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The article discusses a stochastic analogue of the linear Oskolkov equation, which
is obtained from the Oskolkov system of equations. The existence of a solution to the
Oskolkov stochastic equation in spaces of differential forms defined on a two-dimensional
sphere. For some values of the parameters characterizing the properties of the liquid, the
existence of exponential dichotomies of solutions is proved. To solve the question of the
existence and stability of solutions, this equation is considered as a special case of a linear
stochastic Sobolev type equation. The Nelson — Glicklikh derivative of the stochastic process
is considered as a derivative. To visualize the results obtained, an algorithm was developed
for calculating stable and unstable solutions of the Oskolkov stochastic equation in spaces
of O-forms on a two-dimensional sphere. This algorithm is implemented in the Maple
environment. Graphs of solutions with exponential dichotomy are plotted in a spherical
coordinate system.
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Introduction
The Oskolkov equation

O(u, Au)

(A — A)Auy = vA*u + Der.m0) (1)

is a model of a multipurpose flow of a high-performance, non-essential liquid [1]. Here the
coefficients «r, v € R characterize the parameters of the fluid. Consider the equation
A+ A)Aa;, = —vA%a (2)

in spaces of differential forms defined on a two-dimensional sphere. Here A is the Laplace —
Beltrami operator, « is the g-form, ¢ = 0,1,2. Equations (1), (2) were previously
considered in different aspects of [2] — [4]. We will study the stochastic analogue of the
equation (2). For this, we reduce it to a stochastic linear Sobolev type equation

L n= My, (3)

where the operators L, M are linear and continuous, 7 is a stochastic K is a process, its
Nelson — Glicklikh derivative is a Nelson — Glicklikh derivative [5].
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At present, a large number of works are devoted to the study of the Cauchy and
Showalter — Sidorov problems for stochastic Sobolev type equations [6] — [9]. Our goal is
to study the exponential dichotomies of the stochastic equation (2) on the 2-sphere. This
work is most closely related to the work [12], but unlike these works, we do not go from
clarifying the issue of stability of solutions on a manifold to clarifying the issue of stability
on one of the maps. Besides the Introduction and the References, the article contains two
parts. In the first part, we consider the Cauchy problem for the equation (3) in spaces
of differential forms. Following the works of [10] — [11], the existence and stability of the
solution to the equation (3) and the application of these results to the stochastic equation
(2) are considered. The second chapter is devoted to the algorithm for constructing stable
and unstable solutions of the stochastic equation (2) on the sphere, graphs of solutions for
0-forms are presented.

1. Exponential Dichotomies of the Stochastic Oskolkov Equation
on a Sphere

Consider a two-dimensional unit sphere S2. The Laplace — Beltrami operator on a
sphere S? is defined by the formula

A =ds+dd=(d+9)%

where d is the is the operator of external differentiation, § = (—1)%¢" x dx is the
codifferential, * is the Hodge star. The eigenvalues of the Laplace — Beltrami operator A
are the numbers J; = (I + 1), 1 > 0.

Consider the Hilbert spaces of differential forms F? = E?(S?), ¢ =0, 1,2

a = E fi17i2d$i1 A dl‘m,
11 <i9

on the sphere S? with scalar products

< a,b>0:/a/\*b, (4)
52
<a,b>1=<a,b>y+ < Aa,b>g, <a,b>=<a,b> + < Aa,Ab>q.

By HJ we denote the completion of E? according to the norms || - |[; induced by scalar
products < -,- >, j = 0,1, 2. Continuous and dense embeddings Hy C H{ C H{ are valid.
The eigenfunctions of the Laplace — Beltrami operator v; orthonormal with respect to the
scalar product < -,- >; is a basis in the spaces H, j =0, 1,2.

Following article [11] we construct the spaces of K- Variables and K-"noises" on a

sphere S%. Let the sequence K = {\;} C R, be such that Z A < 400, {§} is a sequence

of random variables with zero mathematical expectation and variance D¢; < const, [ € N.
The elements of the space HjK, q, j € {0, 1,2} are random K-variables

n= Z ISKLE (5)
=1
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Using the formula
Inlles, = S A?De, (6)
=1

we introduce the norm in Hilbert spaces H?K.

A continuous stochastic process is a stochastic process n : R x 0 — R, whose
trajectories 7 = n(-,w) are continuous for almost all w € Q. The set of continuous K-
stochastic processes

n(t) =Y N&(t), (7)

denote by C(J,Hjy), where {{(t)} is a sequence continuous stochastic process, if the

series (7) converge on any copact set in J. Let exist a Nelson — Glicklikh derivative [5] n
of a continuous stochastic process n = 7n(t). The continuous stochastic K-process n = n(t)
is called a continuously differentiable by Nelson — Gliklikh on 7, if the series

() =3 M & (D (8)
k=1

converges uniformly on any compact set in J and 73:73 (t) is continuous stochastic process.
The set of continuously differentiable by Nelson — Gliklikh process is denoted C(J, Hjy)
and called the space of differentiable K-"noise".

Let the operators L, M € L(Hy, Hix). Consider the stochastic Sobolev type equation

L= Mn. (9)

Definition 1. A stochastic K-process n € CH(R; Hiy) is called a solution to equation
(9), if substitution of n in (9) gives an identity.

Definition 2. The set P C H{ Lo is called a phase space of equation (9), if
(i) almost sure each trajectory of the solution n = n(t) to equation (9) belongs to B;
(i) for almost all ny € P there ezists a solution to the Cauchy problem

1(0) = 10 (10)
for equation (9).
Suppose the operator M is (L, p)-bounded, then there is an analytic group of operators

1
Ut = 5 (L — M)~'Metdp, (11)
r

where the contour I' limits the region containing the L-spectrum of the operator M.

Theorem 1. Suppose that the operator M is (L,p)-bounded, then phase space P of the
equation (9) is the image imU® of the group (11).

Definition 3. The subspace I C H{y is called an invariant space of the equation (9), if
the solution to problem (9), (10) n € CY(R;I) for any ny € 1.
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Remark 1. For the existence of invariant spaces of equation (9), it is sufficient for the
equation (9) to represent the L-spectrum of the operator M in the form of two disjoint
parts, and at least one of these parts is closed.

Definition 4. If the phase space P = I' ®© 12, and there exist constants N, € Ry, v, €
Ry, k=1, 2, such that

7' (Dlu < Nie? Oy (s)|ly - for s>,
20|l < Noe ™2 2(s)|lw for t>s,

where n* = n*(t) € I¥ for allt € R, and I¥, k = 1, 2, is invariant space of equation (9),
then solutions n = n(t) to the equation (9) have exponential dichotomy.

Theorem 2. Suppose that the operator M is (L, p)-bounded, and the L-spectrum of the
operator M o"(M) = ok (M) & o= (M), where o2 (M) = { € c*(M) : Re p > 0} # @,
ol (M) = {u € o(M) : Rep < 0} # @. Then solutions of the equation (9) have
exponential dichotomy.

Define the operators L and M by the formulas
L=M\+A)A M=—-vA> (12)

Then the stochastic equation (2) can be considered as the equation

L (= Mc, (13)

where operators L, M € L(Hlx, Hix), and the operator M is (L, 0)-bounded operator.
The phase space of the equation (13) has the form

b Hi, 01 4\,
CGH8K1<C,@Z)Z >0=0, 9, = \.

Theorem 3. For any o € R\ {0}, A € R\ {0}, and (o € P there exists the solution
¢ = ((t) to the problem ((0) = (o, (13), and the solution has the form

n(t) = Z/ [690}9 ()\_if;l t) (Z Al < Ur, U >0 M)] : (14)

Theorem 4. For any A € R_, v € R solutions of the equation (13) have exponential
dichotomy.

2. Computational Experiment

Consider the space of O-form on a single sphere with a center in the initial order. The
Laplace — Beltrami operator in the spheral system of coordinates (©, ¢) is assigned with
the formula 9

s,
o 1Y /. . _9
Ag2 = (sin ) r (sin p0y) + (sin ) 56"

If 19, are eigenvalues of the Laplace — Beltrami operator, then

P (cos©) cosmp, m=0,1,....1;

15
cos ©)sin|mlp, m=—1,—(l+1),...,—1 (15)

V(O ) = { i
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are corresponding eigenfunctions, orthonormal with respect to the scalar product (4). Here

1 d 9 ;
B(UZ@@@ —1)

is a Lagrange polynomial of degree [, and

Iml pikd
> g 1)

M) = (1 - 1) (16)

are associated Lagrange polynomials. The scalar product is calculated by the formula

21 1
(YY) = / cos i cos mapds / P (1) P2 (1) dt. (17)
0 —1

Remark 2. Eigenfunctions of the Laplace — Beltrami operator For 1-forms, eigenvalues
of the Laplace — Beltrami operator can be calculated using the formula y; = 0Y;™(0, ¢).
Since the space of 2-forms is isomorphic to the space of O-forms, the eigenfunctions are
determined by the formula (17).

Fig. 1. Stable solutions (green color stands for ¢ = 0.1, blue color stands for t = 0.5) for A\ = —3.6,
v = 0.5 on a two-dimensional sphere (black)

Let us construct an algorithm to study the stability of solutions to equation (12) in
the space of differential forms H.

Step 1. Input coefficients of the equation (2) A € R_, v € R, the number of eigenvalues
of the Laplace — Beltrami operator L, the number of random K-variables K.

Step 2. Find the relative spectrum

—1/191
A+ ’

=

where ¥, = [(l + 1).

Step 3. Construct the array Y;™ of eigenvalues of the Laplace — Beltrami operator by
the formula (15) and the array Pl|m| by the formula (16). Legendre polynomials are formed
using the function P(l,cos(0)) from the built-in module Orthopoly.

Step 4. Using the random number generator from the built-in module Random
generate a sequence of random variables &, with normal distribution, zero mathematical
expectation and variance equal to one.
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Step 5. If v > 0 then the number M, is equal to the number of eigenvalues 1,
satisfying the inequality ¥, < —\, M; = K — M. Find a stable solution

GH)y=) e (Z(ﬁk)lﬁk > D (Kmleka)iﬁm) (18)

=M, k=1 mi1=1mo=1

and an unstable solution

G =3 e (zwkm Sy <Ylmanm2mml> (19

=1 k=1 mi=1mgo=1

to the equation (13). Here the dot product is calculated by the formula (17).

Step 6. If v < 0 then a stable solution has the form (19) and an unstable solution has
the form (18).

Step 7. Plot solutions of the equation (13) in a spherical coordinate system.

Remark 3. The stability and instability of solutions of the equation (13) are understood
here in the sense of Definition 4.
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SKCITOHEHIIMAJIBHBIE TNXOTOMNMN OJHOI'O
CTOXACTNYECKOI'O HEKJIACCUYECKOTI'O
YPABHEHN S HA IBYMEPHOII C®EPE

O. I Kumaesa

B craTbe paccMarpuBaeTcsi CTOXaCTUYECKHIT aHAJIOT JIMHEHHOTO ypaBHeHusT OCKOJIKO-
Ba, KOTOpOe ToJiydaeTcs u3 cucrembl ypaBuenuit Ockoskosa. [lokazaHo cymecTBoBanue
pelreHnst cToxacTudeckoro ypasueansi OCKOJIKOBa B TpocTpaHcTBaxX auddepeHuaaIbHbIX
dopwm, 3amanubx Ha cdepe. [Ipn HEKOTOPBIX 3HAYEHUIX TapaMETPOB, XapaKTePU3YIONINX
CBOICTBa »KUJKOCTH, JIOKA3aHO CYIIECTBOBAHUE SKCIIOHEHIMAJBbHBIX IUXOTOMUI DEIIeHNUIA.
Jljist perieHnst BOIPOCA O CYIECTBOBAHUU M YCTONYMBOCTU PEIIEeHUll, JaHHOEe ypaBHEHUE
paccMaTpUBaETCd KaK YaCTHBINA CIy4dail JUHEHHOIO OJHOPO/IHOIO CTOXaCTUIECKOIO ypaBHe-
HUsA CODOJIEBCKOTO THIA. B KatecTBe MPOU3BOIHON paccMaTpUBaeTC s Mpou3BoaHass Hembco-
Ha — [Umkiimxa croxacTudeckoro mporecca. Jljis Busyaan3anuu moIyIeHHbIX Pe3yIbTATOB
COCTaBJIEH AJI'OPUTM JIJIsl BBIYKMCJIEHUsI YCTONYNBOIO U HEYCTOWYMBOIO PEIIeHUiI CTOXaCTU-
geckoro ypasuenusi OckosikoBa B npocrpancrsax 0-cbopm Ha gBymepHOil cdepe. lammbiii
ajropuTm peanusoBaH B cpesie Maple. Ilocrpoensr B cdeprudeckoil cucremMe KOOPIAUHAT Ipa-
UK perneHnii TMeIuX SKCIOHEHIINATBHYIO TUXOTOMMUIO.

Karouesvie crosa: ypashenus coboae6ckozo muna; CmoraCmuieckue ypasrenus; oug-

Peperyuarvrvie Gopmol; IKCNOHEHUUANDHBLE JUTOMOMUL.
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