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We consider a stochastic analogue of the Ginzburg — Landau equation in spaces of
differential forms defined on a two-dimensional smooth compact oriented manifold without
boundary. When studying the stability of solutions, the Ginzburg — Landau equation is
considered as a special case of a stochastic linear Sobolev-type equation. All considerations
are carried out in spaces of random K-variables and K-"noises" on the manifold. As a
manifold, we consider a two-dimensional torus, which is a striking example of a smooth
compact oriented manifold without boundary. Under certain conditions imposed on the
coefficients of the equation, we prove the existence of stable and unstable invariant spaces
and exponential dichotomies of solutions. We develop an algorithm to illustrate the results
obtained. Since there exists a smooth diffeomorphism between a map and a manifold,
we reduce the question of stability of solutions on a two-dimensional torus to the same
question on one of its maps. The developed algorithm is implemented in the Maple software
environment. The results of the work are presented in the form of graphs of stable and
unstable solutions, which are obtained for various values of the parameters of the Ginzburg —
Landau equation.
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Introduction

The equation
(A —A)ay = vAa — idAN’« (1)

describes weakly linear effects in hydrodynamics in a particular case. Here the coefficients
v € Ry, A\, d € R describe the parameters of the system [1]. The work [2]| proves solvability
of equation (1) in the case when the right-hand side contains nonlinearity. The paper [3]
considers the question of the stability of solutions and shows the existence of stable and
unstable invariant spaces of the linear stationary Ginzburg — Landau equation. The study
of solutions to this equation was carried out within the framework of the theory of Sobolev-
type equations (see, for example, [4]).

The aim of this work is to study the behavior of solutions to the stochastic analogue
of the Ginzburg — Landau equation in spaces of differential forms on a smooth two-
dimensional manifold without boundary. To this end, we consider equation (1) as a special
case of the linear stochastic Sobolev-type equation

L n= Mn. (2)
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Here n = n(t) is the required stochastic process, and 1is its Nelson — Gliklikh derivative [5].
In the works [6] — [9], equation (2) was studied in various aspects. The papers [10], [11] are
devoted to the study of equation (2) in spaces of differential forms defined on a smooth
compact oriented manifold without boundary. In [12], [13], computational experiments
were carried out in order to represent the results obtained on two-dimensional and three-
dimensional tori.

The paper is organized as follows. In Section 1, we consider random variables and
stochastic processes, recall definition of the Nelson — Gliklikh derivative, and construct the
spaces of random K-variables and K-"noises" on a two-dimensional manifold. Section 2 is
devoted to the study of stability and unstability of solutions to stochastic equation (1) in
spaces of smooth differential forms, the existence of exponential dichotomies is established.
Section 3 illustrates the results obtained on a two-dimensional torus.

1. Spaces of K-variables and K-"noises" on Manifold

Let Q = (Q,.A, P) be a complete probability space, R be the set of real numbers
endowed with a Borel g-algebra. The measurable mapping £ : 2 — R is called a random
variable, the measurable mapping n : J x € +— R is said to be a stochastic process, the
function n(t,-),t € J is a trajectory of the stochastic process n, and the random variable
n(-,w),w € Q is a section of the stochastic process . Here 3 C R is some interval.

Denote by L, the Hilbert space of random variables ¢ with zero mathematical
expectation and finite variance with the scalar product (£1,&) = E& &, while CL, is
the Banach space of continuous stochastic processes 1 with the norm

2
Inllr, = max Dnt, ).

By a continuous stochastic process we mean a stochastic process n = 7n(t,w) whose
trajectories are a.s. (almost sure) continuous. We fix n € Ly and ¢ € J, denote by N, the
o-algebra generated by n and E] = E(-|N,"). By the Nelson — Gliklikh derivative of the
stochastic process n at the point t € J we mean the limit

,3(.7@:%( lim B (n(HAt,-)—n(tw)) © lm E (n(t,-)—n(t—ﬁtw)))’

A0+ At At—0+ At

if the limit converges in the uniform metric on R. Denote by C'L, the space of stochastic
processes, whose Nelson — Gliklikh derivatives are a.s. continuous on J up to the order [
inclusive.

Let us construct the spaces of random K-variables and K-"noises" on the two-
dimensional manifold M. Let M be a smooth compact oriented Riemannian manifold
without boundary. Consider the vector space of g-forms E? = E1(M), q = 0, 1,2, of the
form

a = Z Qi iy (t, l‘il,l'm)dl'il N dZEZ‘Q,
21 <12
ai, i, € C*. In the spaces F4, consider the Hodge operator x : F? — E?79  the exterior
derivation operator d : £ — E9*! and the Laplace — Beltrami operator A = dd + dd,
where § = (—1)%"3 x dx. In the spaces EY, define the scalar products by the relations

(a,b)g = /a A xb, (a,b)s = (a,b)o + (Aa,b)o + (Aa, Ab)g
M
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and denote by H the completion of E? in the norms || - ||;, I =0, 2.

Denote by K = {\;} the eigenvalues of the Laplace — Beltrami operator. The spectrum
of the Laplace — Beltrami operator is discrete finite-multiple and converges to the point
+oo. Let {pr} be the eigenfunctions of the Laplace — Beltrami operator, which are
orthonormal with respect to the scalar products (-,-);, I = 0,2. The eigenfunctions are
bases in the spaces H}'. Next, choose the sequence of random variables {{;} C Ly such
that D&, < const. Denote by HY the spaces of random K-variables whose elements are
the vectors

E= Mbpn (3)
k=1

Define the norm in the spaces Hj as follows:
oo
€l = " XD,
k=1
Denote by C(J;H}) the sets of continuous stochastic K-processes

() = > M) en, (4)
k=1

if series (3) converges uniformly on any compact set in J (J is an interval), while
{m} C CLy. Let C'(J; H}) be the set of the processes, which are continuously differentiable
in the sense of Nelson — Gliklikh

0 =S Ml (D, (5)
k=1

if series (5) converges uniformly on any compact set in J and {n} C C'Ls.

2. Exponential Dichotomies of the Stochastic Ginzburg — Landau
Equation

In the spaces H{, ¢ = 0,1, 2, consider equation (1) as the stochastic linear Sobolev-
type equation

L 1= My, (6)
where the operators L, M : H} — H are defined by the following formulas:

L=X\+A, M=—-vA—idA°

Lemma 1. For any A, d € R and v € R, the operator M is strongly (L,0)-radial.

By a solution to equation (6) we mean a stochastic K-process n € C'(J;HY), if
substituting 7 in (6) a.s. converts the equation into identity.

Definition 1. The set B C HY is called the phase space of equation (6), if
(1) a.s. each trajectory of the solution n =n(t) to equation (6) belongs to B;
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(i) for a.a. ny € B, there exists a solution to equation (6) that satisfies the condition
1(0) = 1o-
Theorem 1. (i) Let A ¢ {—X\}. Then the phase space of equation (6) coincides with the

space H{.
(ii) Let X € {—\}. Then the phase space of equation (6) has the form

P ={neHj:(,or)pr =0}

Definition 2. The subspace Ix C H{ is said to be the invariant space of equation (6), if
for any no € Ik solution to the problem n(0) = ny for equation (6) is n € C*(R;Ik).

Definition 3. We say that solutions to equation (6) have exponential dichotomy, if the
following conditions hold:

(i) the phase space B of equation (6) can be represented as a direct sum of two invariant
spaces P =T, B T_;

(i) there exist the constants Ny,v, € Ry such that the inequality

" Ollmg < Nae ™ O ' (s) g s >t

holds for n* € 3, ;
(ii) there exist the constants Ny, vy € Ry such that the inequality

1P (0)llrg < Noe 20’ (s) g t =5

holds for n* € J_.

The solutions n' € J, are called exponentially stable, and the solutions n?> € J_ are
called exponentially unstable. The subspaces J, and J_ are called stable and wunstable
invariant spaces, respectively.

Due to the fact that the relative spectrum has the form

(7)

—U\g — i}
o ):{NG(C:Mk:—Vk Z '“}

A+ Ak
the following theorem is true.

Theorem 2. (i) Let \, v € Ry and d € R. Then the solutions to equation (6) are
exponentially stable.

(ii) Let A € R_, v € Ry and d € R. Then for —\ > A\ the solutions to
equation (6) have exponential dichotomy, and for —\ < Ay the solutions to equation (6)
are exponentially stable.

3. Computational Experiment

Let us describe the algorithm for representing the results obtained in Section 2 on
the two-dimensional torus 72 = [0,7] x [0,7]. The torus 7% can be represented as a
direct product 7% = S!' @ S', where S! is a circle of the radius 7. Choose a square
Sq={(z,y): 0 <z <m0 <y <}, which is one of the maps of the torus 7?. The
two-dimensional torus 72 can be represented as "gluing" opposite sides of the square Sq.
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Denote by § a smooth diffeomorphism between the map Sq and the torus 72. If u = u(t)
is a solution to this differential equation on the torus, then z = z(t) = §(u(t)) is a solution
to this differential equation on the map. Then if the solution to the differential equation
is stable on the torus 72, then the solution is stable on the map Sq. The converse is also
true. Due to the smoothness of the solutions, the nature of stability does not change at the
places where the maps are "glued". Therefore, we reduce consideration of the question of
stability of solutions to equation (1) on the torus 7?2 to consideration of the same question
on one of the maps Sq. Let us describe the algorithm.

Step 1. Enter the parameters of the equation A, v, d and the number of random
variables K in representation (3).

Step 2. Calculate the eigenvalues A\, and the eigenfunctions ¢, of the Laplace —
Beltrami operator.

Step 3. Generate an array of the random variables

& ~ N(0,1), k=1, ... K

Step 4. Form the initial condition by the following formula:

K
Ny = Z AkEkP-
=1

Step 5. Perform the procedure to check whether the initial condition belongs to the
phase space.

Step 6. Find the points of the relative spectrum of the operator L = A\ + A
—UA, — idA}

M= N

Step 7. Construct stable

Ml ™ ™
m(t) = Ze’”t (//nogaldxdy 0
=1 0 0

and unstable

K m™ T
na(t) = Z ettt //nowldxdy 0
I=M> 0

0
solutions  to stochastic equation (1), where M; =max{l: )\ <—-A} and
My = min{l : \; > —\}.

Step 8. Output a solution and plot a graph.

Fig. 1 shows a graph of the real part of the stable solution Re 7;(¢) to equation (1)
for A = 4,2, v =5, d =2 at times t = 9, 9.1, 9.263. Fig. 2 shows the exponentially

dichotomous behavior of the real part of the solution to equation (1) for A = —4.2, v = 0.2,
d = 2 in the section z = g, Y= g
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Fig. 1. Stable solutions for t =9 (green), t = 9,1 (blue) and t = 9,263 (red)
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Fig. 2. Exponential dichotomy
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ANXOTOMUN PEINIEHUN CTOXACTUYECKOTI'O
YPABHEHUA TMH3BYPTA - JIAH/TAY HA TOPE

O. I Kumaesa

PaccmarpuBaercst croxactuueckuit anajor ypaBHenus ['maszbypra — Jlammay B mpo-
crpaHcTBax JuddepeHmaibHbIX (POpM, 3aJaHHBIX Ha JIBYMEPHOM IJIAJKOM KOMIIAKTHOM
OPHEHTUPOBAHHOM MHOroobpasuu 6e3 kpasi. [Ipu n3ydyeHun ycTodInBOCTH peIleHnl ypaB-
wenne ['mu3Oypra — Jlanmay paccMarpuBaercs Kak 9aCTHBIN CIydail CTOXaCTUIECKOTO JIH-
HEHHOro ypaBHEHHUsI CODOJIEBCKOTO THIa. Bce paccMOTpeHnst TPOBOJAATCS B IPOCTPAHCTBAX
K-Bemuann n K-<1yMoB> Ha MHOr00Opasuu. B KatecTBe MHOr0OOpa3us pacCMaTPUBAETCS
JIByMEDPHBII TOP, SBJISIIONIUIICS SIDKUM IIPUMEPOM IJI3JIKOTO KOMITAKTHOTO OPUEHTHPOBAHHO-
ro MHOroobpasusi 6e3 kpas. llpu ompese/leHHBIX YCJIOBUSIX, HAK/IAIbIBAEMbIX Ha, K03 du-
[IMEHTHI YPABHEHUsI, JIOKA3bIBAETCs CYIIECTBOBAHIE YCTOWYNBOIO U HEYCTONIMBOTO UHBAPU-
AHTHBIX [IPOCTPAHCTB M SKCIIOHEHITMAJIBHBIX JUXOTOMHUI perenuii. Pazpaboran ajaropurm
IS WIUTIOCTPAINN [OJIy Y€HHBIX Pe3yJbTaToB. Tak Kak cyIliecTByeT riaakuit nuddeomop-
du3M MeXKIy KapToil 1 MHOrooOpa3meM, TO OT PACCMOTPEHUsT YCTOWIHMBOCTH PEIIeHW Ha
JIBYMEPHOM TOpE IE€PEXOIUM K PACCMOTPEHUIO JAHHOIO BOIIPOCA HA OJHOIl W3 ero Kapr.
Paspaborannblii ajropuT™M peajn3oBaH B mporpammHoil cpege Maple. Pesysibrarsl paboTh
[IPEJICTABJIEHBI B BUJI€ IPAMUKOB YCTONINBBIX U HEYCTONIUBBIX PEIeHnl, KOTOPBIE IOy da-
IOTCsl TP PA3JIMIHBIX 3HAYEHUSX [IapaMeTpOB ypaBuenus ['un3dypra — Jlammay.

Karouesvie crosa: ypasrenus coboaesckozo muna; CmoTaCmuieckue ypasrenus; dug-

Peperyuarvrvie Gopmol; IKCNOHEHUUANDHBLE OUTOMOMUL.
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