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The paper presents graphs of the trajectories of numerical solutions to the Showalter —
Sidorov problem for one stochastic version of the Ginzburg — Landau equation in spaces
of differential forms defined on a two-dimensional torus. We use the previously obtained
transition from the deterministic version of the theory of Sobolev type equations to
stochastic equations using the Nelson — Glicklikh derivative. Since the equations are studied
in the space of differential forms, the operators themselves are understood in a special form,
in particular, instead of the Laplace operator, we take its generalization, the Laplace —
Beltrami operator. The graphs of computational experiments are given for different values
of the parameters of the initial equation for the same trajectories of the stochastic process.
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Introduction

The work [1] investigates linear Sobolev type equations, with an irreversible operator
at the derivative, of the form
Li = Mu+ f, (1)

where { and § are Banach spaces, the operator L € L(4; F) belongs to the space of linear
and bounded operators, and the operator M € CI(;F) belongs to the space of closed
densely defined operators in the case of the abstract (L, p)-bounded, (L, p)-sectorial and
(L, p)-radial operator M. Based on this research, the work [2] studies the Ginzburg —
Landau equation

(A — A)uy = aAu + idA%u (2)

with the (L, p)-radial operator M = aA + idA?. The Cauchy problem
u(0) = wuyg

for equation (2) is solvable in a subspace called the phase space. The Showalter — Sidorov
problem
P(u(0) —up) =0

for the Ginzburg — Landau equation was also investigated in the work [2|. The paper |3]
proposes a transition to the non-deterministic (stochastic) Sobolev type equations

L= Mn+uw (3)
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in spaces of Wiener stochastic processes in the case of the abstract (L, p)-radial operator
M. Since Wiener processes are continuous, but nondifferentiable in the usual sense at each
point, we use the Nelson-Gliklikh derivative [4]. In this article, we study the numerical
solutions to the Showalter — Sidorov problem for the Ginzburg — Landau equation in spaces
of differential forms defined on a two-dimensional torus in the form (3) by analogy with our
approach used for the solutions to the Barenblatt — Zheltov — Kochina equation obtained
in [5] for which a difference analogue of the equation was constructed and a numerical
solution to the Showalter — Sidorov problem was found in [6].

1. Structure of Differentiable "Noises" Spaces

Consider the complete probability space 2 = (€, 3, P) with the probability measure P
associated with the sigma-algebra ¥ of subsets of the space 2. If R is the set of real numbers
endowed with a sigma algebra, then the mapping £ : ¥ +— R is called a random variable.
The set of random variables £, the mathematical expectation of which is equal to zero,
i.e. M¢ = 0, while variance is finite, i.e. D¢ < oo, form the Hilbert space £o with the
scalar product (&,&) = ME& & and with the norm denoted by [[{]|e,. If we take the
subalgebra Y, of the sigma-algebra 3, then we obtain the subspace of random variables
£9 C £, measurable with respect to ¥.

The measurable mapping n = n(t,w) : J x ¥ +— R, where J = (a,b) C R, is
called a stochastic process, the random variable n(-,w),w € Q is said to be the section
of the stochastic process, and the function 7(¢,-),t € J is said to be the trajectory of
the stochastic process. The stochastic process n = n(t,w) is called continuous, if the
trajectories 7 = n(t,wp) are continuous functions almost sure (i.e. for a.a. (almost all)
wo € ). The set n = n(t,w) of continuous stochastic processes forms a Banach space C£L,.

By the Nelson — Gliklikh derivative of the stochastic process n € CLs at the point
t € J we mean the random variable

ozg( lim M (n(t+At,~)—n(t,~)) © lim MY (n(t—Atw)—n(tw))) (4)

At Ats0+ At

if the limit exists in the sense of a uniform metric on ¢ € J. Here M," is the expectation on
a subalgebra of the sigma-algebra ¥ that is generated by the random variable n = n(t,w).

If there exist the Nelson — Gliklikh derivatives 7 (+,w) of the stochastic process n at almost
all points of the interval J, then we say that there exists the Nelson — Gliklikh derivative

N (-,w) almost sure on J. The set of continuous stochastic processes with continuous

Nelson — Gliklikh derivatives 7% form the Banach space C!'£,. Further, by induction, we
obtain the Banach spaces C!€5, 1 € N of the stochastic processes having continuous

Nelson — Gliklikh derivatives on J up to the order 1 € N inclusively with norms of the
k

1 o 0(0)
form ||n]lcie, = sup(3>2 DN (t,w))z, where 1 (t,w) = n(t,w).
teJ k=0

2. Relatively Radial Operators and Resolving Semigroups

Let 4 and § be real separable Hilbert spaces. Denote by L(L;§) the space of
linear bounded operators, and by Cl(4; F) the space of linear closed and densely defined
operators. Let us construct the Hilbert spaces Ug £y and Fg£s, where K = {\;} C R
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o0
is a monotone sequence of numbers such that Y A\f < 4o00. The stochastic Sobolev type

k=1
equation
L n= Mn (5)
can be reduced to two equations of the form
Av= Bu.

Let us formulate

Lemma 1. The following statements are true:
i) the operator A € L(;F) ezactly if A € L(UkgLa; FxLa);
it) the operator B € Cl(i4;F) exactly if B € Cl(UgLa; FxLa).

Definition 1. The operator M € Cl(UgkLsy; Fx£s) is said to be p-radial with respect to
the operator L € L(Ug£Ls; FxLs) (for shortness, (L, p)-radial), p € {0} UN, if

i) there exists a constant a € R such that [o, +00) C p*(M);

ii) there exists a constant K; > 0 such that Yu, € [a,+0),¢ = 0,1,...,p,¥n € N
max{|| R, ) (M), [IL],,,(M)lls} < 12[(%

o fq—0x)

Here pl(M) = {u € C : (uL — M)™' € L(FW} is the L -resolvent set,
and o%(M)=C\ p"(M) is the L-spectrum of the operator M. For u, € p*(M),
q=0,1,...,p, the operator functions R (M) = (uL —M)~'L and L (M) = L(uL — M)~
are called the right L-resolvent and the left L-resolvent of the operator M, and
R(Lu,p)(M) = q];[op(qu — M)™'L and Lﬁt,p)(M> = ql;[OpL(,uL — M)~! are the (L, p)-right
L-resolvent and the left (L, p)-resolvent of the operator.

Theorem 1. [1] Let the operator M be (L, p)-radial. Then there exists a Cy-semigroup of
the operators on the space UxLy (FxL,).

The set kerV* = {v € UgLa(Fk&2) : Vv = 0} is called the kernel, the
set imV* ={v e UK22(FK£2)tli%@r Vv =14} is said to be the image of the analytic
>

semigroup V' : ¢ > 0. Denote ° = {U%L>} (F° = {F%L2}), which form a closure of
kernels of semigroups in the norm of the space & = ULy (F = FxLs). Also, denote
U = {UkLs} (§' = {FkgLz}), which form a closure imRf{, (M) (imL{, ,(M)) in the

(wp (mp
norm of the space 4 = ULy (F = FkLa). The spaces UL, and FgL, split into the

direct sum
UKLQ - U%LQ @ U%{LQ, FKL2 - F(I](LQ @ F%{LQ (6)

The following theorem takes place.

Theorem 2. If the operator M is (L,p)-radial and there exist splittings (6), then
imU* = Uk Ly and imF* = FiLo.

Previously, the Showalter — Sidorov problem

P(n(0) =no) =0 (7)
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was investigated [3] in the spaces i1 = UgLs (F = FxL2), where there exist representations
of the form

n(tv ) = Z /\kzgkz(tv ')@k‘ (8>

Theorem 3. Let the operator M be (L, p)-radial and there exist splittings (6), then
Vno € Ul C 4 there exists the unique solution to problem (5), (7).

3. Differential Forms and Computational Experiments

Consider a two-dimensional torus obtained by the direct product of two segments
T = [0, 7] x [0,27]. The torus is a 2-dimensional smooth compact oriented Riemannian
manifold without boundary. Using theory presented in Sections 1 and 2, we construct
spaces of smooth differential ¢-forms with stochastic processes as the coefficient:

w(t,w, z1,T2) = Z Xityoooiig (b W, @1, T2)dsy Ao A day, 9)

|’i1 ----- 'quzq

where [i1, ..., ;| is a multi-index, and, according to (8), the coefficients have the form

o0
Xil,ig ..... z‘q(t,&),l‘l,l’g) - Z)\k‘gk,zj ..... Zq(t)@k
k=1

As i, we consider the spaces of differential g-forms defined on a smooth compact
oriented Riemannian manifold without boundary and orthogonal to harmonic g-forms.
Such spaces take place on the basis of the Hodge — Kodaira theory in the deterministic case
for the Cauchy problem for Ginzburg-Landau equation (2). We consider the Showalter —
Sidorov problem

P1(0) =1m) =0 (10)

for the stochastic version of the Ginzburg — Landau equation
(A + A) 1= aAn + idA%, (11)

and the signs differ from (2) since instead of the Laplace operator we use its generalization
(up to a sign) to spaces of differential forms, namely, the Laplace — Beltrami operator.
Denote the operators

L=(\+A),M=al,+idA?

and arrive at (5).
For this problem, the work [2] proves (L, p)-radiality of the operator M and constructs
the relative spectrum
_al id\2
My = A+ A
where {\;} is the sequence of eigenvalues of the Laplace — Beltrami operator on the torus

numbered in increasing order taking into account the multiplicity, and {} is the sequence
of eigenfunctions, respectively.
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Introduce a grid on the torus and construct a difference analogue of the trajectories of

the Ginzburg — Landau stochastic equation, and implement the Petrov — Galerkin method
in the Maple system.

Here we implement the following algorithm.

Step 1. Enter the parameters of the Ginzburg — Landau equation (a,d € R, A # 0).
Step 2. Construct a grid on the two-dimensional torus T.

Step 3. Calculate eigenvalues and construct eigenfunctions.

Step 4. Represent solutions in the form of expansion in terms of eigenfunctions.

Step 5. Obtain a numerical solution to the problem for a random value that belongs
to the probability space 2.

Step 6. Obtain a graphical representation of the solution and display the solution on
the screen.

Fig. 1 shows the only coefficient for solution to the homogeneous Ginzburg — Landau
equation for O-forms (2-forms) at o« = —0,5,d = 0,5, A = 4.
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Fig. 1. Solution to (10), (11) for « = —0,5,d =0,5,\ =4

Figs. 2 and 3 show the coefficients at dx and dy, respectively, for the solution to the
homogeneous Ginzburg — Landau equation for a = 1,d =2, A = 0.
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Fig. 2. Coeflicient at dz of the solution to (10), (11) fora =2,d=1,A=0

Fig. 3. Coefficient at dy of the solution to (10), (11) for a =2,d=1,A=0

Conclusion

The Ginzburg — Landau equation belongs to the Sobolev type equations with
a relatively radial operator. As a result of studying the numerical solutions to the
homogeneous version of the Ginzburg — Landau equation, we obtain the graphs of the
solution for two model cases on the torus.
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O YNCJIEHHOM PEIIIEHUU B TIPOCTPAHCTBE
MN®PEPEHIIUAJILHBIX ®OPM JIJI5I OTHOTO
CTOXACTUYECKOTO YPABHEHUS COBOJIEBCKOT'O
TUTIA C OTHOCUTEJBHO PAJINAJJILHBIM
OIIEPATOPOM

. E. Ilagparos

B pabore nipejicrasiiensl rpadgukn TpaeKTOPUil YUC/IeHHBIX pertenuii 3aga4du [1loyosr-
repa — CuI0poBa [IJIsl OJTHOTO CTOXACTHIECKOIO BapuaHTa ypasHenus [ nu3bypra — Jlanmgay
B IIpocTpaHcTBaX auddepeHInaIbHBIX (OPM, OIPeIeeHHbIX Ha AByMEpHOM Tope. cmon-
3yercsi paHee TOJIyYe€HHbIe TIEPEXOJT OT JETePMUHUPOBAHHOIO BAPUAHTA TEOPUH yPABHEHUI
CODOJIEBCKOT'O THUIA K CTOXACTUIECKUM YPABHEHUSIM C IIOMOINBIO IIpou3BoaHON Hebcona —
[nukinxa. Tak Kak ypaBHEHUs MCCJIEIYIOTCS B IPOCTPAHCTBE AuddepeHnaIbHbIX (hOPM,
TO W CAMHU ONEPATOPHI MOHUMAIOTCS B CIIEIUAJIBLHOM BHJIE, B 9aCTHOCTH, BMECTO OIEPATOpa
Jlamaca 6epercs ero o6o6ienne oreparop Jlamraca — Beasrpavu. ['padbuku Berauncinrens-
HBIX 9KCIEPUMEHTOB IPUBEICHBI JJIsi PA3HBIX 3HAYCHUIT TTAPAMETPOB UCXOHOIO yPABHEHUS
JJIsT OJTHAX U TeX K€ TPAEKTOPHIl CTOXaCTHIECKOTO IIPOIIECCA.

Karoueswie caosa: ypasrenue coboresckozo muna; beavil wym; npoudeodnas Heawvco-
Hna — Iaukauza; pumarnoso mrozo006pasue; duddepervyuarvroe gopmu; onepamop Jlanaa-

ca — Beavmpamu; wucaernnoe pewerue.
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