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This article deals with different numerical methods of solving the Dirichlet–Cauchy

problem for equation modeling the quasi-steady process in conducting nondispersive

medium with relaxation. Known proofs of existence and uniqueness of solution to this

problem are not constructive. Therefore the necessity of selection the appropriate numerical

method arises. Such method should allow us to find a solution of the considered problem

in the reasonable time. The comparative analysis of the Galerkin method and the method

of straight lines with ε-embedding method and complex Rosenbrock method is performed

in the article. The results of numerical experiments for one-dimensional case are shown.
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Introduction

During a research of quasi-steady processes in conducting nondispersive media [1],
the Dirichlet–Cauchy problem arises

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, τ), (1)

u(x, 0) = u0(x), x ∈ Ω, (2)

for the equation modeling the quasi-steady process in conducting nondispersive medium
with relaxation

(∆u− Φ(u))t = Φ(u). (3)

Here Ω ⊂ R
n is a bounded region with boundary of class C∞ representing the ideal

conductivity region, τ ∈ R+, unknown function u represents the potential of the electric
field. Function Φ(u) ≡ |u|p−2u, p > 2 is monotonely increasing and smooth. Problem
(1) – (3) was considered earlier in the [2], global solvability in strong generalized meaning
was established under some conditions. We consider the equation (3) as a representative
of the class of quasi-linear equations of Sobolev type. It enables us to prove a solvability
of problem (1) – (3) in a weak generalized meaning by methods developed for this class of
equations [3].

Applied nature of the problem causes the necessity of numerical modeling of the process
described by the (1) – (3). The Galerkin method and the method of straight lines with
ε-embedding method and complex Rosenbrock method [4] are used to solve the (1) – (3)
problem numerically.
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The article consists of 3 parts. The Galerkin method of solving the (1) – (3) problem
is considered in the first part. An illustrative example and the results of computational
experiment are present. The numerical modeling of the quasi-steady process in conducting
nondispersive medium with relaxation by the method of straight lines with ε-embedding
method and complex Rosenbrock method is considered in the second part. The results
of computational experiment for this method on the example described in first part are
listed. Third part is a comparative analysis of described methods.

1. Galerkin method

We will find the solution of problem (1) – (3) in the form of Galerkin sum

um(x, t) =

m
∑

k=1

uk(t)Φk(x), m ∈ N,

where Φk(x) is a set of eigenfunctions of homogeneous Dirichlet problem for Laplace
operator in the Ω, orthonormal with scalar product in space L2(Ω). Taking the scalar
product of (3) with Φk(x), k = 1, 2, ...m, we get differential system for unknown functions
uk(t), k = 1, 2, ...m.

This method was implemented using the Maple mathematical system. Such selection
was caused by the availability of built-in analitycal calculations mechanism and tools for
ordinary differential equations solving in this system.

The developed program allows us to find the approximate solution of the Dirichlet–
Cauchy problem for the equation modeling the quasi-steady process in conducting medium
with relaxation in the segment for given initial conditions and number of Galerkin
approximations and shows the graph of approximate solution on the screen.

Example 1. Find the solution of problem (1) – (3) with following conditions: Ω = (0, π),
u0 = 0, 5 sinx, Φ(u) = u3(x, t).

Problem (1) – (3) takes the form:















(

u(x, t) +
∂2

∂x2
u3(x, t)

)

′

t

=
∂2

∂x2
u3(x, t),

u(x, 0) = 0.5 sin x,
u(0, t) = u(π, t) = 0.

(4)

We represent the desired function in the form of Galerkin sum:

u(x, t) =

√

2

π

m
∑

k=1

uk(t) sin(kx).

Substitute this representation to the equation. Taking the scalar product with
eigenfunctions of Laplace operator, we get differential system for the coefficients uk(t),
k = 1, 2, ..., m. Solving this system numerically, we get the approximate solution to the
problem (4). Graphs of the approximate solution at various time points are shown in Fig. 1.
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Fig. 1. Graphs of u(x, t) at various time points

2. Method of straight lines with ε-embedding method and complex

Rosenbrock method

Perform the decomposition of problem (1) – (3) and consider the system

wt = |u|p−2u,

0 = w −∆u+ |u|p−2u,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, τ),
u(x, 0) = u0(x), x ∈ Ω,

w(x, t) = 0, (x, t) ∈ ∂Ω× (0, τ),
w(x, 0) = ∆u0(x)− |u0|

p−2u0, x ∈ Ω.

(5)

Apply the method of straight lines to the problem (5). Denote

U =











u1

u2

...
un











, W =











w1

w2

...
wn











,

|U |p−2 =











|u1|
p−2 0 · · · · · · 0

0 |u2|
p−2 0 · · · 0

...
. . .

...

0 0 · · · 0 |un|
p−2











,

M is a grid analog of the Laplas operator. Proceed with differential-algebraic system:






d

dt
W = |U |p−2

U,

0 = W −MU + |U |p−2
U.
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We solve this system by one-stage Rosenbrock method with coefficient α = 1

2
+ 1

2
i. This

method and its applying to differential-algebraic systems by the ε-embedding method was
considered in detail in [5], selection of the complex coefficient was also explained there.
According to the Rosenbrock method at every time step we have

{

Ŵ = W + Re k̄,

Û = U + Re l̄,

and vectors k̄, l̄ are found from the linear algebraic system

{

k̄ = ατ(p− 1) |U |p−2 + τ |U |p−2
U,

−αk̄ + α(M − (p− 1) |U |p−2)l̄ = W −MU + |U |p−2
U,

τ is a step of the time grid.
This method was implemented using the Matlab programming language. Such selection

is caused by the availability of effective and easy built-in tools for operating values in vector
and matrix forms in this language, including tools for solving large linear algebraic systems.

Fig. 2 shows the solution of problem (4) found by the described method. Operator M
in one-dimensional case has the form of

M =
1

h2



















−2 1 0 · · · · · · 0
1 −2 1 0 · · · 0

0 1 −2 1
...

...
. . . 0

0 · · · 0 1 −2 1
0 · · · · · · 0 1 −2



















,

where h is a step of the space grid.

Fig. 2. Graphs of u(x, t) at various time points
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3. Comparative analysis of numerical methods efficiency

Perform a comparative analysis of numerical methods efficiency. At first, compare
the numerical results. Values found by the Galerkin method (u1(x)) and by the method
of straight lines with ε-embedding method and complex Rosenbrock method (u2(x)) are
listed with step π

10
at the time moments t = 2 and t = 5 in tables 1 and 2.

Table 1

Values of the desired function at the time t = 2
x u1(x) u2(x) |u1(x)− u2(x)|

0.0000 0.0000 0.0000 0.0000
0.3142 0.1322 0.1273 0.0049
0.6283 0.2514 0.2401 0.0113
0.9425 0.3461 0.3271 0.0190
1.2566 0.4068 0.3813 0.0255
1.5708 0.4278 0.3997 0.0281
1.8850 0.4068 0.3813 0.0255
2.1991 0.3461 0.3271 0.0190
2.5133 0.2514 0.2401 0.0113
2.8274 0.1322 0.1273 0.0049
3.1416 0.0000 0.0000 0.0000

Table 2

Values of the desired function at the time t = 5
x u1(x) u2(x) |u1(x)− u2(x)|

0.0000 0.0000 0.0000 0.0000
0.3142 0.1105 0.1048 0.0057
0.6283 0.2102 0.1956 0.0237
0.9425 0.2893 0.2630 0.0263
1.2566 0.3402 0.3034 0.0368
1.5708 0.3577 0.3168 0.0409
1.8850 0.3402 0.3034 0.0368
2.1991 0.2893 0.2630 0.0263
2.5133 0.2102 0.1956 0.0237
2.8274 0.1105 0.1048 0.0057
3.1416 0.0000 0.0000 0.0000

Note that the difference between results calculated by different methods is less than
0.05. So we may say that results are in good agreement.

Compare the amount of computing resources spent by both methods. For the numerical
experiment we use IBM PC-compatible computer equipped with Intel Core2 Duo 2.66 GHz
CPU, Matlab of version R2006a and Maple of version 15. Elapsed time consumed by the
first method is 2.2 seconds, and 0.6 seconds by the second method. The amount of used
memory is about 45 megabytes for the first method and about 1 megabyte for the second
method.
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So the selection of used tools may be considered successful, solution for the problem
was calculated with a little resources spent.
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