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The article is devoted to the analytical and numerical study of the initial-final problem
for the Boussinesq — Love equation describing longitudinal oscillations in a thin elastic
rod. The solution of the problem is understood as a function that defines the longitudinal
diaplacement in the components of the rod structure. To find it, the Fourier method is
used. The first section presents a formal analytical solution to the problem. In the second
section, the theorem on the existence of the solution and its uniqueness is proved. The third
section describes an algorithm for finding approximate solution to the initial-final problem
for the Boussinesq — Love equation defined on graph. In the fourth section, a computational
experiment is performed for the graph consisted of two edges.
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Introduction

Let G = G(D, €) be a finite connected oriented graph , where ® = {V;} is the set of
vertices, and & = {E;} is the set of edges. Consider a Boussinesq — Love equation on a

geometrical graph
(A — A)uy = a(A — N)ug + B(A — X', (1)

u = (ui(x,t),us(x,t),...), AU = Ugy,

u;(z,t) is the solution component on the i-th edge of the graph.
At each vertex of the graph GG define the conditions

D w0, = D ta(lm, t) =0, (2)
E;eE*(V;) EneE» (V)

Coefficients «, 8, A\, N, X characterize the properties of the material of the structural

elements. Condition (2) indicates the balance of flows through each vertex. Condition (3)

indicates that the solution at each vertex must be continuous. Function w;(z,t) defines the

longitudinal displacement at the point x at the moment ¢ for the i-th structural element.
Consider a Hilbert space

Ly(G) = {9 = (91, 92, - g}, --.), g € La2(G)}
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with inner product

< g,h>= Zd/ gj(x)h;(z)dx

and a Banach spaces §= Lo(G), and A= {u=(u1, ug, ..., uj, ...): u; €W3(0,;) and (2) holds},

with norm l
J
=324 [, + )
- 0
J

When solving problem (1) — (3), there arises a Sturm — Liouville problem about finding
the eigenfunctions of the operator (—A) on a geometric graph:

(X)"+ XX =0, X= (X1, ..., Xj,...), (4)

Y, X0 > X,(lw) =0, (5)
E;eE(V;) En€E«(V;)

XJ(O) = Xk(o) = Xm(lm) = Xn(ln)a (6>

where E;, E, € E“(V;), B, E, € E“(V;),t € R.

This problem was investigated, the article [1] contains a generalization of previously
achieved results, as well as proofs of the properties of eigenvalues and generalized
eigenfunctions.

Set inital-final conditions

where
Py = > <X, >X,,
AnAA£0, ik €ag'(B)
P = > <X, > X,

An+AAO, 1t €o(B)
and A-spectrum B
o(B) ={og(B)Uo{(B)}, o}!(B)#0.k=0,1, og(B)Noi(B)=0.

The Boussinesq — Love equation (1) was first presented in 1935. This equation is a
Sobolev type equation with respect to the second-order time derivative. Recently, a large
number of studies have been devoted to equations that are not solvable with respect to
the higher derivative. For example, in [3], the Boussinesq — Love equation in the domain
) C R™ was studied by the phase space method. The approaches of R. E. Showalter and
N. A. Sidorov were developed in the article by [7] G. A. Sviridyuk and S. A. Zagrebina.
The problem statement for the Boussinesq — Love equation with initial-final conditions
appeared relatively recently [4]. When setting such a problem, one part of the data is set
at the beginning of the time interval, and the other part is set at the end. Earlier in the
studies [8, 9], a solution of the Boussinesq — Love equation for two geometric graphs was
obtained using the Fourier method. This paper is devoted to the analytical and numerical
study of the initial-final problem for the Boussinesq — Love equation on a geometric graph.
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1. Analytical Investigation of the Boussinesq — Love Equation
1.1. Sturm — Liouville Problem on the Geometrical Graph

Problem (4) — (6) is a special case of the Sturm — Liouville problem [1]:
aj(x)u; — (c;(2)ujz)e = Auj, i = 1,2, .., (8)
E;eE~(V;) Em€E“(V;)

Uj((]) = ug(0) = U (ln) = un(ln), (10)

where E;, B, € E*(V;), E,, E, € E“(V;),t € R. Here E*(V;) denotes the set of edges
starting or ending at the vertex V.

Theorem 1. [1] Eigenvalues A1, A, ... of problem (8) — (10) are real and Ay — +00 as
s — 00. Figenvalues satisfy the inequality

As > m = min ( min aj(x))

7 \ze(0ly)

in all cases, except a;(x) = a;(x) = const for all i, .
If aj(x) = a;(x) = const for alli,j, then the eigenvalues satisfy the inequality Ay > m,
s=1,2,..., and there is a single eigenvalue equal to m corresponding to eigenfunction

-1

lj
Zdj/o cj(x)dz (1,1,...,1,...).

Ejee

Theorem 2. [1] Eigenfunctions u,(x), us(x), ... of problem (8) — (10) form an orthonormal
basis in Ly(G), i.e. any function f € Lo(G) is decomposed in a Fourier series

f = Zfsusafs = <f7us>7
s=1

converging in Ls(G).

Remark 1. By virtue of theorem 1, nontrivial solutions to the Sturm — Liouville problem
(4) — (6) exist only for A > 0, so further we consider only cases where A > 0.

Example 1. Let the graph G consist of two edges of lengths [i,ls correspondingly,

connecting three vertices (Fig. 1).
VN

Fig. 1. Graph G
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Let’s find eigenfunctions and eigenvalues of the Sturm — Liouville problem for this
graph. It is needed to find nontrivial solutions X(z) = (X!(x), X?(x)) (eigenfunctions) of
the problem

(X" + X' =0,
(X2)" +AX?% =0,
XH(h) = X*(0),
(X1 (1) = (X*)(0) =0,
(X1)(0) =0,
((X?)(l2) =0,

and eigenvalues \.
Solving this problem, we find eigenfunctions and eigenvalues:

1 _ 2 mk _
X! = thrlQ’ Xi(z) = 7 Cos <11+l2x> L k=1,2,..,
X2 = /ﬁ’ X,f(x):,/ﬁcos (117322(x+l1))7 k=1,2,.., (11)
2
o = 0, )\k:<%> k=1,2,...

1.2. Inital-Final Problem for the Boussinesq — Love Equation

After determining the eigenvalues and the eigenfunctions, we turn to the search for a
solution to the equation. We look for the solution of (1) — (3) in the form of a series

u(a,t) =Y X, ()T, (1), (12)

where X, are eigenfunctions of the operator —A, and 7, are functions of the
variable t. Substituting (12) into (1) and scalarly multiplying the resulting equation by
Xi(z), k= 0,1,2... in Lo(G) we get

i[()\ + )T () + (A + N)aT, (t) + (A + X)) BT, (1)] < X, (x), X (2) >= 0.

n=0

Since the eigenfunctions X are orthonormal, we get:
A+ )T (@) + (A + N)aTi(t) + (A + N)BT(t) = 0.

Consider the cases:
Case 1: A4 A\ # 0.
We get an ordinary differential equation of the second order with constant coefficients

A+ XN)TL () + N+ N)aTi(t) + (M + X)) BTi(t) = 0. (13)
Define
Dk = (/\k: + /\,)2042 - 45()% + /\)()\k + /\”). (14)
a) If Dy > 0, then

—Od()\k -+ )\,) + \/D_k
2\ + ) '
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The general solution of (13) has the form:
Tk = Ake“zt + Bke“;t.

b) If Dy =0, then
—a(Ap + )
200 +A)

The general solution of (13) has the form:

M =

Tk = Rke“’“t -+ Skte“’“t.
c) If Dy, <0, then

. et N iDL

The general solution of (13) has the form:

Ty = e (Wy, cos(xt) + Qp sin(yt)).

We obtain an ordinary first-order differential equation with respect to Tj(¢) with constant
coeflicients:

(Mg + N)Ti(t) + (A + N')BTk(t) = 0.

In this case oo is an essentially singular point of the resolvent Rﬁ(?), and in this case,
the solution may be nonunique. Therefore, we exclude it from further considerations.

A+ A =0,
Case 3: < M+ A\, =0,
N4+ A # 0.

We obtain an algebraic equation with respect to T} (¢):
(A + X)) BT(t) = 0.

Therefore Tj(t) = 0.
So the general solution of (1) — (3) can be written as:

u(e,t)= D [ Bt Kt
A+A#£0,D; >0

+ Z e W cos(Yxt) + Qp sin(¢yt)1 X, + Z e (Ry + Sit) Xy, (15)

A +A#£0,Di. <0 A +A#£0, D=0

The coefficients Ay, By, W, Qk, R, Sp,. can be found from the initial-final
conditions (7).

Example 2. Consider the Boussinesq — Love equation on graph G (Fig. 2)
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[ ]
l1—7r/( XFW
[ J [ ]
Fig. 2. Graph G

u= (u'(z,t),u*(x,t))

with conditions
ut(ly,t) = u*(0, ),

ug(li, ) = uz(0,1) (17)
ui(O,t) =0,
u?(ly, t) = 0.

Let the relative spectrum of the pencil B have the form:
o*(B) = 03 (B) Uai'(B),

where
A

01 (E) = {N07N3 7M7} 0¢ ( ) ={m} = UA(E) \ ‘714(?)'

Set inital-final conditions:

(18)

ug(z) = <3 cos ( ) + cos 2x — 4cos( ) 3 cos (i) + cos2(z + ) — 4 cos <5(:c2+7r)>> ’

ud(x) = <1—9cos( L), 1—9005<w>>,
uf = (=24 6 cosbx, —2 + 6 cos 6(x + 7)),
u] = (3cos (%) + cos 8z, 3 cos (=) + cos8(z + )).

Search the solution of (16) — (18) in the form:

u(x,t) = (u'(z,t),u ZTk )Xy, = ZTk(t)(Xé(fIr)aXzf(x))

The eigenvalues and the eigenfunctions of operator (—A) for this graph are
given by (11).
Substituting parameters from (16) into equation (13) we get

(=4 + M) T () + 2(—=4 4+ M) T3(t) + 3(1 + Np) Tk(t) = 0. (19)
Then the points of the relative spectrum are the roots of the equation:

(=4 + M) g+ 2(=4 + M) + 3(1 + M) = 0.
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Find Dy, from (14)

D
if:(~$+Mf—3&4+Awu+Ag:—2ﬁ+Ak+%.

Consider the cases:
Case 1: % > 0, for A\, € (0;4), therefore, for k € {0,1,2,3}

M¢:—@4+Amivhzﬁ+Ah+%
k —4+ N\ .

Then the function T}, and its derivative have the form:
Tk = Ake“:t + Bkeﬂ;:t’

Tk,: = /L:Akeu:t + M;Bke“lzt.

Case 2: % = 0, for A\, = 4, therefore, for & = 4. In this case, equation (13) becomes
degenerate and the constants in the solution cannot be determined unambiguously, so we

exclude it from consideration.
Case 3: % <0, for Ay € (4,400), therefore, for k € {5,6,...}

—(—=4+ X\p) £i/202 — N, — 28 ,
ol VN A = ¢ + W

Fe = VW

Then the function T}, and its derivative have the form:
Ty = e (Wy cos(iyt) + Qusin(iyt)),
Ty = e (o (Wi cos(ihyt) + Qp sin(¥yt)) + p( =Wy sin(vyt) + Qx cos(¢yt))) -

From inital-final condition (18) we get:

T3(T) =0, TS(O) - _4\/7_1-7 (20)
Ty(r) = vm, | T5(0) = =9/,
Tx(0) =0, T(T) =0,
Tklz(o) =0, Tk,:(T) =0,
k£1,4,5 |k#0,3,7.
Thus, from (20), we find the constants in the general solution of (16), (17)
Nii
_2ymel )TV _3VA(=1+V2)
(1= _ 3vm(1+v2
BO g _%7 Bl 2\/5 Y
evZs 7@ T
{A3 - 2\/_%6(1 7\/; ) {W5 = _3;1\\//_7_1-7
7T 22 T — ™
BS = _T@e(lJr 7 ) QE) - /78
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The rest constants are equal to zero. So the solution of (16)—(18) has the form:

1+ﬂ T VT 1fﬁ T
u(,t) = <2ﬁe( T gy WA 6(_1+4)t> Xo+

—eVT+1 —eVT+1

2v/2 2

+( 7\/_ f22 6(71,@) 7\/_ (1+\[22 €(1+\/§722)t) X3+
2\/_22 21/322 322°

+ (—4\/7_T coS <\/Z8t> 3\9/_\/; <\/_8t>> Xs.

2. Justification of the Fourier Method for Inital-Final Problem for
the Boussinesq — Love Equation on a Geometric Graph

+<3\/7r(—1+\/§)€< Vo BVELH VD) Hf)xﬁ

Let's find conditions for the functions u),u,u],u], under which formula (15)

determines the unique solution of problem (1)—(3), (7) on the graph G (Fig. 1). First,
we show that (15) determines the solution of equation (1). The first and the last terms
in (15) are finite sums, so, due to the uniformity and linearity of equation (1), these sums
will be the solutions of equation (1). We show that the infinite summand is also a solution.
To do this, it is sufficient to prove uniform convergence of the series

Z e W, cos(Pnt) + Qn sin(,t)]X,, () (21)

An+A£0, Dy, <0

and ability to differentiate it the desired number of times.
1)After differentiating (21) by t once and twice, the resulting series is majored up to a
constant by the series

D (Wl +1Qul)- (22)

Since ¢,t < 0, for A\, > max{—N, N}, then the majorant series (22) converges, hence the
initial series converges uniformly.

2) After differentiating (21) by t once or twice, and by x twice, the resulting series, up to
a constant, is majored by the series

3" 02 (Wl + |Qul)- (23)
n=0

Here, just like in the previous case, ¢,t < 0, for sufficiently large n. So, |le?"t|| < 1 for
such n. Moreover for the convergence of this series |W,,| and |@,,| should be approximately
n=6G+9 where § > 0.

Let j,, € 0g'(B). Find the coefficients W,, and Q,, by solving the system:

< WX, —ud(2),X, >=0,
< W, + 1,Q,] X, — u¥(x), X, >= 0.
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Then

l1 l2
n ™™
Wn:/o cos(llz_bx) (ugo(;p)dwr/o cos(l1+l (x+l1)) () d =

= ) O i () ) -0 () o ()

™ m™m Iy + 1y

~ro) (1 52)2 -y (1 l2)2c0s<m>+

™ ™

l 2 l 2
YL+ NI 10\ / P+ ™ (r + ) 20\77
d - = — dx.
_|_/O ( — ) cos (h l2) (uy)"dz + i — cos L1l (ug)"dx

Since some terms interfere with the fulfillment of the above conditions we require the
following;:

Then coefficient W,, has the form:

™m nd’
where w® = — (fl sin (72 ) (u u®) B da — Sin(%)(uo ) dz is the Fourier coefficient

for the function (ud)® ().
Similarly for Q,:

(3)
ll + lg 3 qJ;n — Wn
Qn - 3 bl
mwn n

where ¢ = — fo sin (2 ) (u}?) @) d fo sin (™7, ‘rlrll )(u)®)dz is the Fourier coefficient
for the function (u9)® (z) prov1ded that
uy’(h) = ui(0),
() (l) = (ui")'(0),
(u1”)'(0) =0,

(u1) (I2) = 0.
Having done similar procedures for the coefficients |W,| and |Q,| when u, € oi{(B), we
get the following conditions:
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uy" () = wy"(0),  (wy")'(ln) = (w37)'(0),
=0, (u)7)/(l) =0.

(") (0
Since for any numbers a > 0 and k£ > 0, the inequality
a 1,1
FSalEt )

holds, requiring piecewise continuity of (ud)® (x), (ud)® (x), (uf)® (x), (u])®(z) on [0, ]
and [0, ls] and using the closure equation

Eg i (o +8) = zlizg ( / () + /O l2<u2>2<x>dx)

for these functions, we make conclusion that the series
S |al? 2, > |b%3)|2,zzozo \w7(13)|2,22010 g2 converge, and hence the convergence
of the series (23) takes place.

So we proved

Theorem 3. Let the derivatives of functions ud(x),ul(x),u](z),u](z) up to the second

order be continuous, the third order deriwvatives of these functions be piecewise continuous
and condition (24) hold. Then there exists a unique solution of problem (1) — (3), (7) on
two-edged graph G. Moreover this solution can be represented as (15).

3. Algorithm of Numerical Method
An approximate solution of problem (1)—(3), (7) can be found by the Galerkin method.

The general scheme for finding an approximate solution to (1)—(3), (7) is shown in Fig. 3,
Fig. 4.
4. Computational Experiment

Consider the initial-final problem for the Boussinesq — Love equation on a two-edged
graph G (Fig. 2). The existence of analytical solution to this problem was already proved
earlier in section 2. Now obtain solution and the solution as a result of the algorithm.

Example 3. Consider equation (1) when
A= 4N =4 N =1,a=20=3

Let
ll :7'(',12:7'(',

and the relative spectrum have the form:

0(B) = 0y (B)U0i'(B), 01 (B) = {0, 13’ 17 }-

24 Journal of Computational and Engineering Mathematics




COMPUTATIONAL MATHEMATICS

Start

A

Input of parameters of equation:
NN Ma, 3, 04(B);

Number of terms of Galerkin sum N

v

Solving Sturm - Liouville problem

Output of solution

Y

Finding 7}

A

Compilation of an approximate solution:
k

D Xu(@)Tu(t)

n=0

End

Fig. 3. Algorithm of numerical method for solving inital-final problem for the Boussinesq — Love
equation on a geometric graph

Start

l

Start ’

problem

Formulation of the Sturm - Liouville

I

Finding a general solution

l

Substituting conditions

&
N+ M #0

+ Ak :0,/\’+/\kyYe—s>

"Exclude from consideration"

No

I

Solution of the second-
order differential equation

Finding the constants

l

l

Determination of initial and final
conditions

Finding the norm, normalization of
eigenfunction

l

i

Find of coefficients

\
v

End

End

a)

Fig. 4. a) Algorithm of solving the Sturm — Liouville problem, b) Algorithm of finding T}

b)
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Projectors a given by (18). Let the inital-final functions (), ud(z), uf(z), u](x) be the
same as in example 2. Note that for these functions all the conditions of theorem 3 are
satisfied.

Using the developed algorithm, an approximate solution of the problem was found

when the number of Galerkin summands is equal to N = 20.

U1(x, t) — (_0'611862.3229T€72.3229t o 4'4015670.3229T€0.3229t) 0.3989

+ (4.3341"1%% 4 0.7436¢ > 1) 0.5642 cos(0.52)
+ (—0.3039¢>0%°7 350558t (.3039e 120971909 (0. 5642 cos(1.52)
+ (—7.47425in(2.9440t) — 6.7703 cos(2.9439t)e ") 0.5642 cos(2.5z),
up(, ) = (_0'611862.3229T€—2.3229t _ 4‘40156—0.3229%0.3229::) 0.3989
— (4.3341"41% 4 0.7436¢>**") 0.5642 sin(0.52)
+ (—0.3039¢™> 70357735635 4 (.3039e 12099719095 (0. 5642 sin(1.52)
— (—7.47425in(2.9440t) — 6.7703 cos(2.9439¢)e ") 0.5642 sin(2.5z).
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YN CJIEHHOE NCCJIEJOBAHUE HAYAJIbHO-KOHEYHON
SAJAYN /14 YPABHEHUNA BYCCUMHECKA — JISIBA
HA TEOMETPUYECKOM I'PA®E

A. /I. Bopoduna, A. A. 3amviwrsesa

CraTbst IOCBSIIEHA YUCJIEHHOMY HCCJIeOBAHUIO HAYAIbHO-KOHEYHOM 33 /1a91 JIJIsl yPaB-
menns Byccunecka — JIsBa, onmchbIBaioero mpojio/ibHbIe KOJIeOAHMS B TOHKOM YIIPYTOM
crepxkHe. o pernenneM 3a1a4u MOHUMAETCsI OJHO3HATHOE OlpejiesieHne (DyHKIIH, KOTO-
pasi 3aJ1aeT MPOJI0JIbHOE CMEITEHNe B KOMIIOHEHTaX KOHCTPYKIMU u3 crepxkueit. s ee na-
XOKJIeHUsI UCII0JIb30BaJjics MeTo] Pypre. B mepsom naparpade mpejcrapieHo (hopMaibHOE
aHaJMTUYIECKOE PellieHne 3a1a49u. Bo BTopoM pa3zjiesie JJoOKa3aHa TeopeMa O CYIIeCTBOBAHIH
PEIlleHusT U ero eJMHCTBEHHOCTH. B TpeTheM pasjesie OMuChbIBAeTCs AJITOPUTM HAXOXK TEHUS
pellleHns HauaIbHO-KOHEYHOIT 3a/1a9u JIJIsl ypaBHeHusi Byccunecka — JIsiBa. B uerBepTom ma-
parpade MpOBOJUTCS BBIYUCUTEBHBIA IKCIIEPUMEHT JIJIs PaHee PaCCMOTPEHHOTO rpada.
Karoueswie crosa: ypasnenue Byccunecka — Jlasa; navaivro-koneunan 3a004a; YpasHeHus
coboaescrozo muna; memod Dypoe.
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