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NUMERICAL ANALYSIS OF THE MIXED BOUNDARY
VALUE PROBLEM FOR THE SOPHIE GERMAIN EQUATION

A. L. Ushakov, South Ural State University, Chelyabinsk, Russian Federation,
ushakoval@susu.ru.

The Sophie Germain equation in variational form is considered on a plane bounded
domain under mixed boundary conditions. The original problem is continued to a
rectangular domain along the boundary with the Dirichlet boundary conditions. The
continued problem is discretized using the finite element method. We present a method of
fictitious components, which, for the absolute error, has a convergence rate as a geometric
progression. For the numerical solution of the continued problem, we use the method
of iterative extensions, which is obtained as a generalization of the method of fictitious
components. For the relative error, the method of iterative extensions has the same rate
of convergence as a geometric progression in a stronger norm than the energy norm of the
problem. The choice of iterative parameters is based on the minimum residual method. An
algorithmic implementation of the iterative extension method with automatic selection of
iterative parameters is presented. The algorithm also provides a criterion for automatically
stopping the iterative process when a given estimate of the relative error is reached.
The software implementation of this algorithm does not require additional complications
associated with the complexity of the geometry of the domain, the order of the differential
equation and the presence of Dirichlet boundary conditions. We consider an example
of calculations by the method of iterative extensions within the numerical solution of a
particular problem. In order to perform computations, we use the condition of evaluating
the relative error in a norm, which is stronger than the norm generated by the problem
operator. But the relative errors for the obtained numerical solution to the example of the
original problem are considered in other ways. For example, a point-by-point calculation
of the relative error is carried out for the grid points. It turns out that several iterations
are enough to have a relative error of only a few percent, even with different methods of
calculating the error. In practice, computational experiments confirm the optimality of the
method indicated in theory.

Keywords: Sophie Germain equation; method of fictitious components; method

of iterative extensions.

Introduction

Let us consider the Sophie Germain equation in variational form with Dirichlet mixed
boundary conditions, symmetry and hinge conditions, Neumann conditions in a bounded
domain on the plane. We present this original problem in the first domain, and consider
its fictitious continuation in the second domain in order to obtain a problem extended
across the boundary with Dirichlet conditions in a rectangular domain. In the presented
approach, we try to eliminate the additional complication of the main problems arising in
the numerical solution of elliptic boundary value problems in bounded domains associated
with the geometry of the domain, the order of the differential equation and the presence of
Dirichlet boundary conditions [1-5]. We consider numerical methods that are both resistant
to computational errors when computing on a computer and asymptotically optimal in
terms of computational complexity in arithmetic operations, as well as quite universal,
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and have a simple software implementation of the computational algorithm. To this end,
consider a generalization of the method of fictitious components in the form of the method
of iterative extensions, which does not significantly complicate the process of numerical
solution of the original problem in comparison with the known approaches [4-7|. Note
that we reduce the solution of the original problem under consideration to the solution
of problems, in the numerical solution of which we can apply, for example, well-known
marching methods that are optimal in terms of computational complexity [8-11].

1. Boundary Value Problem in Variational Form

Let us complete the domain for solving the original problem to a rectangular domain
in the first domain on the plane with the help of the second domain.

QlLJQH:ﬁ, QlﬂQH:®, QWCR2, LUE{l, II}

The boundaries of these domains consist of the closure of unions of open non-
intersecting parts.

(91_[:5, SZF(]UFlUFQUFg, FZQFJZQ), Z?éj, i,j:O,1,2,3,
aQw = Sw; Sw :Fw,OUFw,IUFw,2UFw,37 Fw,imrw,j :®7 17&]7 1,7=20,1,2,3.

We assume that a non-empty intersection of the boundary of the first domain and
the boundary of the second domain is the closure of the intersection of the corresponding
parts of the boundaries of these domains.

891 N 8911 - g, S - FI,O N FH,3 7& @

We consider the original mixed boundary value problem for the Sophie Germain
equation in the first domain. Additionally, in the second domain, we introduce a fictitious
mixed boundary value problem for the homogeneous screened Sophie Germain equation.

Uy € Hy: Ayt ) = F(0,) Vo, € H,. (1)

The spaces of solutions to such problems are the following Sobolev spaces.

ov,,
) 0.
an Fw,OUFw,Q
The right-hand sides of the problems are linear functionals.
Fw(ijw) = (ﬁuabw)y (ﬁuﬂjw) = / fwbwdgwy .fH =0.
Qo

The left-hand sides of the problems are bilinear forms.

Hw - Hw(QW) - {bw e W;(Qw) : /Ij‘rw,OUFw,l - O’

Aw(awa bw):/ (O-wAaqujw + (1 - O-w)(awxxbwye + Qijxyway + awyyéwyy) + awawijw)dgwa
Qu

o, € (0, 1), a; = 0, ary 2 0.

We assume that, in the considered spaces, bilinear forms give normalizations equivalent
to those of the Sobolev spaces used.

der, e >0t ¢ H?“}w“%,vgg(ﬂw) < Au(Vy,0,) < o ’|77w’|12xv22(gw) Vi, € H,.

These assumptions imply the existence, uniqueness of the solution to the original
problem and only zero solution to the fictitious problem.
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2. Continued Problem

Simultaneous consideration of the original and fictitious problems is possible. We refer
to this problem as a continuation problem.

@ eV: A, [1D) + Ay(a,0) = Fy (o) Vo e V. (2)

For this problem, the extended solution space is the Sobolev space.

=0,.
Toul's

The extended solution space contains the solution subspace of the continued problem,
the solution space of the original problem on the first domain, which is continued by zero
in order to complete the first domain to the rectangular domain.

0v

V=V = {T) e W) : ¥y 0, =0, o

‘71 = ‘Z(H) = {?U)l € ‘V/: 61‘1‘[\91 = 0} .

In the continued problem, we use the operator, which is, generally speaking, of a non-
orthogonal projection of the extended space onto the subspace of solutions to the continued
problem.

L:Ve Vi, Vi=iml, I =12

Let us introduce the subspaces of the extended solution space.

% = ‘u/g(H) = {173 - ‘U/ . 63‘1'[\911 = O} s

o o

T = Vh(IT) = {52 €V 1 Ay, o2) = 0 Vi, € Vi, A(ha, ) = 0 Viiy € Vg} ,
‘7:‘\71@‘\7117 XZI:‘\J/Q@‘U/B
Here the new bilinear form is the sum of the previous bilinear forms.
A(t, 0) = Ay (@, ) + Ay (2, 0) Vi, 5 € V.

We assume that the bilinear form gives a normalization of the extended solution space
equivalent to the normalization of the Sobolev space.

Fer, e > 00 e |83z < AW, 9) < e |85z VO EV.

We use the Sobolev spaces, in which there is fulfillment of the assumptions about the
continuation of functions in the form

331 € (0;1], BQ € [31; 1] : BlA(T)Qa?U)Q) < A (09, 02) < 32/\(?727?72) Vg € ‘72

Then, the solution to the continued problem exists and is unique. This is the solution
to the original problem on the first domain with zero continuation on the rest part of the
rectangular domain. Note that the solution to the original problem and the solution to
the original problem continued by zero, i.e. the solution to the continued problem, can be
denoted in the same way as a function and its continuation.

H, () = Vo, ().
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3. Discretization of the Continued Problem

Consider the discretization of the continued problem with a specific type of boundary
conditions.

II = (O,bl) X (O, bg),ro = @, Fl = {bl} X (O,bg) U (O,bl) X {bg},

[y = {0} x (0;b2) U (0;01) x {0}, I's =0, by, by € (0; +00).

Define a grid in the rectangular domain.
(Z'i; y]) = ((2 — O, 5)h1, (] — O, 5)h2) s hl = bl/(m + O, 5), hg = bg/(n + 0, 5),

1=1,2...m, j=1,2....,n, m,n € N.

Let us introduce grid functions on the set of nodes of the introduced grid.
vij=v(z;y;) €R, i=1,2..,m, j=1,2...,n, m,n€N.
Let us apply the completion of grid functions using parabolic basis functions.
O (z;y) = UM ()W (y), i =1,2....,m, j=1,2...,n, m,n €N,
Uhi(x) = [1/i]¥(x/hy — i+ 3) + U(x/hy — i+ 3) + [i/m]¥(x/hy — i),
U (y) = [1/5]19(y/he = j +3) + W(y/ha — j + 3) + [i/n]¥(y/ha — j),

0,522, z € [051],
—22+32—1,5, z € [1;2],

¥(e) = 0,522 —32z—4,5, 2z €[23],
0, 2 ¢ (0:3).

And we assume that the values of the basis functions are equal to zero outside the
rectangular domain.

O (z;y) =0, (z;y) ¢ 10, i=1,2...m, j=1,2....,n, m,n € N.

Combinations of basic functions form a finite-dimensional subspace in the space of
solutions to the extended problem.

V= {Z Zviyj@i’j(x; y)} cV.

i=1 j=1

We approximate the continued problem and obtain the linear system of equations
weRY: Bu=f, feR". (3)

We assume that the projection operator nullifies the coefficients of the basis functions
when their supports do not belong entirely to the first domain. We get the continued
problem in the matrix form. Define the matrix of the discrete continued problem continued
on the right in the system.

(Bu,v) = Ay(@, [19) + Au(@,0) Va,0 € V, (f,0) = Fi(L1o) Vo € V,
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(f,0) = (f,0)hihy = fhiha, U= (v1,0s,...,05) € RN, N = mn.

Here, first of all, we enumerate the basis functions with supports from the first domain.
Second, we enumerate the basis functions with supports crossing the boundaries of both
domains simultaneously. Third, we enumerate the basis functions with supports from the
second domain. During this enumeration, the used vectors have the following structure

0= (0y,0y,73), 5= (1, 00), f=(f,00).

Let us give formulas for calculating the elements of the matrix, the components of the
vector from the right-hand side of the system, using the above order of enumeration of the
basis functions.

bij = hi'hy ' (A(®i, [1®5) + Au(®i, @;)), fi = by hy ' Fy(L®y), 4,5 =1,2,..., N.

4. Method of Fictitious Components

The well-known method of fictitious components can be written as follows.
a* e RN . A@" —d) = - (B@* T~ f), keN,
Vi € Vi, o=1. 11 =2/(B1 + f2), k € N\ {1}. (4)

At any step of this iterative process, an extended problem, an extended matrix, arises.
(A, ) = A(@,0) Vi, v € V.
We calculate the elements of the matrix.
lij = hi'hy 'A(®;, ®5), 4,5 =1,2,..., N.

The above matrices have the following structure.

Ain A O A A O
A= | Ay Ay Aoyg |, B= 0 Ape Ags
0 Asp Ags 0 Asp Ags

Let us introduce the subspace of vectors.

w

Vi = {@: (0}, 09, 03)' € RY: 0, =0, © :G}.
Additionally, we define the vector subspaces.
Vo= {o= (0,0, €RY: 5 =0, 5 =0},
‘72:{6 = (0}, 0y, By)' € RVt Ay + Apaly = 0, g3l + Aggls = 6} R =Vieh el
Vi=Vieh, u=V, o,

We assume that when approximating the Sobolev space, the following inequalities hold
for the continuation of functions.

381 € (0;1], B2 € [Bi;1] : Bi (A2, Ua) < (Bia, Ua) < B (AU, ) V05 € Vs
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Let us define the norms generated by the extended matrix, its square and the identity
matrix.

||6||A = <A@7@> ’ ||T)HA2 =V <A27771_)>7 HEH =V <67T)> V@ S RN‘
Lemma 1. In method of fictitious components (4), the following estimate holds:
|l —all . < 2| —al .

Proof.
Let us denote the errors of the iterative process (4) by

YF=aF —a, ke NU{0}.

We get equalities in the iterative process.

(A(W' - &0))2 = (—An&?)a AP APt — 20" AY° + AYPAY? = Aqi ) Aqayy.
Note the existence of the inequality

APPAY® > Mgy Ayl

We obtain inequalities

APIAPT = 209 A" <0, (APTAYY)? < (2A91AY%)? < 4(AY AP (AP AYP).
Canceling, we obtain inequalities

AP AP < AAYOAYP, <2 ||¢°

e 17" = al] o < 2[@° =] ..

([
Lemma 2. In iterative process (4), the following estimate with a positive value in the
wequality holds:
1 _ 1 _
" —all, <dfla" —al ..

The positive value in the inequality 1s estimated as an asymptotic equality

d~ (A +an)?AL5, ha,he — 0, Ay =207+ b,7) /4.

Proof.
Note that there exists the inequality with a positive value

30> 0: (AD',§Y) < (MG, A,

Let us obtain an estimate for the indicated positive value in the inequality in the form
of an asymptotic equality.

+o00 +o00 “+oo 400 +0o0 400

(A% + an)¥t, ¥Y) ZZ/\ + an)c ZZ/\” ”+ZZGHCH_

i=1 j=1 =1 j=1 i=1 j=1
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“+o0o 400 a “+o0o 400
H
ZZ%W 2D Mt =
i=1 j=1 Ll 4= Jj=1
2 400 +o00 2
_ A toan A2 ALy +an AZdL A2
=T ijCig = T( (VAT R
L1 G4 1,1

Here we use solutions to the spectral problem.

“+00 400

=3 cibig (@i Big) =1, (Big:Bpr) =0, (534) # (50), 6,4, p,1 €N,

i=1 j=1

where
Gij € V((0;01) x (0502)) 1 —A@ij = Nij@ij, Pij # 0,
Ay =0,25m" (2 — 1)b;* + (2 — 1)by°) , i,j € N.

Theorem 1. In method of fictitious components (4), convergence estimates

la* —all, < e @’ —all. =< |l/° =7

achkfl, c=2de€ (0+00), k€N, fP=Aa" 0< q= (B2 — 1)/ (B1+ B2) <1,
d%(/\il%—an)l 2)\1%, hl,h2—>0 A 1—7T b +b /4

I

hold. The absolute error of the method of fictitious components has a convergence rate in
the energy norm not worse than the rate of convergence of a geometric progression.

5. Method of Iterative Extensions

To solve problem (3), we use a new method. Let us introduce the matrices
(A, v) = Aqy(a,0), (Ana,v) = An(a, ),

which have the following structure.

A A O 0 0 0
Ar=| Aoyt Ay O |, Au=1|0 Agpx Ags
0 0 0 0 Agp Asg

Define the extended matrix as the sum of the first matrix and the second matrix
multiplied by a positive parameter.

011 012 0 A11 A12 0 0 0 0
C = A+~Ar, Cyp Co Cog | = Aax Ay 0 [+7 | 0 Apz Aoz |, 7€ (0;+00).
0 (5 Css 0 0 O 0 Asy Ass

Assume that the statements on the continuation of functions, written in the following
form, are fulfilled.

381 € (0;+00), By € [Br;+00) 1 B7(Cy, Cp) < (A, Aipty) < B3 (Ciy, Cy) Viy € Vs,
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do € (O, +OO) : <A11_)2,AI?_)2> < 042 <AH’l_)2,AH?_)2> YUy € ‘_/2

The iterative extension method is a generalization of the method of fictitious
components, when an additional parameter is used when choosing an extended matrix,
and the iterative parameters are selected based on the minimum residual method.

a* ¢ RY: O@ —a" ') = —m_(Ba* '~ f), k€N,

V@ € Vi, v > a, =1, my = (LY LY, ke NV{1}. (5)

To calculate the iterative parameters, we sequentially calculate the residuals,
corrections, and equivalent residuals.

7:]{71 — B,L—kal o f_7 u—}kfl — C*lfkfl’ ﬁkfl — B,u—]kflj k c N.
Lemma 3. For iterative process (5), the following estimate holds:

|a* =l < 2@~ all ..

Proof.
Let us denote errors in process (5) by

PP =aF —a, ke NU{0}.
In the iterative process, we obtain equalities
(C@ =), 0" = ¢%) = (—Auy, —Audy),
(CYY,CPty — 2 (Cyt, CY%) + (CY°, C°) = (A, Andy) .
Note that the inequality
(CY°, CY%) > (Andy, M)
holds. Also, note the fulfillment of the inequalities
(Cp,t oYty —2(Cyt, Cy°) <0,
(CPY, 1) 2 < 4(CP1, CgP)? < 4(CPh, Oty (C°, ).
After cancellation, we obtain inequalities
(Co1,09") <4(C9°,. 0%, [|9Mlee < 2 [8°]lce s [0 =l < 2][0° — ] o
Theorem 2. For iterative extension method (5), convergence estimates

|7 — e < ella® —llea s € =2(8/B) (/1) kEN

hold. In a stronger norm than the energy norm, a sequence of relative errors is estimated
from above by a converging geometric progression.

2021, vol. 8, no. 1 53



A. L. Ushakov

Proof.
From the process, we get equalities for errors and residuals.

PP = F Tt - O AT P = T - ApCT T ke N\ L
Further, we minimize the residuals.
0< (7, 7) =72 (AuC ' ApC 1) — 2 (ApC AR Py - (PR AR
Choose parameters.

B <AIIC_1/FI€_1, fk‘—1> B <fk‘—17 ,’le—1>
Th1 = (ApC=17+=1 AgC=1rk=1) (k=1 k1)

Note the presence of equality

B <A11071,’:k717,’:k71> B <AH,LD]€71’O,LD]€71>
Tk—1 = (AnC—17 1, AgC=171) — (Apg@h—1, Agah—1)

Denote

AIU_}k_ _(l AH okt =b.

Note that the chosen parameters are positive.

(b,a++b)  (a,b) @a)” o.0)" _  @a)”

D R T I ) A A

Let us write the dot products with residuals under the chosen parameters.

“k =k\ _ /=k—1 —k—1\ _ <AHC—17:I<:—1’77;€_1>2
<T 77' > - <T 7r > <AHC*17-_]€*1’AHC,177]€71> .

Also, write the ratio of the scalar products of the residuals.

2 <,’:k7,’:k> B 1 <A11071f]€717,’:k71>2 B
I = <7:k:—177:k:—1> - <AHO_17:I<:—17AHC—1fk—1> <fk—177:k:—1> -

(A A (O, Ot — (A, O’
B (Ajpwk=1, Agwk=1) (Cwk=1, Cwk-1) =

<b b) (@ -+~b,a+~b)y — (b, a+7b>
<b b><a+7b a—|—7b>

Denote
(@a) =a, (bb) =0, (a,b) =z,
then
9 ab — 2? < max g2(s) = —a a < a? 9
= max = = — < — ,
T B a2+ 272)  eva B G v ) T
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taking into account that

r_ =2(z+a/7)(z +b) a+7°b a
qz > 0, (q,f(z))z = ba+ 72+ 2922 —vb < 2 < —Vab < —; < Vab.

We establish inequalities

(A, A <@ (A A1), (And®, Ang®) < Y (And', Augp')  k € N\{1}.
Taking into account that

(CYF, CPF)y < B2 (Aud®, Aud®) . (Aud', An') < B3 (C9t, Cyty <453 (Cy°, Cyf),

we obtain the inequality that gives an estimate for the convergence of the method of
iterative extensions:

(C9F, Cy*) <4883V (090, Cy").
O

6. Algorithmic Implementation, Programmable Algorithm
for the Method of Iterative Extensions

When choosing iterative parameters, we apply the method of minimum residuals.
I. Choose an initial approximation and an iterative parameter

Vaoe‘_/l, ’7'0:]_.

II. Find the residual B
Pl =Bt — f, ke N.

III. Calculate the norm of absolute error squared
Epoy = (L7, k eN.
IV. Find the correction
ot Cat =7 ke N
V. Find the equivalent residual
n"~' = Bw"?t, ke N\ {1}.
VI. Find the iteration parameter

o = (P LA ST = () [ ), ke NV {1}

VII. Find the next approximation

F—ght— @ keN.

U
VIIIL. Check the fulfillment of the criterion for stopping iterations by a given estimate
of the relative error
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7. An Example Using the Iterative Extension Method

Consider the problem in the following domains:
IT= (0;8) x (0;0), Q1 = (0;8) x (0;4), Qi = (0;8) x (4;b).
We assume that the domains have boundaries
Fo=0, Ty = (0;8) x {b}, 'y = (0;8) x {0} U{0, 8} x (0;b), '3 =0,
Pio=(0;8) x {4}, I';i =0, T2 = (0;8) x {0} U{0, 8} x (0;4), '3 =0,
o= 0, Iy = (0§ 8) X {b}, I = {07 8} X (43 b)a Iz = (0§ 8) X {4}
Take the right side with the coefficient of the equation

filzsy) =6, (z;9) € (0:8) x (0;4), an(z;y) =1, (z3) € (0;8) x (4;b).
Let us give a solution to the problem.
ii(z3y) = (y +4)%(y — 4?/4, (239) € (0;8) x (0;4).
When sampling, choose hy=hy=8/(n+2),b =4(2n+1)/(n +2),n = 36,42, ..., 102.
When calculating in the method of iterative extensions with a zero initial
approximation, i.e. with a unit relative error, the process stops at the fourth iteration
if an estimate for a relative error is considered to be one thousandth. Fig. 1 presents the
graphs of the first approximation and the exact solution to the continued problem in the
section by a plane perpendicular to the abscissa axis. The graphs of the second, third and
fourth approximations practically coincide with the graph of the exact solution.

n=102, E=0,001, u};, >u}, ~u}; mu}; ~u,; >u); =0, k=4.

80
70

60

10
30
20

10

13
17
27
37
4
69
73
77
81

33
97
101

-10

Fig. 1. First approximation and exact solution

Note that at the last fourth iteration, on the smallest of the grids used, there is
fulfillment of inequalities that characterize the accuracy of the numerical solution to the
original problem in the case under consideration.

I max. iy = ]
n—=102, E=0,001, max bl oy iz <0,0004, k = 4.
(zi3y5) € }uij max }u”’
’ (wi3y5)€Q ’
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YNCJIEHHBI AHAJIN3 CMEIIIAHHOM KPAEBOI
3AJIAYN 1J1S1 YPABHEHU Y CO®PU > KEPMEH

A. JI. Ywaxos

Ypasuenune Codu 2Kepmen B BapuarioHHOM BHJIE PACCMATPUBAETCS Ha TIJIOCKOI OTpa-
HUYEHHONH 00JIACTU IIPU CMEIIaHHBIX KPAaeBbIX YCIOBHUSX. [IpOU3BOAMTCS POIOIZKEHNIE UC-
XOJHOM 3aJa4un Ha IPAMOYTOJIbHYIO 00JIACTD 110 PAHUIIE C KPAEBbIMU yCJIOBUAME JlupuxJie.
IIpousBoguTCst MUCKpETH3aINs IPOIOJIXKEHHON! 3a0a491 ¢ IIOMOIIBI0 METOAa KOHEIHBIX dJIe-
MeHTOB. IIpuBoauTcss MeTox PUKTUBHBIX KOMIIOHEHT, KOTOPBIA I abCOJIIOTHON OIMUOKN
HMMeeT CKOPOCTb CXOIUMOCTU KaK Yy NeOMEeTPUYECKOil mporpeccuu. ljist YucjaIeHHOro pereHst
IIPOJIOJI?KEHHON 331891 HCIIOJIb3YETCS METOJ UTEPALNOHHBIX PACIIMPEHHI I10JIy YAIOIINHACS
KakK 00001IeHne MeToia PUKTUBHBIX KOMITOHEHT. MeTor HTepallmOHHbIX PACITUPEHNH st
OTHOCHUTEJIbHOI OMUOKN UMEET CKOPOCTHh CXOIMMOCTH KAaK Y I'eOMeTPUIECKO ITPOrpecCHr
B 0OoJjiee CHJIBHOI HOpMe, 4eM SHepreTudecKas HOpMa 3aJadu. BuIOOp UTepallMOHHBIX IIa-
paMeTpoB IPOBOIUTCS HA OCHOBE METOMa MHUHHUMAJLHBIX HEBsI30K. IIpmBomurcs ajaropur-
MUYECKasl Peau3allisd MeTOHa HUTEPAIMOHHLIX PACIIUPEHUN ¢ aBTOMATHYECKUM BBIOOPOM
UTEePaIMOHHBIX IIapaMeTpPoB. B ajropurme IpUBOAUTCA KPUTEPHUI U JJIs ABTOMATHYECKON
OCTAHOBKU HTEPAIMOHHOIO IIPOIECCa IIPU JOCTUKEHUM 3aaHHOI ONEHKH OTHOCHTEILHOM
omwubku. [Ipu mporpaMMHO# peasin3aliys 3TOr0 aJILTOPUTMa, He TPeOyeTcs JTOIOJTHUTETbHBIX
YCJIOYKHEHU CBSI3aHHBIX CO CJIOXKHOCTBIO T€OMETPUN 00JIaCTH, HOPSIIKOM A depeHinaib-
HOT'O ypaBHEHHs M HaJIMYMeM KpaeBbIx yciaoBuil dupuxie. PaccMarpuBaercs npumep pac-
YETOB 10 METOJY UTEPAIMOHHBIX PACIIUPEHHI IPU YUCJIEHHOM pEeIleHUH YAaCTHON 3aa4M.
IIpu cuere UCIOIB3YETCs YCIOBUE BHIIOJIHEHUS OLUEHKH JIJIsI OTHOCUTEJILHOM OUOKY B 60J1€€
CHJIBHOHM HOpMe, YeM HOpMa HOpOozKIaeMasl oIepaTopoM 3amadu. Ho paccMarpuBaioTcs OT-
HOCHTEJIbHBIE OIMUOKMU JIJIsI TIOJIYYEHHOIO YUCIEHHOTO PENIeHNUs] IIPUMEPa Y UCXOIHOM 38/ 1a91
erte u Apyrumu crocobamu. Hampumep, mpoBOAUTCs IOTOYEYHOE BBIYUCIEHIE OTHOCUTE b
HO# ommbKu 10 y3jaM ceTku. Iloaydaercs, 9T0 HECKOJbKUX UTEPAIMil JOCTATOYHO, 9TO
OBl UMETh OTHOCHTEJIbHYIO OIIUOKY TOJIBLKO B HECKOJIBKO IIPOIEHTOB JAXKe IPHU Pa3IUIHbIX
crrocobax ee BBIUMCJICHUs. BbIuncauTe/bHbIe SKCIEPUMEHThI Ha IPAKTUKE IOITBEPIKIAI0T
OITUMAJIbHOCTb METOJIA, YKA3aHHYI0 B TEOPHUH.

Karoueswie caosa: ypasuenue Cofu 2K epmen; memod GukmusHsr Komnonenm; memood
UMEPAYUOHHHLEL PACULUPEHUT.
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