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The approach to an estimation of results of group "competitions" of intellectual agents

is described. Petri-Markov models group "competition" are analyzed. Expressions for the

determination of the probability density distribution and the participants or groups of

participants win or lose "competition" are given. In general, the temporal and probabilistic

characteristics of the game are obtained, The technique for an estimation of sequence of

victories in "competition" of groups of subjects is offered, the estimation of efficiency

of "competitions" of groups is resulted. Are considered two most often used principle of

distribution of penalties: the lost group pays the penalty to the won group; each participant

of the lost group pays the penalty to the won group, and sizes of penalties are distributed

on time.

Keywords: competition, group concurrent games, Petri-Markov nets, effectiveness, the
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Introduction

In recent years, game theory is becoming more widely used in industry, economy,
military and cybernetics as a powerful mechanism for system modeling. Traditional game
theory has been developed for static games with their matrices of values and strategies
of the players, which can lead to a gain or loss of any resources. In computer science,
game theory is used to model the interactions within the network between processors and
computing modules, peripherals, etc. [1]

So far, the focus of this issue is given purely antagonistic games (eg, zero-sum games),
useful for modeling systems, developing in "hostile" environment. Provisional aspects of
the evolution of games is quite insufficient attention has been paid. In particular, it worked
out the mathematical formalism to determine the price of "victory" ("loss"), if the price
is reduced to the time factor, in group "competitions" agents [2].

This article deals with the use of Petri-Markov nets [3] for the mathematical description
of the group "competitive" processes, which can be considered as parallel random processes
with a time factor. Introduction to the formalism of Petri-Markov [4, 5, 6] allows
considering setting time and determining payments participants in the game, and thus, its
full price.

1. Petri-Markov nets

Concurrency may be investigated with various mathematical apparatus. One of it is
Petri-Markov net (PMN). PMN is defined through system of sets

Ψ = (Π,M) ; (1)
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Π =
{

A,Z, R̃, R̂
}

; (2)

M = {q,h (t) ,L} , (3)

where Π – is the Petri net; M – is parallel semi-Markov process;
A =

{

a1(a), . . . , aj(a), . . . , aJ(a)
}

– is the finite set of places; J(a) – is the size of
the set of places; Z =

{

z1(z), . . . , zj(z), . . . , zJ(z)
}

–is the finite set of transitions; J(z) –

is the size of the set of transactions; R̃ = r̃
[

j(a)j(z)

]

– is the J(a) × J(z) adjacency

matrix, which represents places of A set to transactions of Z set; R̂ =
[

r̂j(z)j(a)
]

– is the
J(z) × J(a) adjacency matrix, which represents transactions of Z set to places of A set;
q =

[

qj(z)
]

– is a vector of J(z) size, which determine probabilities of start a process in
one of places of Z set; h (t) =

[

hj(a)j(z) (t)
]

–is the J(a) × J(z) semi-Markov matrix; t –
is the time; L =

[

σj(z)j(a)

]

– is the J(a) × J(z) matrix of logical conditions of switching
from the transition zj(z) to place aj(a);

r̂j(z)j(a) =

{

1, when aj(a) ∈ OA

(

zj(z)
)

;
0, when aj(a) /∈ OA

(

zj(z)
)

;
(4)

where OA

(

zj(z)
)

– is an output functions of transition zj(z);

h (t) = p⊗ f (t) =
[

pj(a)j(z) · fj(a)j(z) (t)
]

=
[

hj(a)j(z) (t)
]

. (5)

p =
[

pj(a)j(z)
]

– is the stochastic matrix of semi-Markov process; f (t) =
[

fj(a)j(z) (t)
]

—
is the matrix of time densities of semi-Markov process; ⊗ – is a symbol of matrix direct
multiplication.

2. "Competition" of J(a) participants

Let us consider the simplest case of "competition" of two participants, which is
represented with PMN, being shown on fig. 1:

Fig. 1. "Concurrency" of two participants.

PMN being represented on fig. 1 is described with the next set of expressions:

Π =

{

{a1, a2} , {z1, z2} ,

[

0 1
0 1

]

,

[

1 1
0 0

]}

; (6)

M =

{

(1, 0) ,

[

0 f1 (t)
0 f2 (t)

]

,

[

1 1
0 0

]}

, (7)

where f1 (t), f2 (t) – are time densities of completion of their by first and second
participants correspondingly;
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f1,2 (t) = 0, when t < 0;

∞
∫

0

f1,2 (t) dt = 1. (8)

Let us split time intervals on periods dt. Then "competition" in PMN (6), (7) may be
described with semi-Markov process, which is shown on fig. 2.

Fig. 2. Semi-Markov process inside PMN on fig. 1.

In semi-Markov process: the state α simulates the start of the competition; the state
αw1 simulates the winning the competition by the first participant; the state αw2 simulates
the winning the competition by the second participant; the state αd simulates the draw
of the competition; states β−n , −∞ < −n < 0 simulate the situation in which the first
participant wins the competition with the result t = ndt; states βn, 0 < n < ∞ simulate
the situation in which the second participant wins the competition with the result t = ndt;
state β0 simulates a draw result, probability of which is less, than probabilities of any other
results.

Let us determine time densities of achievement of an absorbing states αw1, αw2, αd

from initial state α.

• probability of the fact, that in time t = n∆t the state αw1 will be achieved with time
lag, which is defined by the state β−n, is equal to P−n (t = n∆t) = [1− F2 (n∆t)] ·
f1 (n∆t)∆t, where F2 (n∆t) -is distribution function corresponding to density f2 (t);

• probability of the fact, that in time n∆t the state αw2 will be achieved with time
lag, which is defined by the state βn, is equal to Pn (t = n∆t) = [1− F1 (n∆t)] ·
f2 (n∆t)∆t, where F1 (t) - is distribution function corresponding to density f1 (t);

• probability of the fact, that in time n∆t the state αd will be achieved with time lag,
which is defined by the state β0, is equal to P0 (t = n∆t) = f1 (n∆t) · f2 (n∆t)∆

2
t ,

and is much less then probabilities P−n (t = n∆t) and Pn (t = n∆t).

Weighed time densities of achievement of states αw1 and αw2 is defined as follows:

hw1 (t) = lim
n → ∞
∆t → 0

P−n (t = n∆t)

∆t

= [1− F2 (t)] · f1 (t) ; (9)
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hw2 (t) = lim
n → ∞
∆t → 0

Pn (t = n∆t)

∆t

= [1− F1 (t)] · f2 (t) . (10)

The sum of weighted densities (9) and (10) is equal to 1, due to the fact, that other
results of "competition" can not be:

hw1 (t) + hw2 (t) =
d

dt
{1− [1− F1 (t)] · [1− F2 (t)]} . (11)

"Competition" of J(a) participants is defined by PMN:

Π =























{

a1(a), . . . , aj(a), . . . , aJ(a)
}

, {z1, z2} ,













0 1
. . .

0 1
. . .

0 1













,





1 1 1
. . .

0 0 0



























. (12)

M =























(1, 0) ,













0 f1(a) (t)
. . .
0 fj(a) (t)
. . .
0 fJ(a) (t)













,

[

1
0

. . .
1
0

. . .
1
0

]























, (13)

where fj(a) (t) – is the time density of distance completion by participants j(a),
1(a) ≤ j(a) ≤ J(a).

For a common case of "concurrency" J(a) participants weighed sum of densities may
be obtained from (11) with mathematical induction method:

J(a)
∑

j(a)=1

hwj(a) (t) =
d

dt







1−

J(a)
∏

j(a)=1

[

1− Fj(a) (t)
]







, (14)

where Fj(a) (t) – are distribution functions corresponding to densities fj(a) (t).
From (12) may be obtained probabilities of winning in competition of j(a)-s

participant:

pwj(a) =

∞
∫

0

fj(a) (t) ·

J(a)
∏

k (a) = 1 (a)
k (a) 6= j (a)

[

1− Fk(a) (t)
]

dt. (15)

Time density of achievement in PMN (12), (13) of place z2 by participant-winner j(a)
is defined as:

fwj(a) (t) =

fj(a) (t) ·
J(a)
∏

k (a) = 1 (a)
k (a) 6= j (a)

[

1− Fk(a) (t)
]

pwj(a)

. (16)
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In specific case, when fj(a) (t) = λj(a) exp
[

−λj(a)t
]

, where λj(a) is the parameter of
Poisson distribution,

pwj(a) =
λj(a)

J(a)
∑

j(a)=1(a)

λj(a)

; (17)

fwj(a) (t) =

J(a)
∑

j(a)=1(a)

λj(a) · exp



−t ·

J(a)
∑

j(a)=1(a)

λj(a)



 . (18)

Let us note, that (18) describes conditional time density of "winning" of participant
j(a) (all other participants lose "competition"). Due to the fact conditional time densities
of achievement of transition z2 for all J(a) participants are quite equal, but probabilities,
are quite different for different λj(a).

Let us return to the case of "competition" of two participants (6), (7) and consider
case of "competition" lose. In this case

• probability of the fact, that in time t = n̄∆t will be achieved the state αw̄1 with
time lag, which is defined by state β−n̄, is equal to P−n̄ (t = n∆t) = F2 (n̄∆t) ·
f1 (n̄∆t)∆t(first participant had finished his distance the last);

• probability of the fact, that in time n̄∆t will be achieved the state αw̄2 with time lag,
which is defined by state βn̄, is equal Pn̄ (t = n̄∆t) = F1 (n̄∆t) · f2 (n̄∆t)∆t (second
participant had finished his distance the last).

Weighed time density of achievement of states αw̄1 and αw̄2 is defined as

hw̄1 (t) = lim
n̄ → ∞
∆t → 0

P−n̄ (t = n̄∆t)

∆t

= F2 (t) · f1 (t) ; (19)

hw̄2 (t) = lim
n̄ → ∞
∆t → 0

Pn̄ (t = n̄∆t)

∆t

= F1 (t) · f2 (t) . (20)

The sum of weighted time densities (19) and (20) is equal to 1, due to the fact, that
other results of "competition" can not be:

hw̄1 (t) + hw̄2 (t) =
d

dt
[F1 (t) · F2 (t)] . (21)

For "competition" of J(a) participants (12), (13), the sum of weighted time densities
may be obtained from (21) by (9) and (10) with mathematical induction method:

fw̄j(a) (t) =

fj(a) (t) ·
J(a)
∏

k (a) = 1 (a)
k (a) 6= j (a)

Fk(a) (t)

pw̄j(a)

. (22)
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pw̄j(a) =

∞
∫

0

fj(a) (t) ·

J(a)
∏

k (a) = 1 (a)
k (a) 6= j (a)

Fk(a) (t)dt. (23)

Expressions (22) and (23) determine time density and probability of the fact, that
participant j(a) take the last place in the "competition".

Let us consider the case, when it is necessary to completion the "competition" by any
K(a) from J(a), K(a) <J(a) participants. Let us create the set NJ(a) J (a)-digit binary
natural codes and assign j(a)-s binary digit σj(a),2 of code to j(a)-s participant. States of
digit σj(a),2 may accept two meanings

σj(a),2 =

{

0, when participant j (a) finish the distance;
1, when participant j (a) does not finish the distance.

(24)

Let us select from the set NJ(a) subset N
K(a)
J(a) ⊂ NJ(a) binary J(a)-digit codes, which

have K(a) ones and J(a)−K(a) zeros:

N
K(a)
J(a) =

{

n1, . . . , nc[J(a),K(a)], . . . , nC[J(a),K(a)]

}

, (25)

where C [J (a) , K (a)] = C
K(a)
J(a) – number of J(a)-digit codes with K(a) units, which is

equal to K(a)-s binomial coefficient; C [J (a) , K (a)] – number of code in subset (25);

C [J (a) , K (a)] =
J (a)!

K (a)! · [J (a)−K (a)]!
. (26)

nc[J(a),K(a)] =
〈

σ
c[J(a),K(a)]
1(a),2 , . . . , σ

c[J(a),K(a)]
j(a),2 , . . . , σ

c[J(a),K(a)]
J(a),2

〉

. (27)

Let us define function Φ
(

fj(a), σ
c[J(a),K(a)]
j(a),2

)

, which is the next meanings:

Φ
(

fj(a), σ
c[J(a),K(a)]
j,(a)2

)

=

{

Fj(a) (t) , when σ
c[J(a),K(a)]
j(a),2 = 1;

[

1− Fj(a) (t)
]

, when σ
c[J(a),K(a)]
j(a),2 = 0.

(28)

When taking into account (28) common expression for time distribution of completion
of "competition" by any K(a) participants from J(a) will be the next:

F
K(a)
J(a) (t) =

C[J(a),K(a)]
∑

c[J(a),K(a)]=1

J(a)
∏

j(a)=1(a)

Φ
(

fj(a), σ
c[J(a),K(a)]
j(a),2

)

. (29)

First derivative of (29) gives time density under investigation:

f
K(a)
J(a) (t) =

d
C[J(a),K(a)]

∑

c[J(a),K(a)]=1

J(a)
∏

j(a)=1(a)

Φ
(

fj(a), σ
c[J(a),K(a)]
j(a),2

)

dt
. (30)

It is obviously, that (30) is the time density (but not weighed density) due to the fact,
that after finishing the distance by K(a) participants number participants, who finish the
distance should be only to increase.Expressions (14) and (21) being obtained above are
the special cases of (30), when K(a) = 1 and K(a) = J(a), respectively.
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3. Corporative "competition"

Let us investigate the "competition" (12), (13), when J(a) participants are united into

K corporative groups on J(a, k) participants in k-th group, so that
K
∑

k=1

J (a, k) = J (a).

Petri-Markov model of "competition" is shown on fig. 3, where are pictured:

• set of places, which is divided on subsets A =
{{

a1(a,1), . . . , aj(a,1), . . . , aJ(a,1)
}

, . . . ,
{

a1(a,k), . . . , aj(a,k) , . . . , aJ(a,k)
}

, . . . ,
{

a1(a,K), . . . , aj(a,K) , . . . , aJ(a,K)

}}

, every
subset simulates corporative group of competing participants;

• set B = {b1, . . . , bk, . . . , bK} of places, which simulate switches from "competition"
inside group to "competition" of groups of participants (this places are included into
PMN for structural integrity of the model);

• starting z0 and finishing zK+1 transitions, which simulate begin and end of
"competition", respectively;

• subset Z = {z1, . . . , zk, . . . , zK} of transitions, which simulate the ends of
"competitions" in groups 1, . . . , k, . . . , K.

 
a1(1) 

aJ(1) 

a1(k) 

aJ(k) 

a1(K) 

aJ(K) 

b1 

bk 

bK 

z0 

z1 

zK 

zk 

zK+1 

... 

... 

... 

... 

... 

J l( )
l=1

k−1
∑ +1  

J l( )
l=1

k

∑  

Fig. 3. PMN for a simulation of a corporative "competition".

It is considered, that k-th group finish a distance when distance finish a last participant
of k-th group, independently of completion order. In particular case a group may consist
on one participant. Also it can be considered, that k-th group includes participants with

numbers
k−1
∑

n=1

J (a, n) + 1 ≤ j (a) ≤
k
∑

n=1

J (a, n). Indexes j(a) may be recalculated from

indexed j (a, k) by the next way:

j (a) = j (a, k) +
k−1
∑

n=1

J (a, n) (31)
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Time densities of distance completion by participants of k-th group belong to the set
{

f1(a,k) (t) , . . . , fj(a,k) (t) , . . . , fJ(a,k) (t)
}

. Time densities of switch PMN from places of
subset B to transition zK+1 is defined by non-shifted Dirac δ-function: fBk (t) = δ (t),
1 ≤ k ≤ K.

In accordance with Petri-Markov model time density of "completion" of distance by
the whole k-th group is defined as

fk (t) =
d

dt











k∑

n=1

J(a,n)

∏

k−1∑

n=1

J(a,n)+1

Fj(a) (t)











. (32)

"Competition" between groups is defined by expression:

K
∑

k=1

hk (t) =
d

dt

{

1−

K
∏

k=1

[1− Fk (t)]

}

, (33)

where Fk (t) – distribution function corresponding to densities fk (t).
Probability of win of k-th group and time density of their "completion" of the distance

is expressed as follows:

pk =

∞
∫

0

fk (t) ·

K
∏

l = 1
l 6= k

[1− Fl (t)]dt. (34)

fwk (t) =

fk (t) ·
K
∏

l = 1
l 6= k

[1− Fl (t)]

pk
(35)

Sequence of wins in "competition" of groups may be evaluated on the next method.

1. In accordance to expression (34) probabilities of wins of all participants are
calculated. From probabilities the highest one should be selected. Participant with
the highest probability considered to have completed the distance.

2. For the remaining participants time density needed for completion the distance on
expression fk (t) = f1→k (t), 2 ≤ k ≤ K is evaluated.

3. Paragraphs 1-2 are repeated until all participants complete the distance: l = K − 1.

4. Evaluation of group "competition" effectiveness

One important factor "competition" is the assessment of its effectiveness. Evaluating
the effectiveness of the individual "competition" is given by the authors in [2].

For group "competition", which is modeled by Petri-Markov net shown in Fig. 3, the
efficiency can be determined from the evaluation of the effectiveness of "competition"
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groups. Possible principles for the distribution of fines below are considered two of the
most often used.

First, simplest principle consists in that losing l-th group pays to winning k-th group
forfeit. In this case "density of forfeits" is evaluated as:

skl (t) =

k∑

r=1

J(a,n)

∑

j(a)=
k−1∑

n=1

J(a,n)+1

l∑

r=1

J(a,n)

∑

i(a)=
l−1∑

r=1

J(a,n)+1

sj(a)i(a) (t). (36)

Group k wins from group l common forfeit:

s+kl =

∞
∫

0

fk→l (t) · skl (t) dt, (37)

where fk→l (t) is defined on expression

f1→2 (t) =

η (t)
∞
∫

0

f1 (τ) f2 (t+ τ) dτ

∞
∫

0

F1 (t) dF2 (t)

(38)

fk (t) and fl (t) in (38) calculated by expression (32) with the relevant indices and indices
intervals determined by (31).

Second, more complex principle consists in that every participant of losing l-th group
pays forfeit to winning k-th group individually. In this case time distribution of waiting by
k-th group "completion" of distance by participants from l-th group is determined with
expression, obtainable from (38):

fk→j(a) (t) =

η (t)
∞
∫

0

fk (τ) fj(a) (t+ τ ) dτ

∞
∫

0

Fk (t) dFj(a) (t)

, (39)

where
l−1
∑

n=1

J (a, n) + 1 ≤ j (a) ≤
l
∑

n=1

J (a, n); fk (τ) - time density, which is defined on

expression:

fk (t) =
d

dt











k∑

n=1

J(a,n)

∏

k−1∑

n=1

J(a,n)+1

Fj(a) (t)











. (40)

Group k wins from group l common forfeit

s+kl (t) =

l∑

n=1

J(a,n)

∑

j=
l−1∑

n=1

J(a,n)+1

∞
∫

0

fk→j(a) (t)

k∑

n=1

J(a,n)

∑

i=
k−1∑

n=1

J(a,n)+1

si(a)j(a) (t)dt. (41)
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Conclusion

The paper presents a mathematical model of group "competitions" intelligent agents
on the basis of mathematical formalism of Petri-Markov nets, who has shown to be
effective for modeling the processes of this class. In the general form of a temporarily
and probabilistic characteristics of the game, the technique for evaluating the sequence of
victories in the "competition" stakeholder groups, give an estimate of the effectiveness of
"competition" groups.

The results obtained can be used for planning the strategy of the "competition" with
the number of participants more than two, and "competition" group of subjects, if the
strategy and tactics can change their density distribution during the game. The proposed
method can be a basis for the creation of mathematical models for solving the classical
game theory: optimization strategy games, generating objective functions, etc.
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