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The present paper is devoted to the improvement and application of mathematical

models for the dynamic description of the patient state in the diagnosis of breast cancer

and venous diseases based on microwave radiometry data. I present and describe in detail

a modified approach for constructing interpretable features in thermometric data. A model

evalutation is performed by constructing classification algorithms in the following feature

spaces: temperature values, thermometric features, 2nd, 3rd and 4th degree polynomial

features. Best algorithms have sensitivity value of 0.892 and specificity value of 0.813 in

the mammary glands dataset and sensitivity value of 0.961 and specificity value of 0.925 in

the lower extremities dataset. The algorithms built also provide an explanation of result in

terms which are understandable for clinicians. The most important features in thermometric

data are presented, as well as an example of explanation building.
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Introduction

Nowadays, the development of intelligent systems based on artificial intelligence
methods is a very urgent task. Such technologies can significantly improve the quality
of life in a wide variety of fields. For example, in medicine, intelligent systems are able to
identify important and subtle details in examination data and thereby improve diagnostic
efficiency, as well as reduce experience requirements for specialists performing diagnostics.
At the same time, the most interesting are intelligent advisory systems that not only use
machine learning methods and algorithms, but also contain mechanisms for explaining
the proposed solutions. The development of such systems requires the application of
mathematical modeling, data analysis, and machine learning methods.

A promising diagnostic method is the microwave radiometry, which is based on
measuring the intrinsic electromagnetic radiation of human tissues in the microwave and
infrared wavelength ranges. The method is absolutely safe, allows non-invasive detection
of temperature anomalies at a depth of several centimeters and is applied in various fields
of medicine [1], including the early diagnosis of breast cancer [2, 3], as well as the diagnosis
of venous diseases [4].

The examination technique consists of consecutive measurements of internal
(microwave) and surface (infrared, skin) temperatures which are recorded as numerical
data and the subsequent search for temperature anomalies in the examination data. The
task of finding anomalies in thermometric data is a complex intellectual task requiring long
training and years of experience. The interpretation and formalization of expert knowledge,
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as well as knowledge extraction from data, are the key stages in the development of models
for solving such problems.

The research aim is to improve and apply mathematical models for the dynamic
description of the patient state in the diagnosis of breast cancer and venous diseases
based on microwave radiometry data.

1. Microwave Radiometry in Diagnostics

The microwave radiometry is a biophysical non-invasive examination method, which
is based on the consecutive measurements of internal (microwave) and surface (infrared,
skin) temperatures at specific points and the subsequent recording of temperatures as
numerical data.

A diagnostician is performing an analysis of the data obtained, which can be displayed
in the form of thermograms or maps of temperature fields in order to detect temperature
anomalies, and makes a conclusion about the patient health state, or the need for further
examination by more expensive or dangerous methods. The idea of diagnostic method is
that the presence of temperature anomalies indicates the presence of structural changes.

1.1. Breast Cancer

In the early diagnosis of breast cancer, the method allows to effectively detect fast-
growing tumors and significantly increase the efficiency of the examination in conjunction
with other methods. For example, the combined diagnostic sensitivity together with
mammography is 98% [3].

Fig. 1. Sampling points on breasts and legs

The microwave radiometry examination of the mammary glands consists of consecutive
measurements of internal and surface temperatures at points 0, . . . , 8, axillary region (point
9) and reference points T1 and T2 according to Figure 1. Methodology assumes that
the patient is in supine position, however, in practice, measurements can be additionally
carried out in a sitting position.
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1.2. Venous Diseases

Microwave radiometry is also applied in the early diagnosis and dynamic monitoring
of venous diseases of the lower extremities [4].

The microwave radiometry examination of the lower extremities consists of consecutive
measurements of internal and surface temperatures at 12 symmetrical points located on
the posterior surface of lower legs according to Figure 1. Two series of measurements are
performed for the patient being in different positions: lying on the stomach and standing.

2. Data and Methods

2.1. Datasets

The following two datasets are being considered:
1. thermometric data of 518 mammary glands, among which 166 are healthy and 352

are having various diseases including breast cancer (166);

2. thermometric data of 292 lower extremities, among which 36 are healthy and 256
are having various venous diseases.

Formally, a dataset can be represented as a matrix
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where m is a number of objects in a dataset, n is a number of features, xi = (xi
1
, . . . , xi

n) –
the feature vector of the object i, Y is the set of class labels, and yi ∈ Y is a label.

Feature vector of the mammary gland contains the values of internal and surface
temperatures of points measured according to Figure 1. There are 24 values in total. Let’s
group the temperatures and denote
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) is a group of internal temperatures of the mammary
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the additional points T1 and T2 respectively.
The subscript indicates the point number. The superscript mw (internal) or st (surface)
indicates which type the temperature values belong to.

Feature vector of the lower extremity contains measurements according to Figure 1 in
two positions: standing and lying down. There are 48 values in total. Almost similarly,
let’s group and denote
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The indices st (standing) and ly (lying) have been added here to indicate in which position
the patient was when the measurements were taken.
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2.2. Feature Construction and Interpretation

An important stage is the actualization and formalization of existing knowledge about
the behavior features of the temperature fields. During the search for anomalies, specialists
analyze not just temperature values, but their various ratios, "characteristic" features.

Various qualitative features of breast cancer have been identified and described
through research and analysis of microwave radiometry data [5]: increased value of
thermoasymmetry between the similarly-named points of the mammary glands; increased
temperature spreading between individual points in the affected mammary gland; nipple
temperature difference; the ratio of surface and internal temperatures and some others.

In the diagnosis of venous diseases lateral-medial and axial gradients [6], which are
justified by physiological features, are also important characteristics.

The listed features are a set of qualitative characteristics of temperature anomalies.
Further, mathematical descriptions are being offered for each feature [5]. For example, the
increased value of thermoasymmetry between the similarly-named points can be described
by functions of the form f = tmw

r,i − tmw
l,i , where tmw

r,i and tmw
l,i are internal temperatures

of the i-th point of the right and left glands. There are about 900 such functions, which
makes the feature space and the output of algorithms rather cumbersome.

Currently, many of the descriptions are presented in a more general form to minimize
the feature space. There are also groups of uniform patterns in the mammary glands
and the lower extremities data, while in both cases there is a certain general principle of
constructing features, i.e. a general set of universal features in thermometric data. This set
of features is represented in the form of hypotheses about the behavior of the temperature
fields and the corresponding generalized mathematical descriptions:

1. The hypothesis of an insignificant temperature difference, according to which healthy
organs or body parts are characterized, by low values of the following functionals:

(a) Temperature deviation

F1(T ) = STdev(T ) =

√

√

√

√

∑

t∈T

(t− T )2

|T | − 1
, (4)

where T is temperatures, T is the average value of temperatures in T , |T | is a
number of temperature values in T . More specific:

i. Internal temperatures deviation

fmg,1(mgi) = F1(T
i,mw). (5)

ii. Similarly for the lower extremities with division into standing/lying
measurement position

flg,1(lg
i) = F1(T

i,mw,ly). (6)

(b) Internal gradients deviation, which are the differences between internal and
surface temperatures at the corresponding points. Internal gradients form
separate groups, which are defined as element-wise differences

T i,g = T i,mw − T i,ir. (7)
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The maximum and minimum values, (4), as well as Lp norms are used as
characteristics describing the deviation of internal gradients:

F2(T ) = ‖T‖
1
,

F3(T ) = ‖T‖
2
,

F4(T ) = ‖T‖
∞
,

(8)

where
‖T‖p = (

∑

t∈T

|t|p)
1

p ,

‖T‖
∞

= max
t∈T

|t|.
(9)

More specific, the maximum absolute value of internal gradients of the
mammary gland

fmg,2(mgi) = F4(T
i,g). (10)

(c) Temperature deviation from average, temperature oscillation and others.

2. The hypothesis about the symmetry of the temperature fields of paired organs
(body parts), according to which healthy paired organs are characterized by a slight
deviation of temperatures at the corresponding points (subregions), as well as a
slight difference in related characteristics. The following characteristics are used as
generalized measures of symmetry

F (Tc, Tp) = ‖Tc − Tp‖ ,

F (Tc, Tp) = ‖Tc‖ − ‖Tp‖ ,
(11)

where ‖z‖ is a functional, Tc−Tp is element-wise difference, Tc is "current" and Tp is
"paired" group of temperatures. These characteristics require an additional step of
data preprocessing, as well as the existence of a pair for each object in the sample.
For example, in the process of preprocessing lower extremities dataset, if the left
extremity is being considered, then the "current" temperature group is internal or
surface temperatures of the left extremity, and its "paired" group will be the internal
or surface temperatures of the right extremity, respectively.

For paired temperature groups characteristics are mainly based within the framework
of the previous hypothesis:

(a) The maximum absolute value of temperature difference between the similarly-
named points

F5(Tc, Tp) = F4(Tc − Tp). (12)

(b) Difference between standard deviations of temperatures

F6(Tc, Tp) = F1(Tc)− F1(Tp). (13)
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(c) Difference between average values and others

F7(Tc, Tp) = Tc − Tp. (14)

3. The temperature stability hypothesis, according to which healthy organs or body
parts are characterized by insignificant differences in temperatures measured at
different positions of the patient. Features of this group characterize the degree of
proximity of temperature fields in different positions and are practically similar to
features determined within the framework of the symmetry hypothesis.

For instance, the following features:

(a) Difference of average surface temperatures measured in standing and lying
positions

flg,2(lg
i) = F7(T

i,ir,st, T i,ir,ly) = T i,ir,st − T i,ir,ly. (15)

(b) Maximum absolute value of the difference between the internal temperature
gradients measured in the standing and lying positions

flg,3(lg
i) = F5(T

i,g,st, T i,g,ly) =
∥

∥T i,g,st − T i,g,ly
∥

∥

∞
. (16)

These features are constructed in the lower extremitites data. For the mammary
glands, there are no measurement data in several positions in the sample.

4. Hypotheses related to the physiological structure of organs (body parts). For
instance, the difference between nipple temperatures in breasts data

F8(Tc, Tp) = T0,c − T0,p, (17)

deviation of temperature values relative to the point 9, gradients of additional points
in breasts data or the values of lateral-medial and axial gradients in the lower
extremities data and others.

In this way the feature space can be redefined. For each object in the dataset the
function values f are calculated. Sixty-five new features are constructed in the mammary
glands dataset, and 128 in the lower extremitites dataset. Further, by binarizing [7] the
obtained values, the construction of the set of thermometric features is performed

S = (φ1, φ2, . . . , φs), (18)

where s is a number of features.
Thermometric feature is a triple φ = (f, I,W ), where I is an interval and W is a

weight (informativity f by I), or a quantitative indicator that determines how well the
characteristic separates objects of one class from other classes. Thermometric feature is
observed in the object xi, if f(xi) ∈ I. A key feature of thermometric characteristic
is interpretability. This fact follows from hypotheses about the behavior of temperature
fields, which, in turn, evolve from qualitative features.

Vector of values of thermometric features (φ1(x
i), φ2(x

i), . . . , φs(x
i)) will describe the

state of object i. The element of the vector with the index j will be equal to 1 if the feature
j is observed in the object xi and 0 otherwise.

Thermometric features are the basic building blocks for more complex structures, for
instance, 2-dimensional features [8], and classification models.
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2.3. Classification

Based on thermometric features, it is possible to construct various classification
algorithms. To evaluate their effectiveness, a weighted voting algorithm is constructed,
a key feature of which is the possibility of explaining the diagnostic result.

Consider a binary classification problem. Label 0 corresponds to a class "Healthy" and
label 1 corresponds to class "Sick". The classification algorithm is defined as

a(xi) =

{

1, if hW (xi) ≥ 0.5,

0, otherwise,
(19)

where

hW (xi) = g(W0 +
s

∑

j=1

Wjφj(x
i)) (20)

is the sum of weights of thermometric features, Wj is a weight of feature φj, and g(z) is a
sigmoid.

The construction of classification model consists of the following steps:

1. Distinguish temperature groups, perform feature construction and binarization, find
thermometric features (18);

2. Transform the data into a binary matrix X ′ whose element at the intersection of the
i-th row and j-th column is 1 if thermometric feature j is observed in object i, and
0 otherwise;

3. Weigh up and select the most effective thermometric features by logistic regression
with L1-regularization, in which case the weights of insignificant features are zeroed
[9]. A classification model is constructed for X ′.

2.4. Modeling Exercise

To evaluate the effectiveness of thermometric features, several classification algorithms
have been built using the logistic regression method. For comparison, algorithms were built
in the following feature spaces: temperature values, values of thermometric functions,
thermometric features, 2nd, 3rd and 4th degree polynomial features [10].

The efficiency of the algorithm was evaluated by nested cross-validation with
preservation of class balance. The number of blocks on the external level is 9, on the
internal level is 8. The advantage of nested cross-validation is that the evaluation of the
algorithm, which requires pre-tuning of parameters (e.g., regularization coefficient), is
always performed on the data unknown during training, and therefore is fair enough [10].

The G-measure [11] was used as an evaluation metric, which is determined by the
formula

Gmean =
√

Sens · Spec, (21)

where

Sens =
TP

TP + FN
(22)

is a sensitivity and

Spec =
TN

TN + FP
(23)
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is a specificity, TP is a number of true positives, FN - false negatives, TN - true negatives,
FP - false positives. Sensitivity and specificity are traditional measures of the effectiveness
of diagnostic methods, and the G-measure is a fairly fair estimate for unbalanced samples.

3. Results and Discussion

Classification results for the mammary glands dataset are presented in Table 1.

Table 1

Mammary glands classification performance

Feature space Gmean Sens Spec

Mean Std Dev Mean Std Dev Mean Std Dev

Thermometric features 0.85 0.043 0.892 0.051 0.813 0.073

Thermometric features (values) 0.811 0.047 0.801 0.061 0.824 0.08

Temperature values 0.778 0.039 0.747 0.035 0.813 0.067

2nd degree polynomial features 0.78 0.045 0.75 0.048 0.812 0.072

3rd degree polynomial features 0.793 0.044 0.77 0.043 0.818 0.061

4th degree polynomial features 0.804 0.047 0.798 0.046 0.812 0.087

The highest sensitivity and overall classification performance is achieved using
thermometric features. The deviation of sensitivity for all algorithms is about 0.05,
specificity - 0.07. Increasing the order of the polynomial features increases the sensitivity
and overall performance of the algorithm. The highest specificity is achieved using values
of thermometric functions. The algorithm that classifies only by temperature values has
the lowest sensitivity.

Classification results for the lower extremities dataset are presented in Table 2.

Table 2

Lower extremities classification performance
Feature space Gmean Sens Spec

Mean Std Dev Mean Std Dev Mean Std Dev
Thermometric features 0.939 0.078 0.961 0.046 0.925 0.139

Thermometric features (values) 0.838 0.07 0.816 0.045 0.869 0.143
Temperature values 0.519 0.2 0.578 0.098 0.525 0.233

2nd degree polynomial features 0.577 0.136 0.586 0.096 0.588 0.22
3rd degree polynomial features 0.582 0.243 0.609 0.08 0.625 0.294
4th degree polynomial features 0.614 0.159 0.629 0.089 0.619 0.245

Here, the highest performance of classification is achieved when applying thermometric
features. At the same time, the difference between scores is remarkable. For algorithms
based on temperature values, there is a significant deviation of performance arising from
the deviation of specificity (about 0.25). The sensitivity score is quite stable and is about
0.08. The worst result is achieved when constructing a classifier based on temperature
values only. Polynomial features increase the efficiency of the classification.
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Tables 3 and 4 contain top 5 features with the highest absolute values of weights
obtained after training the weighted voting classifier on breasts and legs datasets
respectively. In both cases thermal asymmetry features have the most weight and other
groups of features are less common. However, all groups of features are important for
achieving high performance.

Table 3

Top 5 features (breasts dataset) sorted by absolute value of weight

Feature W Sens Spec
∥

∥T i,ir
c − T i,ir

p

∥

∥

2
∈ (2.166, 2.215) −6.123 0.0 0.96

STdev(T
i,g
c − T i,g

p ) ∈ (0.27, 0.292) 4.699 0.06 0.99
∥

∥T i,ir
c − T i,ir

p

∥

∥

2
∈ (2.495, 2.696) 2.651 0.11 1.0

∥

∥T i,mw
c − T i,mw

p

∥

∥

2
∈ (1.14, 1.179) −2.624 0.01 0.94

∥

∥T i,ir
c − T i,ir

p

∥

∥

2
∈ (1.98, 2.087) 2.577 0.03 1.0

Table 4

Top 5 features (legs dataset) sorted by absolute value of weight
Feature W Sens Spec

STdev(T
i,g,st
c − T i,g,st

p ) ∈ (0.394, 0.414) −1.542 0.02 0.78

STdev(T
i,mw,ly
c − T i,mw,ly

p ) ∈ (0.287, 0.389) 1.243 0.23 1.0
∥

∥T i,g,ly
∥

∥

1
∈ [0, 19.05) 1.183 0.14 1.0

∥

∥T i,g,ly
c − T i,g,ly

p

∥

∥

∞
∈ [0, 0.55) −1.164 0.01 0.56

∥

∥T i,ir,ly
c − T i,ir,ly

p

∥

∥

2
∈ (1.581,∞) 1.025 0.8 0.89

It should be noted that each feature can be interpreted. For instance, in Table 4
features can be interpreted as the following:

1. Normal deviation of the difference between temperature gradients of the lower
extremities, measured in standing position;

2. Increased deviation of the difference internal temperatures of the lower extremities,
measured in the supine position;

3. Suspicious deviation of internal gradients of the lower extremities, measured in the
supine position;

4. Normal maximum absolute value of differences between internal gradients of the
lower extremitites, measured in the supine position;

5. Increased deviation of surface temperature differences between the lower extremities,
measured in the supine position.

A set of descriptions of the observed features forms an explanation of decision.
The presented mathematical models of the patient state in diagnosis based on

microwave radiometry data and the constructed feature space are applied to solve the
binary problem of diagnosing breast diseases, as well as diagnosing venous diseases. The
constructed feature spaces showed not only their effectiveness, but also the possibility of
explaining the result.

The reported study was funded by RFBR, project number 19-31-90153.
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УДК 004.89 DOI: 10.14529/jcem210101

МАТЕМАТИЧЕСКИЕ МОДЕЛИ ДЛЯ АНАЛИЗА
И ИНТЕРПРЕТАЦИИ ДАННЫХ МИКРОВОЛНОВОЙ
РАДИОТЕРМОМЕТРИИ В МЕДИЦИНСКОЙ
ДИАГНОСТИКЕ

В. В. Левшинский

Работа посвящена доработке и применению математических моделей для динами-

ческого описания состояния пациентов по данным микроволновой радиотермометрии

в диагностике рака молочных желез и венозных заболеваний. Представлен и подроб-

но описан модифицированный подход для конструирования интерпретируемых при-

знаков в термометрических данных. Для оценки модели выполнено построение алго-

ритмов классификации для разных признаковых пространств: только температурные

данные, термометрические признаки, а также полиномиальные признаки различных

порядков. В задаче классификации желез достигнута чувствительность 0.892 и спе-

цифичность 0.813, а в задаче классификации голеней – 0.961 и 0.925 соответственно,

при этом обеспечивается обоснование решения в терминах, понятных врачу-диагносту.

Представлены наиболее значимые закономерности в данных, а также пример постро-

ения обоснования.

Ключевые слова: микроволновая радиотермометрия; конструирование призна-

ков; математическое моделирование.
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