1.
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Finding points of the relative
spectrum pk of the pencil
of the operator B

Y

Finding q0(t) - an element of
the required function q(t)

L]

Finding an expression for making
successive approximations of
the function q (t)

L]

i=1,
Setting the initial approximation
q[0](t)=0

L]

Calculation of the first
approximation q[1](t), as well as
ocenka - the error estimate

No

ocenka> E

Yes

Calculation of the next Derivation of .the solution (t), as well
. . . as the achieved error — ocenka
approximation — q[i+1](t)

; — v

Plotting: q(t) and successive
approximation functions

Calculating the new
ocenka value

L]

i=i+1

The condition
or matching the function q(t)
and the introduced functions
is satisfied

Representation of the solution
V(x,t) in the form of
the Galerkin sum

v

Obtaining an approximate A 4
solution of the
Boussinesq — Love equation with
the Cauchy condition

«No solutions»

Fig. 2. Diagram of the algorithm - part 2.
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No

i<n

Yes

Multiplication of the Boussinesq
— Love equation, initial equations
scalar by eigenfunctions

Finding a solution to
the regular problem Vr(x,t)

'

Solving a differential equation
with initial conditions

!

i=i+1

Operator A is degenerate

Finding a solution to
the singular problem Vs(x,t)

Solving the singular problem
Vs(x,t) =0

Evaluating an expression
V(x,t) = Vr(x,t) + Vs(x,t)

v

Output of solution V(x,t)

\{\

Building an animated graph
of a function V(x,t)

End

Fig. 3. Diagram of the algorithm - part 3.
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Step 5.4. Find A\, from equality to O of the determinant obtained at step 5.3.

Step 5.5. Find the eigenfunctions ¢y (z) for the obtained at step 5.4 eigenvalues Ay.

Step 5.6. Calculate the constant in the eigenfunctions ¢ (z) from the normalization
condition.

Step 5.7. Compose the eigenfunctions p;(z) and the eigenvalues \; of the Sturm —
Liouville problem.

Step 6. Print the obtained solution of the Sturm — Liouville problem.

Step 7. Investigate the parameter A\ of the equation for possible coincidence with the
eigenvalues )\, obtained in step 5. If a match is found, then go to the next step, otherwise
go to step 10.

Step 8. Check whether the number £, at which a match was found, is less than or equal
to the previously entered value N. If the condition is not met, then go to the next step,
otherwise go to step 10.

Step 9. The number of terms of the Galerkin sum 7 is equal to k£ + 1, where £ is the
number of the eigenvalue at which the coincidence was found. Go to step 11.

Step 10. The number of terms of the Galerkin sum n is equal to the previously entered
parameter V.

Step 11. Check the first three conditions of Theorem 2o0n the existence of a solution.
If the conditions are not met, then go to the next step, otherwise go to step 13.

Step 12. Print "Input other parameters and initial functions". Go to step 1.

Step 13. Find the points pu;, of the relative spectrum of the operator pencil B. Distribute
1 over three lists in the cases when py are real and different, py are complex and py are
equal.

Step 14. Calculate the element go(t) of the required function ¢(t) by formula

w(t) = (Cd(t)™! (\If”(t) — C8o Vi (tyug — C'Sy Vi (g — C'SoVaa(t)ur —

t t (13)
—051%2(t)ul — CSO / ‘/12(15 — S)h(S)dS — CSl / ‘/22(15 — S)h(S)dS — Ch(t)

Step 15. Find an expression for successive approximations of the function ¢(t):

qli + 1](t) = qo(t) — (CP(¢))~! CSo/Vm(t—S)@(S)Q[i](s)dSJr
. ° (14)
+CS, / Vaa(t — 5)B(s)qli](s)ds | |

0

Step 16. Put ¢ = 0.

Step 17. Calculate the first approximation ¢[1](¢) from the given initial approximation
q[0](t) = 0, using formula (14). Calculate of the estimation error ocenka, which is equal
to the norm of the difference between the 1st approximation and the initial one.

Step 18. Cycle "while" ocenka > E. If the cycle condition is met, go to the next step,
otherwise go to step 22.

Step 19. Calculate the next approximation g[i + 1](¢) from the previous approximation
q[](t) by formula (14).
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Step 20. Calculate a new estimation error ocenka, which is equal to the norm of the
differences between the i + 1-th approximation and the i-th.

Step 21. Increment index ¢ by one, go to step 18.

Step 22. Print the found approximate solution ¢(t), as well as the resulting estimation
error ocenka for the found function.

Step 23. Plot the found function ¢(¢) and the functions of all obtained successive
approximations.

Step 24. Check the two remaining conditions of Theorem for the found function ¢(t)
and the initial functions. If the conditions are not met, then go to the next step, otherwise
go to step 26.

Step 25. Print "No solution". Stop the program.

Step 26. Represent the solution v(z,t) as a Galerkin sum with found coefficients.

Step 27. Obtain the approximate solution to the Boussinesq — Love equation with the
Cauchy condition using the found function ¢(t).

Step 28. Put i = 1.

Step 29. Cycle "while" i < n. If the cycle condition is met go to the next step, otherwise
go to step 33.

Step 30. Multiply the Boussinesq — Love equation, as well as the initial conditions
obtained in Step 27, by the eigenfunction ¢;(x) using inner product < -, - >.

Step 31. Solve the second order ordinary differential equation with initial conditions.

Step 32. Increase the value of 7 by one. Go to step 29.

Step 33. Find the solution u(z,t) to the regular problem (5)—(7).

Step 34. Check the degeneracy of the operator A. If the operator A is non-degenerate,
go to the next step, otherwise go to step 36.

Step 35. The solution to the singular problem is equal to zero. Go to step 37.

Step 36. Find the solution w(x,t) to the singular problem given by (12).

Step 37. Calculate the required function v(z,t) as the sum of two previously obtained
functions u(zx,t) and w(z,t).

Step 38. Print the resulting function v(x,t).

Step 39. Plot an animated graph of the function v(z, t).

End of program.

3. Computational Experiments

Present the results of computational experiments carried out using the developed
algorithm, which was implemented in the Maple software package.
Example 1. Let the parameters

7

—, E=5 N=1 T=314, | =
327 57 Y 3 7l ™

1
A=-20, N=3XN=—7 a=1 =~

and functions

fla,t) = cos(z), wvo(x) =cos(2z) — 1, vi(z) = 2(cos(2x) — 1)’

T
K(x) = cos(z), F(t)= —cos(t).
Consequently, the Boussinesq — Love equation (3) takes the form
A+ 0.
(=20 — A)vy = (A — 3)vy — W + cos(x)q(t),
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conditions (2) have the form

v(x,0) = cos(2z) — 1, v(x,0) = Q(COS(Q:) — 1),

and the overdetermination condition

™

/v(z, t) cos(z)dxr = — cos(t).

For such parameters and initial functions, all the conditions of Theorem 2. are satisfied.
Using the developed algorithm an approximate solution to the problem was found:

1 399v123 49077 t(—48+/123
q(t) = ———— [ 47500 cos(t) | | — + TR
151297 625 10000

. (399\/123 49077) s < ST 109593) ST

_l’_ 152
625 10000 10000

625 1250

2052y/123 45387\ _uciorvim 2052y/123 45387\ suervim
\Tes 1m0 )¢ T T ¢c oot

109503 at00-vizm 1968v/123 46617 _rc1oevim
—/123 — i _ 7
* ( 3~ 70000 ) © T ( 625 1250 ) c 7
1968v/123 46617\ rorvim 16350t 30258
+ + e + ,
625 1250 625 625

reaching a possible error 4.771956378 < E at the 4-th step of approximation. Figures 4, 5
show the graphs of the function ¢(t) and successive approximations.

4 - '. 104— - |8 —— - —1 —
P N (N — 751 - ! 7
a®
] ! ! : -

N

a® -61———A e _
_?_5 B A A 4 H
_S ]
-10 / LN ! | =
w 10- . 4
—— fimction : ;. —— finction : ¢,. —— fimction : g;.

=i —— function : g,
Fig. 4. Function ¢(t) graph Fig. 5. Graph of functions of all approximations
Further in the program, the required function
-
(@1 V2sin(z) [ 4v2(rv/123 — 167 + 304)y/123e "7
v(x,t) = — —
VT 36977
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4v/123v/2(nv/123 + 167 — 304)5“%@)
36973 )

representing longitudinal vibrations in the rod was found. The last step of the program
was in construction of a time-animated graph of the found function v(z,t). Figures 6-9
show the graphs of the function v(z,t) at different time t.

0 0 T T
0'1.5 '1 1!5 3 2(5 d 05 1 L5 ] 25 5/
-1 /_ = —1 N ! . ;
! i

Iy
=9 -2 /
Vix0) & Viz.t) E
-4 -4
-3 =5
-6 ~§
Fig. 6. Function v(z,t) graph at t =0 Fig. 7. Function v(z,t) graph at t = 0.33

T[]/
LI NLY

Fig. 8. Function v(zx,t) graph at ¢t = 0.66 Fig. 9. Function v(z,t) graph at t = 3.14

Example 2. Let the parameters
A=—-1, N=-1, N =-2 a=2 =-2, FE=4 N=2 T=1, 1=~
and functions

f(z,t) =cos(z), vo(z) =sin(2x), vi(x)=sin(2z), K(z)=cos(z), F(t)= %sin(t).

54 Journal of Computational and Engineering Mathematics




COMPUTATIONAL MATHEMATICS

Consequently, the Boussinesq — Love equation (3) takes the form
(=1 = A)vy = 2(A + 1)vy — 2(A + 2)v + cos(z)q(t),
conditions (2) have the form
v(z,0) = sin(2x), v(x,0) = sin(2z),

and the overdetermination condition

T 4 '
/v(x, t) cos(z)dx = 3 sin(t).

0

With such parameters and initial functions, all conditions of Theorem 2are satisfied. Using
the developed algorithm an approximate solution to the problem was found:

+F) (3+\ﬁ)t

(—24+/21 + 56)¢" + (24+/21 + 56)e — 168sin(t)

t
q(t) = 1 :

reaching a possible error 1.944964447 < E at the first approximation step. Figure 10 shows
the graph of the function ¢(t).

154

1

059

i —

0.1 02\};3 04 05 0i6 07 0js o
-03 \ £
-1 \

22§ 4———t—— \\
a1 I\\

Fig. 10. Function ¢(t) graph

Further in the program, the required function

v(x,t) = Vi(x,t) + Vi(x, t),

where
V(e ) = V2sin(viz) [64v2 ccg)s(t) N 224+/2 Sisn(t)+
VT 8572 25573
2e7! tv/21
2 V2 g cosn [ Y2 (—178572 + 5440t + 2683)+
22491072 3
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tv/21
+2sinh (%) V21(1606572 + 19040t — 1728))) :

Vi(z,t) =0,

was found. The last step of the program was in construction of a time-animated graph
of the found function v(z,t). Figures 11-14 show the graphs of the function v(zx,t) at
different time t.

15 : - 154
an
Vieg 1 /,_,\ 1 i 3 Vs 14- . .
05 05
0 0
ols 0ls 15
~0.51 05
-14 -1
-15 =15
Fig. 11. Function v(x,t) graph at t =0 Fig. 12. Function v(z,t) graph at t = 0.33

| /\
1.5- /_\ ! i ! 1.5

Fig. 13. Function v(z,t) graph at ¢t = 0.67 Fig. 14. Function v(z,t) graph at t = 1
The reported study was funded by RFBR, project number 19-31-90137.
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YUCJEHHOE UCCJIEJOBAHUE OBPATHOU 3AJIAYN
TIJII MATEMATUYECKO MOJEJIN
BYCCUHECKA - JIIBA

A. B. JIym

CraTbsi TOCBSIIIIEHA YUCIEHHOMY HKCCJIEJOBAHUIO OOPATHON 3a/a4M JIsi MaTeMaTHde-
ckoit mozesin Byccunecka — JIsiBa, onuchIBaroIieil Ipoo/ibHbIe KOJIEOaAHUsI B TOHKOM YIIPY-
IOM CTepzKHE ¢ y9eTOM WHEPIUU U [Ipu BHemHeil Harpyske. [lo obparHoil 3a1a4eil moHnMa-
€TCsI BOCCTAHOBJIEHUE KAKOTO-JIN00 KO3 DUIMEHTA NCXOTHOIO YPABHEHUs, B JJAHHOM CJIydae
GbyHKIH OTBeYaloNeil 3a BHEITHIO HArPY3KY. s ee HAXOXKIEHNST NCIOJb30BAJICS METOJT,
[OCJIeIOBATEIbHBIX pub/mKeHuil. B miepBoM maparpade mpe/icTaBienbl MOy IeHHbIE Pa-
Hee pe3yJIbTaThl aHAJUTUIECKOrO WMCCIeJOBAaHUs JAHHON 3ajadu. Bo BTOpoM maparpade
OIIMCHIBAETCSI TI0 IIaraM aJI'OPUTM HAXOXKJIEHWs [MPUOJINKEHHOI'O pelenus. 1 peruii napa-
rpad CONEPKUT Pe3yIIbTATHI IPOBEJIEHUSI BBIYUCIUTEHHBIX SKCIIEPUMEHTOB, IPE/ICTABJICH-
HBIX JIByMs mpuMepamu. lIpuBejieHHbIE MPUMEPBI MOJYY€Hbl B XOJI€ Pean3aiun pa3pado-
TAHHOTO aJroOpuTMa B mporpaMMmuoM makere Maple. Pesympraror mammoit paboThl MOTYT
OBITH UCIIOJIb30BaHbI B JAJBHEHINNX HCC/IEI0BAHUSAX B 00JIACTH MATEMATHIECKON (DU3NKH
WK MATEMATUIECKOTO MO IMPOBAHUSI.

Karouesvie crosa: mamemamuseckan modeas; ypasuenue byccunecka — Jlasa; obpam-
HAA 300040; YUCALEHHOE UCCAEI0BANUE; YPABHERUE CODOAEBCKO20 MUNG; MeMOd NOCAe008a-
MEALHBLT NPUOAUHCEHU.
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