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NUMERICAL SIMULATION OF START CONTROL
AND FINAL OBSERVATION IN FLUID FILTRATION MODEL
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The article is devoted to the model to regulate the velocity potential of the free
surface of the filtering fluid. This model is based on the problem on start control and
final observation by weak generalized solutions of a fluid filtration model, which belongs
to the class of mathematical models based on semi-linear Sobolev-type equations with p-
coercive and s-monotone operators. We find the sufficient conditions under which there
exists a solution to the problem on start control and final observation of the model under
study. An algorithm for the numerical solution method is constructed and a computational
experiment is presented.
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Introduction

Currently, many modern studies are developed at the intersection of different fields
of science. For example, in engineering, economic and physical objects, various processes
are investigated using mathematical modelling. In order to characterize modelling briefly,
we note replacing a real system (process, phenomenon) with a model that is in
some correspondence with the real system and is able to reproduce the properties or
characteristics of the real system. Therefore, mathematical modelling plays important
role in science, in the research of engineering, economic objects and systems. Also, note
that conducting production experiments requires a lot of financial, time and labor costs.
Sometimes, conducting full-scale experiments is impossible due to a number of reasons, for
example, it is not possible to control individual parameters (temperature, pressure, course
of processes, or other factors). Therefore, creation and study of mathematical models
describing these processes are of great applied importance. In this case, as a rule, finding
an analytical solution is impossible, as a result of which it becomes necessary to create
numerical methods for finding approximate solutions to initial-boundary value problems
for such models.

In most cases, for various physical processes, it is possible not only to implement
numerical modelling, but also to control the components of the system in which this
process takes place. It is assumed that, at any moment of time, any dynamical system
(that is, a system that develops in a certain way and evolves in time) can be in one of
a certain (finite or infinite) number of possible states. In this case, control is understood
as an impact that can change the current state, as well as the subsequent development of
the system. In this regard, there exists a question about finding the best (optimal) control
to the process. The development of computational methods for solving optimal control
problems is associated with the optimality conditions and traditionally uses standard
constructions, approximations and variation procedures obtained within the framework
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of the qualitative theory. As classical works in the theory of optimal control, we note
works written by J.-L. Lions and A.V. Fursikov. For example, the work [1]| systematically
studies optimal control problems for partial differential equations. In other papers (see, for
example, [2]), the existence of boundary control was shown for parabolic and hyperbolic
systems. Boundary control is characterized by finding boundary control functions that
transfer the system from a given initial state to a given final state in a fixed time interval 7.
Boundary control is most often used for the problems on rod vibration and heat (mass)
transfer. The methods described by J.-L. Lions were applied to the study of various
physical processes [3,4]. The work of A.V. Fursikov [5] shows the existence of a solution
to the control problem for models described by the Navier—Stokes and Euler equations.
Note that these systems belong to non-classical nonlinear models of mathematical physics.
Another type of optimal control is the problem on start control and final observation. This
problem is widely studied for various processes. For example, the work [6] obtains sufficient
conditions for the solvability of the problem on start control and final observation for one
abstract quasilinear Sobolev-type equation in a weak generalized sense, and also proves
the solvability of the problem on start control and final observation for the Barenblatt —
Gilman model. The work [7| presents analytical and numerical studies of the problems
on start control and final observation by solutions to one class of Sobolev-type equations
with the Showalter — Sidorov condition. The paper [8] investigates start control and final
observation by solutions to the Dirichlet — Showalter — Sidorov problem for the degenerate
system of Fitz Hugh — Nagumo equations.

In the classical theory of groundwater movement, one of the basic equations is the
Boussinesq filtration equation
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where the function H(z,y) characterizes the underlying surface without breaks and
fractures, the function h(z,y) describes the groundwater surface, the parameter p
characterizes the pressure, k is the permeability coefficient, which depends on the
properties of the medium only, ¢ is the acceleration of gravity, m is the porosity of the
medium, g is the dynamic viscosity (see Fig. 1).
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Fig. 1. Groundwater movement

The work [9] shows that when studying a fluid filtration model based on this equation,
the vertical component of the velocity of the filtration fluid free surface movement is not

30 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

taken into account, and this fact can lead to errors in calculations in particular cases.
In 1972, the work [10] presented the derivation of the equation
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where the function hg is a head at the base of the layer, the parameter hg is a head
averaged over t and z, ¢, €, are modules for feeding the flow through its base and free
surface, respectively, i is the coefficient of free porosity. If we neglect the third derivatives
in this equation, then we get the Boussinesq equation. This generalized equation takes
into account all possible phenomena and characteristics of fluid filtration. The work [11]
obtains the following particular form of the generalized Boussinesq equation:

A=Az =al(z [ 2)+y, p>2 (1)

under the assumption that, from the physical point of view, the function u = wu(z,t) is
the potential of the filtering fluid velocity, the parameters a € R, A € R haracterize the
medium, and the parameter A can take negative values.

Many papers are devoted to the study of the solvability of initial-boundary value
problems for equation (1). For example, in [12], the existence and uniqueness of a solution
to the first boundary value problem for equation (1) is proved. In [13], a study of the phase
space is given. In the paper [14], the authors consider equation (1) with a nonlinear non-
subordinate non-monotonic source and prove the comparison principle for solutions to the
first initial-boundary value problem. The work [15] presents an algorithm for the numerical
solution of initial-boundary value problems for the generalized Boussinesq equation, which
describe the motion of a free surface of a fluid filtering in a layer of finite depth.

The purpose of this work is a numerical study of a mathematical model for regulating
the potential of velocity of the filtering fluid free surface. The model is based on the
problem on start control and final observation

J(z(T),u) = J|[2(T) - foIip(Q) +(1- 19)||U||I£p(ﬂ) —inf, J€(0,1) (2)

by weak generalized solutions to the mathematical model of fluid filtration, which is based
on Sobolev-type equation (1) with the Showalter — Sidorov initial condition

(A= A)(x(s,0) —u(s)) =0, s€Q (3)
and the Dirichlet boundary condition

x(s,t) =0, (s,t) € 002 x R,. (4)

In the considered problem on start control and final observation, J(z(T),u) is a target
functional; u € .4, U,q is a closed and convex set in the control space U, the function
xy = x(s) is the required state of the system, which must be achieved with a minimal
initial action after the time t = T.

The problem on start control and final observation simulates the situation, when the
moment of result observation is separated in time from the initial impact, i.e. control. In
the case of a nonlinear equation of state, the search for the start control is difficult. One of
approaches to solve this problem is the decomposition method [2,16]. This method allows
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to linearize the original equation and to transfer the entire phenomenon of nonlinearity to
the functional, which largely simplifies the numerical scheme for finding an approximate
solution to the problem on start control and final observation. Also, note that the optimal
control problem for a fluid filtration model was studied in [17] by the descent method. In
our case, the problem on start control and final observation simulates the process of initial
regulation of the potential of the filtering fluid free surface velocity in order to achieve the
required dynamics with the lowest control costs at a given moment of time.

Also, note that equation (2) belongs to the class of semi-linear Sobolev-type equations
with p-coercive and s-monotone operator. Moreover, the p-coercive operator is strongly
coercive, and the s-monotone operator is strongly monotone. The unique solvability of
problem (1), (3), (4) was obtained by G.A. Sviridyuk [13]. In [18], it was shown that the
phase space of the problem is a simple smooth Banach manifold.

In this work, in order to construct and implement a numerical study of the problem
on start control and final observation for a mathematical model of fluid filtration, we use
a projection method based on the Galerkin method [19]. The application of the method to
the study of problems on stability of hydrodynamic flows was realized by G.I. Petrov [20],
who proved the convergence of the Galerkin method for finding the eigenvalues of a wide
class of equations including equations for non-conservative systems such as, for example,
the equations of oscillations in a viscous fluid. For the first time, for semi-linear Sobolev
type equations, this method was considered by G.A. Sviridyuk and T.G. Sukacheva [21].
In the case of degenerate models, the projection method [17] is often used in order to
find approximate solutions. This method allows to take into account the phenomenon of
degeneracy of equations by choosing a basis from the eigenfunctions of the main operator.

1. Numerical Solution of Problem on Start Control and Final
Observation

The purpose of this paper is to study a mathematical model to control the distribution
of the potentials of a filtration fluid velocity. The model is based on the problem on start
control and final observation (2) by weak generalized solutions to the mathematical model
of the distribution of a filtration fluid velocity. The latter model is based on Sobolev-type
equation (1) with the Showalter — Sidorov initial condition (3) and the Dirichlet boundary
condition (4). To this end, consider the existence of weak generalized solutions to the
mathematical model of the distribution of the filtering fluid velocity. For this purpose,
consider the function spaces H = W5 '(Q), H = Ly(Q), B = L,(Q) defined in the

domain €2 C R™. Note that, for p > nQ—fQ, there exists a dense and continuous embedding

° 1 1

Wi(Q) — L,(Q), therefore L,(Q) — W5 '(Q), where = + = = 1. In H define the scalar
p g

product by the formula

(x,y) = /xgjds Va,y € H, (5)
Q

where § = (A)~'y is a generalized solution to the homogeneous Dirichlet problem for the
Laplace operator in the domain €. Let B* = (L,(£2))* and $H* = (L(€2))*, where (L,(2))*
is the dual with respect to duality space (5). Hence, $* and 98* are dense and continuous
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embeddings
B—>H>H—H — B

The fluid filtration model belongs to the class of models based on semi-linear Sobolev-
type equations with p-coercive and s-monotone operator. In general terms, this model was
studied in [17]. In order to study the solvability of problem (3), (4) for equation (1), it is
necessary to reduce the problem to the Showalter — Sidorov problem

L(x(s,0) — u(s)) =0 (6)
for the abstract semi-linear Sobolev type equation
Li+ M(z) =y, kerL # {0}. (7)
To this end, we define the operators L and M:

(Lz,y) = /()\:1:@ +zy)ds, x,y € HN;
Q

(M(2), y) = / 2l eyds, @,y € B,
0

Further, in order to prove the existence of a solution, we need to determine the properties
of the operators L and M. To this end, we need to choose a special basis from the

ol
eigenfunctions of the operator (—A): —Agr = ek, @ € Wo(2). Also, note that
Oor=(—A)"pr = % The work [17] proves the following lemma on the properties of
k

the operators L and M.
Lemma 1. [17] (i) For all A > —\y, the operator L € £ (M, N*) is self-adjoint, Fredholm
and non-negative defined.
(ii) For any a € R, the operator M € C'(B,B*) is s-monotonous and p-coercive.

IfA> =M\,

[ {0} A A
ker L = { span{p1}, if A = —\;.

Therefore
com L={zeMN: <z,0>=0 Vpecker L\{0}}.

Construct the space
X={x|x € L(0,T;coim L) N L,(0,7;B)}

and the set
B, if A > =)y
M=4 {zeB: [lz[P~2xpr ds = [ger ds}, if A==\
Q Q

Using the projection method, we represent approximate solutions to problem (1), (3),
(4) in the form of Galerkin sums

m

Tm(s,t) = Z a;(t)pi(s), m > dim ker L, (8)

i=1
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where the coefficients a; = a;(t), i = 1,...,m, are determined by the system of equations
/()\xt@z + T + a\x|p_2xg0i> ds = /y@sta L= 17 cee, M, (9)
Q

and the conditions

/{)\(xm(s, 0) —u(s))@i(s) + (zm(s,0) — u(s))@z(s)] ds=0, i=1,.,m. (10)

Equations (9) represent a degenerate system of differential equations. Before proceeding to
the theorem on the existence of a solution, we note that by a weak generalized solution to
Showalter — Sidorov problem (1), (3), (4) we mean the vector-function x € X for T € R,
if the function satisfies

T T

/<L%+M($)7C>w(t) dt:/<y, C>(t)dt, (€B, e Ly(0,T),

0 0
< L(z(0) —u),{ >=0 for almost all t € (0, 7).

In the work [17], the following theorem on the existence of a unique weak generalized
solution to problem (1), (3), (4) was proved.

Theorem 1. [17] Let p > 2% and A > —\;. Then, for any v € B and
y € Ly 0,7;%*), there exists a unique weak generalized solution = € X to

problem (1), (3), (4).

This theorem is proved using the phase space method and the monotonicity method,
which requires to construct a priori estimates. That is, using the Banach—Alaoglu theorem
and passing to the weak limit, it is proved that the desired solution is found. Also, note that
Theorem 1 shows the convergence of Galerkin approximations (8) to a weak generalized
solution to problem (1), (3), (4).

Next, we turn to the study of a mathematical model to control the distribution of the
potentials of the filtering fluid velocity. In order to show the existence of a solution to
mathematical model (1) — (4), we construct the control space & = B and choose U,; C U
to be nonempty, closed, convex set. Also, note that by a solution to problem (1) — (4) we
mean a pair of functions (Z(7T'), @) that satisfies the following condition:

J(@(T),u) = inf J(x(T),u),
@)1 = pf T
where the pairs (Z, 1) € X x .4 satisfy problem (1), (3), (4) in the weak generalized case.
Remark 1. The set of admissible pair 2 of problem (1) — (4) is a pair (z, u) satisfying
problem (1), (3), (4), for which
J(z,u) < +o0.

If U,q = @, then, for any u € U,y C 4, the set of admissible pairs (z,u) is not empty.

After introducing all the necessary definitions and spaces, we consider the theorem on
the existence of a solution to control the distribution of the potentials of the filtering fluid
velocity. To this end, consider the following theorem.
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Theorem 2. Letp > n2—f2 and X\ > —\i. Then, for any y € L,(0,T;8*), there exists a
solution (Z(T'), @) to problem (1) — (4).
Proof.

The proof is based on the theory of s-monotone and p-coercive operators and can be
represented by the following steps.
1. Since the set of admissible pairs 2 is not empty, there exists a sequence

{2 (T), unm} € B x i such that

lim J(zpn(T),uy) = inf J(x(T),u),

m—o0 ((T),u)
then it follows from (1) that
||tm]|s < const, Vm € N. (11)

From (11) (consider a subsequence if necessary), we choose a weakly converging sequence
Uy, — U in B. According to the Mazur theorem, the point @ € U,4. Let x,, = x(u,,) be a
weakly generalized solution to problem

d
L%xm + M(zy,) = v, (12)
L(2,(0) — u,,) = 0. (13)

Multiply equation (12) by z,,(t) and integrate over (0,t), we have

t t
/ o / (A = D)o + |l 2a7,) ds = / " / YEmds,
0 Q 0 Q

e dT+ | U %,

o (®F + C [ llan(r)ldr < Ca [ ly(r)

where | z |? is norm in coim L, which is induced from the subspace H. By virtue of the
conditions of Theorem 1, we can find a subsequence such that

Ty —  k-weak in Lo, (0,7 coim L);
Ty — T weak in L,(0,T;B);
M(x,,) = pweak in L, (0,7;5%).
Since the operator M is p-coercive, we have

T T
(M), ) d7 < [ M () [y dr < CV [ s s
0 0

and hence the operators M (x,,) are bounded in L,(0,7;8*). Since the functional is
coercive, we obtain the boundedness of the sequences

| Zm ||, < const for all m € N.
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2. Passing to the limit in the equation and using compactness and monotonicity
methods, we obtain that the weak limit sequences {z,,}, {u,} satisfy the equation of
state

L sy LGEO0)— @) =0
dt

for all m € N. From the estimates above (possibly, passing to a sequence), we select
weakly converging sequences in the corresponding spaces ,, — &, wy, — @, L%=m — L4
According to the Mazur theorem, the point u € ,5. The proof is similar to the proof
given in [16].

3. The proof of the equality M(x,,) = u is based on the method of monotonicity in
consequence of s-monotonicity of the operators M |2].

4. Then # = Z(u) and liminfJ(w,,) > J(@). Hence, @ is a start control to
problem (1)—(4). The proof is similar to the proof given in [16].

O

Theorem 1 and Theorem 2 establish the existence of a solution, but do not describe a
method to find the solution. The equation of state is understood as a means to set explicitly
the dependence of the system state function on control. We apply the decomposition
method, which allows to proceed to the consideration of an equivalent problem, in which
the original equation of state is reduced to the system of linear equations by introducing
the additional vector-function x(s,t) = wv(s,t) [1]. Next, we apply the penalty method
complementing the decomposition method by introducing an additional term and the
penalty parameter r. = % — 400 for € — 04, which allows tend x to v, into the functional.
Then problem (1) — (4) is equivalent to the following problem:

Li+ M) =y, z(u,v)=uv, (8)

L(z(0) —u) =0, 9)

Jo(@(T),0(T),u) = 0 - 0|x(T) — ¢y +
+(1=0) - Il[o(T) — sl + [[ullz+

T (10)
+(1—=9) [re|lz — |3, dt — inf, 6,9 € (0,1),
0
where the penalty parameter r. — 400 if € — +0.

Also, note that by a solution to the obtained problem we mean a triple
(2(T),0(T),0) € B x B X Uy if

Js (2(T),0(T),u) = inf  J5(x(T),v(T),u),
(). 6(T)0) = it Tj(a(T),o(T). )

where the triple (z,v,u) € X X X X $l,4 satisfies (8), (9) in the weak generalized case.

Theorem 3. Let p > n2—J:‘2 and A > —\;. Then, for any y € L,(0,T;B%), there exists a
solution (z¢,ve,u:) to problem (8) — (10), moreover u, — u,x.(T) — &(T) for e — +0.
Proof.

Due to the reduction of problem (1), (3), (4) to problem (6), (7), this theorem is a

consequence of [17, Th. 3.
]
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2. Algorithm of the Numerical Method to Find the Start Control
and Final Observation

Based on the theoretical results obtained in the previous paragraphs, we develop
an algorithm to find an approximate solution to the problem on start control and final
observation for the mathematical model of fluid filtration on the basis of the modified
decomposition method and the Ritz method. Let ¢ be a spectrum of the operator (—A)
with the homogeneous Dirichlet condition, {\;} be a set of the eigenvalues numbered in
non-decreasing order and {¢y} be a family of the corresponding eigenfunctions, which are
orthonormalized with respect to the scalar product < -,- > in W5 (). Next, we search
for an approximate solution to control problem (1) — (4) using the decomposition method
and the penalty method described in [16]. Applying the penalty method, we proceed
to consideration of control problem (8) — (10), where the proximity of the approximate
solutions Z and © is achieved by introducing a new functional of the form (10), where the
penalty parameter is r. — +00 at € — 0+. Using the projection method, an approximate
solution ¥, 0, @ to control problem (8) — (10) is searched in the form

f(s,t):Zak(t)wk(s), a(s)zzuﬁ’f“), @(s,t)zzvk(t)‘p’““), (11)

A
i=2 k

where m € N is such that m > [, and [ = dimker L, in order to take into account the
effects of the degenerate equation. The algorithm for the numerical study of the problem
on start control and final observation is presented in the block diagram (Fig. 2). On the
basis of the algorithm, we implement a program for the numerical study of the problem
on start control and final observation for the fluid filtration model. The program includes
the following steps.

Step 1. Enter parameters of the equation, parameters of the domain, number of terms
in the approximate solution, eigenfunctions and eigenvalues of the homogeneous Dirichlet
problem for the operator (—A).

Step 2. Form an approximate solution and control in the form of Galerkin sums (11)
using the program cycle "for()" from 1 to m.

Step 3. Substitute the approximate solution into the equation using the procedure subs.
Step 4. Multiply the resulting solution by the eigenfunctions ¢y(s), integrate from 0 to
[, and, as a result, generate a system of algebraic-differential equations. Next, check the
equations for the degeneracy or non-degeneracy, that is, whether X is an eigenvalue of the
operator (—A) based on the procedure "if()".

Step 5. Find a solution to the system of algebraic-differential equations with initial
conditions using the procedure "dsolve()" with respect to the unknowns a/(t).

Step 6. Generate the quality functional using the procedure "subs()". Approximate the
unknown control components using polynomials.

Step 7. Using the package "Optimization" and the procedure "NPLSolve()", find a
minimum of the functional and the corresponding system state.

Step 8. Display the resulting solution and plot a graph.

Step 9. Construct an approximate solution to the Showalter — Sidorov problem with the
found initial distribution u(s) and compare the results.
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The result of the program "Numerical research of the mathematical model of liquid
filtration" can be illustrated by the following example.

Example 1. The problem is to find an approximate solution to the problem of start
control and final observation of the problem (1) — (4) for A = —1; a =5; p =4; y = 0;

7 21 99 1
Q=0,7);T=—; 0=— =—3¢c=—; N=3, 2= i in 2s).
(0,7); 10 55 p 100° €~ 100’ P xy — (sin s +sin 2s)
Consider the equivalent to the problem of starting control and final observation:
21 99 [T V2 4

2
ds+

u(s)

(2) 8 e -2,
100 dt/( z(s,t) —v(s t)) (( A)~Ha(s,t) —v(s,t)))ds—>inf

for Showalter — SldOI‘OV — Dirichlet problem (3), (4) for equation (1). The eigenvalues and
functions are as follows:

2
or(s) = \/;sinks, e =K k=1,2,...,

Pk
Ak
the problem is represented z(s,t), 0(s,t), u(s) in the form of sums (11).

The results work of the program "Numerical research of the mathematical model of
liquid filtration" calculations are control coefficients such that the value of the functional
J = 0.07731823, and the approximate solution of the problem

moreover (—A) 'y, = ==, Based on the projection method, an approximate solution to

2
0(s,t) = \/isin s (0.20393817 t? — 6.32325001 t — 2.28086711) +
0
2
+\/j sin 2s (1.0054557076732367152 — 1.0061574125401362¢ + 0.3493954249337957) +
T

2
+\/isin 3s (5.38036216 2 — 1.44814874 t — 1.91471859),
T

(s, t)=

9
(\/§ sin <2.583317223 t? — 2.8765272 t + 9.58210015 % + 1.55939443 t3—
4N/ 73
—2.61106796 t° — 8.69387704 t* — 2.95449818)+

9

4 7T3 2t 2t 2t 2t
—9.22084854 €3 t2 + 2.76625456 €3 t + 2.04907742 e3 3 — 3.41513049 e ti+

+4.55409505 ¢35 1° + 4.14938184) — (ef 2sin 33( — 7.65887437 m—

+ (e%\/ism 23< —2.0772381 7 — 4.149381 €5 — 5.0441608 3 t6—

1
—t —t 4y —t

—2.97559853 e i 4 7.43899632 ¢ t — 9.20874541 12 + 7.74895450 i 53—
—4.84309669 e t* — 1.00757889 e i 16 4+ 2.42159179 e @ 15 + 2.97559853),
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2
i(s) = \ﬁ (0.34939542 sin s — 0.8401354 sin 25 + 0.01320449 sin 3s).
T

The graphs of the approximate solution of the problem (1) — (4) are shown in Fig. 3 and
Fig. 4. Let us compare the obtained functions Z(s,T), 0(s,T) with the required state
x4(s). The graph of these functions at time 7' = 0.7 is shown in the Fig. 5. The difference
between the required functions Z(s,t) and (s, t) is small:

T T
® :(/ (/ [#(s1) = 6(8,t>l4ds> dt) = 0.02978542743.
0 0

=

a) Graph of Z(s,t) b) Graph of (s, t)
Fig. 3. The approximate solution to the problem (1) — (4)
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YUNCJIEHHOE MOAEJINMPOBAHUE CTAPTOBOI'O
YIIPABJIEHUA 1 ®PVTHAJIBHOI'O HABJIFOJEHW 1
B MOJIEJINN ®NJIBTPAIIVIN 2KNJIKOCTU

K. B. Ilepeso3uwuxosea, H. A. Manaxosa

CraTbs MOCBSIIEHA YUCJIEHHOMY HCCJIEOBAHUIO MOJEIU PEryJIMpOBAaHUS MOTEHIHAJIA
CKOPOCTHU CBODOOIHON TMOBEPXHOCTHU (DUIBTPYIONMIEiicsa *KUAKOCTH. JlaHHas MOme b OCHOBA-
Ha Ha 3aJa9e CTaApTOBOrO YIPaBIeHUs W (PUHAJIHLHOTO HAOIIOACHUs CIaOBIMU ODODIIEHHBI-
MU PeNIeHUusIMU MOJie/in (PUIBTPAIUN YKUJIKOCTH, KOTOpPas OTHOCUTCS K KJIACCY MaTeMa-
THUYECKUX MOJIeJieil, OCHOBAHHBIX Ha, IIOJIYJIUMHEHHBIX ypPABHEHUSIX CODOJIEBCKOTO THIIA C -
KOIPIUTUBHBIM U S-MOHOTOHHBIM orteparopamu. HaiiieHb! JocTaTouHbIe yCJIOBUSI CYIIIECTBO-
BaHUS PEIEHNs] 33JIa91 CTAPTOBOIO YIIPABJIEHUs U (DUHAJIBHOTO HAOJIIOJECHUST UCCIIE Ly eMOi
Moytestn. [locTpoeH aaropuTM YHUCIEHHOTO METO/a PEIeHrs] U TIPUBEJIEH BhIUUCIUTETbHBIH
SKCIIEPUMEHT.

Karouesvie cr06a: ypasHenus coboiescko20 muna; modeas Guaibmpayuy sHcudkocmu,;
3a0aMa CMapPmMoB020 YnPasAeHUus U GUHAALHO20 HAOMO0EHUA; MAMEMAMUYECKOE MOJEAU-

posarue; memod JexkoMno3uULUL.
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