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The paper presents a comparative analysis of optimization algorithms to solve the risk

management problem in Gaussian stochastic systems. The optimization task considered

in the work has a number of features that need to be taken into account in the solution.

The features of the problem are the presence of a stochastic restriction on the required

level of risk, the non-convexity of the area of admissible decisions and the increase in the

number of control variables in the task of achieving an acceptable level of risk. There

are proposed ways of solving the problem of the occurrence of a set of local minimums.

The study of the effectiveness of the zero, first and second-order methods for solving the

problem of unconditional minimization using the Monte Carlo statistical test method is

carried out. Each method was adapted to the specifics of the problem being solved. The

software implementation of all presented algorithms was performed. The article presents

the results of the study. The computational complexity of algorithms is calculated.
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Introduction

The research on the safety of the complex stochastic systems is based on the theory
of risk. In a broad sense, understand the possible danger of any failure as a risk. Real
systems, as a rule, are multidimensional, it’s functioning in many respects has stochastic
character, and at them, it is often possible to allocate tens of different risk factors [1]. In the
performance of a task of risk management, it is necessary to base on a risk model. Usually
modeling a risk comes down to the selection of dangerous outcomes, the quantitative
assignment of consequences from their occurrence and estimation of the probabilities of
these outcomes [2–5]. For relatively simple objects when it is possible to specify a priori
all dangerous outcomes, in the presence of statistical information or expert estimates
on chances of their emergence, in general, this approach yields the results acceptable in
practice [6, 7]. However, for many complex systems, such as the economy, society, health,
etc. to allocate all these dangerous outcomes is not possible [8].

In [9], an approach to risk modeling is proposed, according to which the stochastic
system S is represented as a random vector X with a certain probability density p

x
(x) and

mutually correlated components. The multidimensional risk model for Gaussian stochastic
systems is described in [10]. In this case, the numerical characteristics are the covariance
matrix Σ = {σij}m×m and the expectation vector a = (a1, a2, .., am)

T for the random
vector of a Gaussian random vector X = (X1, X2, ..., Xm).

Risk management in the Gaussian system is described in more detail in [11]. One of the
tasks proposed in [6] is considered: achieving an acceptable level of risk r* with minimal
changes in the numerical characteristics Σ and a of the Gaussian system X0:







f(a,Σ) =
m
∑

j=1

m
∑

k=j

(σjk − σ0
jk)

2 +
m
∑

i=1

(ai − a0i )
2 → min

a,Σ
,

r(X) ≥ r∗, Σ ∈ GΣ, a ∈ Ha.
(1)
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Problem (1) is a nonlinear programming problem with a stochastic risk constraint.
The numerical characteristics of the random vector X are used as control variables in (1).

For arbitrary applications, methods have not yet been developed to effectively solve
them, which is primarily due to the direction of nonlinear programming methods to solve
certain classes of optimization problems. At the same time, real problems differ both in
dimension and in the nature of the problem itself. There may be difficulties with finding
analytical expressions for more variables, as well as with the target function itself, which
may be, for example, discontinuous or non-convex.

The purpose of this article is to study the problem of achieving an acceptable level of
risk r* with minimal changes in the numerical characteristics Σ and a of the Gaussian
system. It is also necessary to describe algorithms that allow to solve this problem by the
most effective method, and taking into account the peculiarities of the problem.

One of such features is a stochastic restriction for the required level risk
rtarg ≥ r∗(Σ, a). The second feature is the non-convexity of the area of permissible
solutions. Another feature is the growth of a number of the operating variables in a problem
of achievement of the acceptable risk level of r* with minimal changes in the numerical
characteristics Σ and a of the Gaussian system with a quadratic rate: m(m+ 3)/2.

Taken together, these features limit the use of standard algorithms for solving
optimization problems. Therefore, it is necessary to develop new algorithms or modify
(adapt) existing, well-known optimization algorithms for solving similar problems.

1. Risk Management Model in Gaussian Stochastic Systems as an

Optimization Problem

The risk in (1) is described as [10]:

r(X) =

∫ ∫

...

Rm

∫

g(x)px(x)dx, (2)

where g(x) is a function of consequences from dangerous situations (risk function). Varying
g(x) in (2) it is possible to receive various estimates of risk [4].

Problem (1) is an optimization problem and it is necessary to check how many local
minimums the solution will have.

Since the function is convex, it is necessary to show that the set on which we are
looking for a solution is also convex. Or prove the return.

Suppose that for a two-dimensional case, the set composed of constraints is convex.
There are many ways to check this, the easiest way is to prove that the Hessian is positive.

For the two-dimensional case, problem (1) will take the form:

2
∑

j=1

2
∑

k=j

(

σjk − σ0
jk

)2
+

2
∑

i=1

(ai − a∗i )
2 → min

a,Σ
(3)

at restrictions














σjjσkk > σ2
jk, σjk = σkj, σjj > 0, 1 ≤ j, k ≤ 2,

σ−
jk < σjk < σ+

jk, 1 ≤ j, k ≤ 2,

a−i < ai < a+i , 1 ≤ i ≤ 2,
rtarg ≥ r∗(Σ, a) + ε.
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The condition rtarg≥ r∗(Σ, a) is stochastic, it is not checked.














σ11σ22 > σ2
12, σ12 = σ21, σ11 > 0, σ22 > 0,

σ−
12 < σ12 < σ+

12,
a−1 < a1 < a+1 ,
a−2 < a2 < a+2 .

Let ’s check that the bulge condition is met for one of the constraints.
As σ2

12 = σ11σ22ρ
2
12 then σ11σ22 > σ11σ22ρ

2
12 or σ11σ22 − σ11σ22ρ

2
12 > 0.

Find the second derivatives for z=σ11σ22−σ11σ22ρ
2
12>0:

z
′

σ1
= 2σ1σ22−2σ1σ22ρ

2
12,

z
′

σ2
= 2σ11σ2−2σ11σ2ρ

2
12,

z
′′

σ1σ1
= 2σ22−2σ22ρ

2
12,

z
′′

σ2σ21
= 2σ11−2σ11ρ

2
12,

z
′′

σ1σ2
= 4σ1σ2−4σ1σ2ρ

2
12.

The Hesse matrix will then take the form:

H =

(

2σ22(1− ρ212) −4σ1σ2(1− ρ212)
−4σ1σ2(1− ρ212) 2σ11(1− ρ212)

)

.

Find the eigenvalues of the matrix:

△1 = 2σ22(1− ρ212),

△2 = −12σ1σ2(1− ρ212).

The eigenvalues were obtained with different signs. Thus, the Hesse matrix of the
function z is negatively defined, and therefore z = σ11σ22 − σ11σ22ρ

2
12 > 0 is a non-convex

function.
Hence, we conclude that the set is not convex either. This means that problem (1)

may have a set of local minimums.
In addition, in a problem (1) the risk needs to be estimated in each received point of

the area of admissible decisions, that is the constraint rtarg ≥ r∗(Σ, a) is stochastic.

2. Algorithm of the Barrier Function Method

Previously, a description of the risk management algorithm in Gaussian systems based
on the barrier function method was given [11].

We will describe the algorithm of the barrier function method in more detail.
To begin with, you must set the risk value rtarg that must be achieved when solving the

conditional minimization problem. The ideal point is then selected. Note that the solution
to the problem (1) is only found when the initial risk value is higher than the target risk
value rtarg. In this case, the risk can be reduced, otherwise, you can worsen the values of
the numerical characteristics and the value of the risk itself.

Step 1. Let’s set initial values of elements of the covariance matrix Σ0 and the
expectations vector of a0, bk ≥ 0, C > 1, ε > 0, rtarg.
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Step 2. Let’s make support function

F (Σ, a, bk) = f(Σ, a) + P (Σ, a, bk),

where P (Σ, a, bk) – penalty function, F (Σ, a, bk) – support function.

The inverse function is selected as a penalty function: P (Σ, a, bk) = bk
m
∑

j=1

1
tj(Σ, a)

,

where bk – the positive value chosen randomly.
Then taking into account all restrictions the support function will take the form:

F (Σ, a, bk) =
m
∑

j=1

m
∑

k=j

(

σjk − σ0
jk

)2
+

m
∑

i=1

(ai − a0i )
2
+ bk ·

(

m
∑

j=1

1
σjj

+

+
m
∑

j=1

m
∑

k=j

1
σjjσkk−σ2

jk

+
m
∑

j=1

m
∑

k=j

1
σ−

jk
−σjk

+
m
∑

j=1

m
∑

k=j

1
σjk−σ+

jk

+

+
m
∑

i=1

1
a−i −ai

+
m
∑

i=1

1
ai−a+j

)

.

Step 3. Let’s find minimum point xk of the function F (Σ, a, bk) by means of the
unconstrained optimization method based on the Nelder–Mead method [12] (see Fig. 1).

Step 4. Let’s check the fulfillment of the condition of the end:
a) if

∣

∣P
(

Σ
k, ak

)

− r∗(Σ∗, a∗)
∣

∣ ≤ ε, process of searching is completed: Σk = Σ
∗, ak =

a
∗, r(Σk, ak) = r∗(Σ∗, a∗);

b) if
∣

∣P
(

Σ
k, ak

)

− r∗(Σ∗, a∗)
∣

∣ ≥ ε, put bk+1 = bk
C

, Σk+1 = Σ
∗, ak+1 = a

∗, k = k + 1,
and proceed to step 2.

We do not include the condition rtarg ≥ r∗(Σ, a) in the penalty function because of the
risk function r∗(Σ∗, a∗) is an implicit function and is not calculated analytically. Figure 1
shows that this condition is checked separately.

The algorithm of the method of unconstrained optimization based on the method of
a deformable polyhedron is shown in Figure 2.

Feature of the solution of problem (1) by the barrier function method is the dependence
of the choice of the initial point for the solution of a problem of unconstrained optimization
from camber of area of admissible values of D̂.

The Init2 function searches for the ideal point xideal and vertices of a polyhedron.
The point at which the values of the elements of the covariance matrix Σ are close to or
equal to zero, and the values of the expectation vector a – the best values specified earlier
is chosen as the ideal point of the ideal. Changing values of the elements of Σ, a and,
calculating value r*, at some moment the value of the probability of r* becomes equal
rtarg. Infinitude number of such sets of values of the elements Σ and a form m-dimensional
convex figure on which surface probability is equal rtarg. In the center of a figure the point
xideal with probability rideal = 0.

The BWPoint function carries out calculation of weight coefficients of points to find
minimum and maximum values. Then the "best" point of xl and "worst" x

h points where
F (xl) = min

k=1,...,m+1
F (xk) and F (xh) = max

k=1,...,m+1
F (xk), and also the point of xs in which

the second largest is reached after maximal value of function is chosen.
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Fig. 1. The block diagram of the algorithm of the barrier function method.

The gravCenter function finds "barycenter" of all vertices of a polyhedron except for
the "worst" x

h:

xm+2 =
1

m+ 1

(

m+2
∑

k=1

xk − xh

)

=
1

m+ 1

m+2
∑

k=1, k 6=h

xk.

The wReflect function carries out operation of reflection of the "worst" vertex x
h

through the barycenter xm+2: xm+3 = xm+2−xh. Let’s receive the vector xk = xm+3−xm+2.
Otherwise the algorithm leaves the DefPol procedure, having kept the found values.

The wReplace function carries out the operation of replacement of vertices in case

θ =

{

1

m+ 1

m+2
∑

k=1

[

F (xk)− F (xm+2)
]2

}
1

2

> ε.

After the values satisfying (1) have been found, the stochastic constraint on the
required risk is checked. If the found values meet a condition, then the algorithm finishes
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Fig. 2. The block diagram of the DefPol procedure for the modified method of the deformable

polyhedron.

work and removes results. Otherwise, the method of barrier functions starts the work
anew.

Also, in [11], the efficiency and accuracy of the algorithm were investigated.

3. Comparative Analysis of Methods

However, in addition to investigating the operability of the algorithm and its accuracy,
it is also necessary to carry out a comparative analysis of the zero, first and second-order
methods for unconstrained minimization.

As mentioned above, the problem of achieving acceptable risk r* (1) is an optimization
problem with restrictions and is solved by the penalty function method. However, for the
solution of a problem of unconstrained minimization modification of the Nelder–Mead
method was offered, and as a result, there is a question of applicability of other methods
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for the solution to the problem without restrictions. Due to the non-convexity of the set of
admissible decisions, it is necessary to analyze and compare the zero, first and second-order
methods.

From the zero-order methods, a proposed modification of the Nelder–Mead method,
the random search method with the return for a failed step, and the Hooke–Jeeves method
were chosen; of the first-order methods is the constant-pitch gradient descent method; of
the second-order methods is Newton’s method [14].

It should also be mentioned that none of the zero-order methods in the "pure" form
can be used to solve the problem (1) due to stochastic risk restriction. Therefore, each
method is subject to adaptation and modification (as in the case of the Nelder–Mead
method proposed in [11]).

Let’s consider the algorithm of the Hooke–Jeeves method, which is used in the work
for comparative analysis.

The ideal xideal point is chosen in the same manner as described above in the Nelder–
Mead method.

The initial point of search x0 is selected on a surface m-dimensional a convex figure.
Then we set initial increment (step) of △x0. Then we take a trial step on the variable x1,
i.e. we define the next point of x01+∆x01. If the value of probability in this point became
excellent от rtarg ≥ r∗(Σ∗, a∗), then from a xideal point xideal through x01+∆x01, we draw a
vector and look for an intersection point of this vector with the surface of an m-dimensional
convex figure where rtarg ≥ r∗(Σ∗, a∗).

We calculate the value of the target function in a point x′= (x01+∆x01, x02, . . ., x0n).
If the value of the function in this point is more than the value of function f (x0), then we
take a trial step on the same variable but in the direction, opposite to initial.

If the value of the function in a point x′′ = (x0
1 −∆x0

1, x0
2, . . . , x0

n) it is more than
f (x0), then we leave a point of x0

1 unchanged. Otherwise, we replace the point x0
1 with x′

or with x′′ depending on where the function value turned out less than the initial one.
Next, from the received point, we make trial steps for the remaining coordinates. In

this case, we use the same algorithm as before. If the algorithm fails to take any successful
steps, then reduce △x again, we are looking for a point where the value of the target
function will be less than the original one.

If at least one step was successful, then getting a point x01, it is necessary to minimize
the target function by solving the problem

min
λ

f
(

x0 + λ ·
(

x01 − x0
))

,

in the direction of decreasing the function – x01 − x0.
Here, the step value for each variable will be proportional to the step value at the

stage of searching for the desired point.
If the step is successful, will get a new approximation at the minimization stage of the

function x1= x0 + λ · (x01 − x0), где

λ0 = argmin
λ

f
(

x0 + λ ·
(

x01 − x0
))

.

And then we start a new exploratory search from the point x1. The algorithm continues
until it reaches the minimum of the function [13].
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As can be seen from the description of the algorithm, the method was adapted to
the task of reaching an acceptable risk level with minimal changes in the numerical
characteristics Σ и a.

Also, the random search method with the return for a failed step was adapted for this
task. Let’s describe the algorithm of this method.

Choosing the ideal point xideal . Then set the starting point x0. Each next point is found
by the formula xk+1 = xk + tk · ξ

k, where tk > 0 – step size; ξk – random vector of unit
length, determining the search direction, k – iterations number. By generating random
vectors ξk algorithm get points that lie on the hypersurface of the radius tk centered at
a point xk. If the probability value at this point is different from rtarg ≥ r∗(Σ∗, a∗), then
from the point, xideal через through the point x0

1 + ∆x0
1 draw a vector and look for the

intersection point of this vector with the surface of an m-dimensional convex shape, where
rtarg ≥ r∗(Σ∗, a∗). Calculate the value of the target function at the received point. If the
received value has not decreased, then the step is considered unsuccessful and we return
to the current center. The search continues. If the number of failed steps from point xk

becomes equal to the specified number of iterations, then we continue the search from the
same point, but before reducing the step. The search continues until the step is less than
the specified value [14].

If the target function value in the found point is less than in the initial one, then we
consider the step successful and continue the search from this point.

4. Computational Experiment

To compare zero-order methods, computational experiments were performed on a
large amount of data generated using the Monte Carlo simulation for the number of risk
factors m = 2, 3, 4 [15].

Empirically, parameters for solving task (1) using barrier functions were selected:
bk= 1, C>1, ε1= 0, 05.

We will compare the efficiency of the selected methods based on these parameters for
the task (1). Each method was applied to a number of risk factors m = 2, 3, 4. The sample
size M was equal to 1000. The number of tests that were performed for each method – col
= 80.

The obtained comparative characteristics of the results of the algorithms are presented
in Tables 1-2.

Table 1

The minimum value of the target function

Dimension
The minimum value of the target function

Modification of the
Nelder–Mead method

Hooke–Jeeves
method

The random search
method with the
return for a failed step

2 0.0517 0.1583 2.9183
3 0.2259 0.6485 9.2951
4 0.7923 1.0361 12.9121
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Table 2

Average calculation time in seconds

Dimension
Average calculation time, seconds

Modification of the
Nelder–Mead method

Hooke–Jeeves
method

The random search
method with the
return for a failed step

2 8.05 11.36 37.17
3 28.96 31.33 79.28
4 107.03 95.18 152.32

Analysis of obtained data during computational experiments showed that the modified
Nelder–Mead method works faster than the other two zero-order methods. However, with
the increase in the number of risk factors, the algorithm of the method begins to work
slower, which is most likely due to the non-convexity of the area.

Figures 3–5 show the confidence intervals of the target function values.

Fig. 3. Confidence interval of target function values for m = 2 risk factors.

The values of the target function obtained in the search optimization process by the
Hooke–Jeeves algorithm speak in favor of the Nelder–Mead method, but this gain decreases
when the dimension increases. But it is necessary to take into account the more significant
computational costs of calculating the vertices from which the algorithm makes the first
ҝstepњ.

Analysis of the graphs showed that the range obtained during the calculation may
indicate that the points obtained are different, which means the minimum point is not
global.

How could such a large range have been obtained?
In some cases, the algorithm "descends" to the wrong minimum. This happens because

the starting point was selected on the border of a non-convex area. Alternatively, lowering
to a minimum from the starting point was performed in the direction of the non–convex
area.
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Fig. 4. Confidence interval of target function values for m = 3 risk factors.

Fig. 5. Confidence interval of target function values for m = 4 risk factors.

To avoid such inconsistencies, you can use multi–criteria optimization methods, such
as the grid method.

Another solution to this problem is to limit the range of allowed values to a smaller
range. This is possible if you have information about the location of the start point.
However, this approach requires further research.

5. Computational Complexity of an Algorithm

When trying to use first and second-order methods to minimize, it was found that
their application was associated with large computational difficulties. As the dimension
increases, the number of operations performing function minimization is sharply grown.
And since it is necessary to calculate also derivatives, the complexity increases even more.

Consider, in the example of m = 2 risk factors, solving the problem (1) of achieving an
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Fig. 6. Average calculation time for different number of risk factors.

acceptable risk level with minimal changes in numerical characteristics by gradient descent
method for unconstrained minimization.

The support function will be:

F (Σ, a, bk) = (σ11 − σ0
11)

2
+ (σ21 − σ0

21)
2
+ (σ22 − σ0

22)
2
+ (a1 − a01)

2
+ (a2 − a02)

2
+

+bk ·
(

1
σ11

+ 1
σ22

+ 1
σ11σ22−σ12

2+
1

σ−

11
−σ11

+ 1
σ−

22
−σ22

+ 1
σ−

12
−σ12

+ 1
σ11−σ+

11

+ 1
σ22−σ+

22

+ 1
σ12−σ+

12

+

+ 1
a−
1
−a1

+ 1
a−
2
−a2

+ 1
a1−a+

1

+ 1
a2−a+

2

)

.

To find the minimum point of function F (Σ, a, bk) by the gradient descent method, it
is necessary to find all the partial derivatives of the helper function:

∂F (Σ,a,bk)
∂σ11

= −2 · (σ11−σ0
11) +bk ·

(

−1
σ2
11

+ −σ22

(σ11σ22−σ12
2)2

+ 1

(σ−

11
−σ11)

2+
−1

(σ11−σ+

11)
2

)

;

∂F (Σ,a,bk)
∂σ12

= −2 · (σ12−σ0
12) +bk ·

(

2σ12

(σ11σ22−σ12
2)2

+ 1

(σ−

21
−σ21)

2+
−1

(σ21−σ+

21)
2

)

;

∂F (Σ,a,bk)
∂σ22

= −2 · (σ22−σ0
22) +bk ·

(

−1
σ2
22

+ −σ11

(σ11σ22−σ12
2)2

+ 1

(σ−

22
−σ22)

2+
−1

(σ22−σ+

22)
2

)

;

∂F (Σ,a,bk)
∂a1

= −2 · (a1−a01) + bk ·

(

1

(a−1 −a1)
2+

−1

(a1−a+
1 )

2

)

;

∂F (Σ,a,bk)
∂a2

= −2 · (a2−a02)+bk ·

(

1

(a−2 −a2)
2+

−1

(a2−a+
2 )

2

)

.

The gradient of the support function has the form:

∇F (Σ, a, bk) =
(

∂F (Σ,a,bk)
∂σ11

; ∂F (Σ,a,bk)
∂σ12

; ∂F (Σ,a,bk)
∂σ22

; ∂F (Σ,a,bk)
∂a1

; ∂F (Σ,a,bk)
∂a2

)

.
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Then the gradient norm will be calculated using the formula:

|∇F (Σ, a, bk)| =

=

√

(

∂F (Σ,a,bk)
∂σ11

)2

+
(

∂F (Σ,a,bk)
∂σ12

)2

+
(

∂F (Σ,a,bk)
∂σ22

)2

+
(

∂F (Σ,a,bk)
∂a1

)2

+
(

∂F (Σ,a,bk)
∂a2

)2

.

For second-order methods (for example, Newton’s method), it is necessary to find
second derivatives, that is, the complexity will increase significantly

Let’s see how the number of variables and restrictions depends on the number of risk
factors (see Table 3).

Table 3

Dependence of the number of variables and restrictions on the number of risk factors

m
Number
of
variables

Number
of
restrictions

Computational complexity
Zero-order
methods

First-order
methods

Second-order
methods

2 5 13 m2+m
2

+m
(

m2+m
2

+m
)2 (

m2+m
2

+m
)4

3 9 24 m2+m
2

+m
(

m2+m
2

+m
)2 (

m2+m
2

+m
)4

4 14 38 m2+m
2

+m
(

m2+m
2

+m
)2 (

m2+m
2

+m
)4

5 20 55 m2+m
2

+m
(

m2+m
2

+m
)2 (

m2+m
2

+m
)4

As can be seen from Table 3, the computational complexity of zero-order methods
grows at a quadratic rate. At the same time, methods of the first and second-order, due
to their peculiarities, require O(m4) and O(m6) complexity.

Conclusions

1. Various methods of optimizing the risk management problem of multidimensional
Gaussian systems were considered. At the same time, all features of a problem (1)
are considered: stochastic restriction for the required risk level, non-convexity of area
of admissible decisions and growth of number of the managing variables in a problem
of achieving an acceptable level of risk r* with minimal changes in the numerical
characteristics Σ and a of the Gaussian system with a square speed of m(m+ 3)/2.

2. The research showed that the first- and second-order methods do not always lead
to the result, they are not sufficiently effective due to the non-convexity of the area of
admissible decisions and the labor intensity increases significantly with the increase in the
number of risk factors.

3. Of the zero-order methods, the most effective was a modification of the Nelder–
Mead method. It finds a solution with comparable labor intensity to other methods, quite
accurately.
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ОПТИМИЗАЦИОННЫЕ АЛГОРИТМЫ УПРАВЛЕНИЯ

РИСКОМ В МНОГОМЕРНЫХ ГАУССОВСКИХ

СИСТЕМАХ

А. А. Сурина

В статье представлен сравнительный анализ оптимизационных алгоритмов для

решения задачи управления риском в гауссовских стохастических системах. Оптими-

зационная задача, рассматриваемая в работе, имеет ряд особенностей, которые необ-

ходимо учитывать при решении. Особенностями задачи являются наличие стохасти-

ческого ограничения на требуемый уровень риска, невыпуклость области допустимых

решений и рост числа управляющих переменных в задаче достижения приемлемого

уровня риска. Предложены пути решения проблемы возникновения множества локаль-

ных минимумов. Проведено исследование эффективности методов нулевого, первого

и второго порядков для решения задачи безусловной минимизации с помощью метода

статистических испытаний Монте-Карло. Каждый метод был адаптирован под осо-

бенности решаемой задачи. Выполнена программная реализация всех представленных

алгоритмов. В статье представлены результаты исследования. Рассчитана вычисли-

тельная сложность алгоритмов.

Ключевые слова: модель; риск; управление; стохастическая система; алгоритм;

мониторинг; оптимизация.
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