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The paper is devoted to the search for numerical solutions to the Cauchy problem for
the linear stochastic equation in space of smooth differential forms on a torus. Based on
the previously obtained results on the type of analytical solution to the stochastic version
of the Hoff equation in spaces of smooth differential forms on smooth compact Riemannian
manifolds without boundary, we choose several terms from the analytical solution in order
to construct graphs of the numerical solution for various values of the coefficients and the
inhomogeneous term. Since these equations are Sobolev type equations with a degenerate
operator at the derivative, we can solve various initial-boundary value problems using the
theory of degenerate analytic groups of resolving operators. In the deterministic case, the
solution is based on the phase subspace of the original space. In spaces of differential forms,
we use the invariant form of the Laplacian, i.e. the Laplace — Beltrami operator. The phase
space method is also used in non-deterministic case, but we use the Nelson — Gliklikh
derivative due to the non-differentiability of "white noise" in the usual sense. In this paper,
a two-dimensional torus plays the role of a smooth compact oriented Riemannian manifold
without boundary. Numerical solutions are found using the Galerkin—Petrov method and
are presented for several fixed time points as graphs of the coefficients of differential forms
obtained in Maple.

Keywords: Sobolev type equation; Nelson — Gliklikh derivative; Laplace — Beltrami

operator; differential forms; Riemannian manifold.

Introduction
In its initial statement [1], the Hoff equation
A=Au =au+ f

simulates the process of I-beam buckling under a constant load and high temperatures.
Different types (including cases of different functional spaces) of initial boundary value
problems for this equation were solved by reducing to abstract Sobolev type equation
(with noninvertible operator at derivative) [2]

Li = Mu + f. (1)

In turn, the abstract Sobolev type equation with the operators L, M € L(4L; 1) is reduced
to the equivalent system on splitting spaces

U=Wapug=3"aF (2)

by the phase space method proposed by G. A. Sviridyuk. Recently, in the Chelyabinsk
scientific school of Sobolev type equations, various results were obtained for the Hoff
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equation, in particular, in spaces of differential forms defined on a Riemannian manifold
without boundary [3]. Note that in this case we use the invariant generalization of the
Laplace operator in spaces of differential forms, i.e. the Laplace — Beltrami operator [5],
and differentiability of, generally speaking, just continuous stochastic processes in the
sense of Nelson — Gliklikh [6].

The aim of this paper is to obtain and analyze a numerical solution to the Cauchy

problem

u(0) = ug (3)
for equation (1) on a two-dimensional torus, which we use as an example of a Riemannian
manifold. To this end, we use a numerical algorithm based on the Galerkin—Petrov
approximation method in order to carry out computational experiments for some set of
initial parameters of the Hoff equation in Maple. The results are presented in the form of
sets of time-fixed values of the coefficients of differential forms.

The paper consists of Introduction, three sections, Conclusion, and References.
Section 1 contains preliminary information and describes spaces of differential K - "noises"
[4]. Section 2 describes an example for the Hoff equation on a torus. In Section 3, we use the
Galerkin—Petrov approximation method in order to construct a numerical solution to the
Cauchy problem. References do not pretend to be complete, but only meet the preferences
of the author.

1. Sobolev Type Equations in the Deterministic Case and
Differential K-"Noises" on Differential Form Spaces

Let $4 and §F be Banach spaces, and the operators L, M € L(F)
(i.e., the operators are linear and continuous). Consider the L-resolvent set
pE(M) ={peC: (uL — M)t € L(F W)} and L-spectrum o (M) = C \ p“(M) of the
operator M. If L-spectrum o (M) of the operator M is bounded, then the operator M is
called (L, o)-bounded. If the operator M is (L, o)-bounded, then there exist the projectors

I ) R
P=o [ REOMdue L), Q= / LE(M)dpi € L(3).
i i

Here R)(M) = (uL — M)7'L and L;(M) = L(uL — M)™" are the right
and the left L-resolvents of the operator M, respectively, and the closed contour
v C C bounds the domain containing o%(M). Set U°(U') = ker P(imP),
FU(FY) = ker Q(im@) and denote by Li(M;) the restriction of the operator L(M) on
sk k=0,1.

Theorem 1. 2| (Sviridyuk’s splitting theorem)
Let the operator M be (L, o)-bounded. Then
(i) the operators L (M) € L(UW*;T*), k=0,1;
(ii) there exist the operators My "' € L(F%U%) and L7 € L(FHUY).

Construct the operators H = M;'Ly € L(U°), S = Ly'M; € L£(4'). Under the
conditions of the theorem,

(WL —M)™ ==Y " pFHE M (1 — Q) + ) p*S*1L'Q
k=0 k=1
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for all u € p*(M). The operator M is called (L,p)-bounded, p € {0} UN, if oo is a
removable singular point (i.e. H = Q,p = 0) or a pole of the order p € N (i.e. H? # O,
HP™ = Q) of L-resolvents (uL — M)~ of the operator M.

A vector function u € C®(R;U) is a solution to equation (1), if u satisfies the
equation on R. A solution u to equation (1) is a solution to problem (1), (3), if u satisfies
condition (3).

Theorem 2. 2| For the (L,p)-bounded operator M, p € {0} UN and for any initial
up € P C U and f € C®(R; L), for problem (1),(3) there exist analytic resolving groups
of operators of the form

1 1
t_ L ut t_ L ut
U 9 R, (M)e"dp € L(Y), F oy L;(M)e"du € L(F), (4)
g g
and the solution has the form
Zp “I-Qf |
_ 77t -1 — t—s
U(t) =U Uy — L HPMO T(t) + /U Qfds
= 0

Let Q = (©,S,P) be a complete probability space with the probability measure P
associated with the o-algebra S of subsets of the set (2. Denote by R the set of real
numbers endowed with the structure of o-algebra. Then the mapping y : § — R is called
a random variable. The set of random variables {x} with zero mathematical expectation
(Ex = 0) and finite dispersion (Dy < +o0) forms the Hilbert space Lg with the scalar
product (x1, x2) = Exix2 and the norm ||x||r,. Let Sy be a o-subalgebra of the o-algebra
S. Construct the subspace LY C Ly of random variables measurable with respect to Sp.
Denote by II : Ly — L9 the orthoprojector. Consider the random variable xy € Ly, then
Ty is called a conditional expectation and is denoted by E(x|Sy).

For some interval J C R, the measurable mapping n : J x & — R is called a stochastic
process, and the random variable n(-,w) is called a section of the stochastic process, and
the function n(t,-), t € J is called a trajectory of the stochastic process. The stochastic
process 1 = 1)(t, ) is called continuous, if a.s. (almost sure), i.e. for a.a. (almost all) w € S,
the trajectories 7(t,w) are continuous functions. The set {n = n(t,w)} of all continuous
stochastic processes with values in Ly forms the Banach space CLy with the norm

||77||CL2 - SUP(Dﬁ(ta w))1/2‘
ted

Fix an arbitrary stochastic process n € CLs.

Definition 1. A random variable

%<.,w>:1( lim EQ(U(tJFAt")_”(t")) - (n(t,o—n(t—m,-)))

2 \ At—0+ At At—0+ At

is called the Nelson — Gliklikh derivative of the stochastic process n at the point t € 7, if
the limit exists in the sense of a uniform metric on R.
Here E} = E(-|N]"), and N;' C S is a o-algebra generated by the random variable

n(t,w).
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If the Nelson — Gliklikh derivatives 7 (+,w) of the stochastic process n(-,w) there exist

for a.a. points of the interval J, then there exists the Nelson — Gliklikh derivative Ui (-,w) on
the interval J (a.s. on J). Denote the set of continuous stochastic processes with continuous
Nelson — Glicklikh derivatives 7€ CL,(J) by C'Ly(J). By induction, we can define Banach
spaces C'Ly(J), | € N, of the stochastic processes having continuous Nelson — Glicklikh
derivatives on J up to the order [ € N inclusively.

The norms of these spaces have the form

1/2

!
Inllcie, = sup <ZD n'(t, w)) :
te3 \1 2o

where n°= 7. Since "white noise" belongs to all the spaces C'Ly (R,), I € {0} UN, then
these spaces are called the spaces of "noises”.
We also use the spaces of random K-variables. Let space $ be a separable Hilbert space

with an orthonormal basis {¢x}, a monotone sequence K = {\;} C Ry (D] A2 < +00),
k=1

and a sequence {{;} = & (w) C Ly of random variables with norm ]\fk\]L2_§ C for one

C € R; and for all £ € N. We define a $)-valued random K-variable {(w) = > Ae&i(w)pr.
k=1
Complete the linear span of the set {\;&rpr} with the norm

- 1/2
s, = (z Azngk>
k=1

and call the result by a space of ($-valued) random K-variables. Denote the space by
HgkL,. The obtained space HkL, is a Hilbert space and contains a random K-variable
¢ = {(w) € HkL,. Similar, a Banach space of ($)-valued) K-"noises" is defined as a
completion of the linear span of the set {A\xpx} with the norm

- . 1/2
H77H20lHKL2 = sup (Z Y Z D 771?) )
€3 \ 1] —

where a sequence {1} C C'Ly, I € {0} UN. The vector n(t,w) = > \unr(t,w)er belongs
k=1

to the space C!(J; HkL,), if the elements of the sequence of vectors {n;} C C'L, and
all the Nelson — Gliklikh derivatives of these elements of the sequence up to the order
l € {0} UN inclusively are uniformly bounded with respect to the existing norm || - || iy,

Further, in the spaces of K-"noises", we determine the coefficients of differential forms
given on a manifold without boundary. Let M, be a smooth connected oriented compact
Riemannian manifold without boundary of the class C° and of dimension d. On the
manifold My, consider the vector space E9(My) of the g-forms

a(xy, .., T,) = E iy sig,sig (T15 ooy Ty ) Ay N dgy AL N d,,

11 <iz <, ..., <lg
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where a;, 4., (T1, ..., 2n) € C% (Mg), ¢ = {0,1,...,d}. On the space £, define the scalar
product

(a,b) = /a/\ xb,
Mg
where * is the Hodge operator that establishes a linear isomorphism of ¢g-forms and (p—q)-
forms on My, but (possible) up to a sign by virtue of % = (—1)9~9_In the spaces E?, the
manifold (My) is defined by the formula A = d§+dd, where d is the external differentiation
operator, § = (—1)"*+D+1x dx is the Laplace — Beltrami operator. Introduce the following
two scalar products:

(a,b); = (a,b)o + (Aa,b)o, (a,b)2 = (a,b); + (Aa, Ab),.

Denote by H{, k = 0, 1,2 a Hilbert space obtained by completion of E? in the norm || - |,
induced by the scalar product (-,-)x, £k =0,1,2, ¢ € {0,1,...,d}. The obtained separable
Hilbert space H}! has a basis of the eigenfunctions of the Laplace — Beltrami operator, be
orthonormal with respect to the scalar product (-, ), £ =0,1,2..

Spaces of random K-variables defined on the manifold M;: UL, = H{gL, and
FxLy, = Hi, Lo, where K = {)\;} is a monotone sequence of eigenvalues of the Green
operator (the eigenvalues are inverted to the eigenvalues of the Laplace — Beltrami

operator). The elements of these spaces are the vectors o = >~ M&ror and 5= > M€y,
k=1 k=1

respectively, where {p} and {¢}} are eigenvectors of the operator orthonormal with
respect to (-, ) and (-, -)s.

Consider the spaces of K-"noises" C!(J; HixLs) and C'((J;HikL,), | € {0} UN,
q€{0,1,....,d}, I C R is an interval.

2. Solution of Stochastic Variant of Hoff Equation on Torus
Consider the homogeneous Hoff equation
(A= A)uy = au (5)

and the Cauchy problem

We can [5] to reduce (5), (6) to problem (1), (3). To this end, we define the operators
L=MXN=A)=(A+dd+éd),M = ol (7)

and consider the stochastic equation

with the condition
n(0) —no = 0. (9)

Theorem 3. [4] Let the operator M be (L,p)-bounded, p € {0} UN. Then for any
no € ULy a.s. there exists the unique solution n € C'(J; UgLsy) to Cauchy problem (9)
for equation (8) of the form u(t) = Uluy.
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Let us consider the application of the obtained results to the Hoff equation in the
spaces of K-"noises", defined on a smooth compact Riemannian oriented manifold without
boundary. As such a manifold, we consider the two-dimensional torus T? = [0, 27] x [0, 7]
and consider the stochastic variant of the Hoff equation

A+ A)uy = aAw. (10)
Define the operators L and M by the formulas
L=(\+dj+0d), M = a(dd + dd). (11)

For the two-dimensional torus with coordinates x, x5, taking into account the general
representation of the Laplace — Beltrami operator on the manifold M, with the Riemannian

metric g .
AM = - (aigijaj)v

"Vl

we obtain the Laplace — Beltrami operator in the form
Ape = (87°02, — 470y, O, + 02,).

The eigenvalues \; are

2 2
A, = min max 472 |2 (1 + QLQ) - 201022—7; + 0—22
ECZ2,|E|=k+1 (c1,c2)CE m ™ T
Therefore, we have a non-negative, non-decreasing, finite multiple, converging only to co
sequence of eigenvalues {\;}, and the sequence of corresponding eigenfunctions {yy} forms
the necessary orthonormal basis in 4! = Hgi AL, where Hgf( AL is a subspace H{ Lo
obtained by the Hodge — Kodaira splitting [5], be orthogonal to harmonic forms for A # A.
Since the dimension of the manifold is d = 2, we have solutions of two types. The first
type takes place for O-forms (and 2-forms isomorphic to them), and the second type takes
place for 1-forms.
The relative spectrum of the Hoff equation has the form

R (12)

therefore, the operator M is (L, p)-bounded. For the inhomogeneous Hoff equation

L%: Mn+ f, (13)

it is necessary to find the projections of the inhomogeneity f onto the corresponding
subspaces by the existing projectors @, (I — @), see Theorem 2.

3. Numerical Solution of Stochastic Hoff Equation on Torus

Numerical solution of the Cauchy problem for the Hoff equation was carried out in
Maple using the operators and variables implemented in Maple. The solution algorithm is
presented by the following 5 steps.
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Step 1. Input the parameters «, A for the Hoff equation, x,y for the torus, number of
steps by time, and the function f(¢).

Step 2. Project the Hoff equation to subspace.

Step 3. Construct a numerical analogue for the Hoff equation.
Step 4. Compute the solutions by 4 time steps.

Step 5. Output the solution in the form of a graph.

The numerical solution was obtained by the given steps up to the time T = 4.
An approximate solution is obtained by approximating the first three basic functions
of the Galerkin—Petrov method in the form of product of expansions in cosines of the
trigonometric system in the variable x and in sines of the trigonometric system in the
variable y. Random values are introduced using the randomize procedure.

The graphs show the solutions at the time instants ¢, k = 1, ..., 4, by the corresponding
colors: green, blue, red, pink (see Figs. 1 — 3).

Fig. 1 shows the graphs of the solution to the homogeneous Cauchy problem with
A = —3,a =1 in the first 4 time cutoffs .

Fig. 2 shows the graphs of the solution to the homogeneous Cauchy problem with
A=3,a=0,5 in the first 4 time cutoffs.

Fig. 3 shows the graphs of the solution to the homogeneous Cauchy problem with
A=3,a=1and f(t) =t in the first 4 time cutoffs.

Fig. 1. The graph of the solution with A = -3,a=1,f =0
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Fig. 2. The graph of the solution with A =3, =0.5,f =0

Fig. 3. The graph of the solution with A =3,a = 1.5, f(t) =t

References

1. Sviridyuk G. A., Kazak V. O. The Phase Space of an Initial-Boundary Value Problem
for the Hoff Equation. Mathematical Notes, 2002, vol. 71, no. 2, pp. 262-266.
DOI: 10.1023/A:1013919500605.

2. Sviridyuk  G. A. On the General Theory of Operator Semigroups.
Russian ~ Mathematical — Surveys, 1994, wvol. 49, mno. 4, pp. 45-74.
DOI: 10.1070/RM1994v049n04 ABEH002390.

2021, vol. 8, no. 2 53



D. E. Shafranov

Shafranov D. E.; Shvedchikova A. 1. The Hoff Equation as a Model of
Elastic Shell. Bulletin of the South Ural State University. Series: Mathematical
Modeling, Programming and Computer Software, 2012, no. 18 (277), issue 12,
pp. 77-81. (in Russian)

. Shafranov D. E., Kitaeva O. G. The Barenblatt — Zheltov — Kochina Model with the

Showalter — Sidorov Condition and Additive "White Noise" in Spaces of Differential
Forms on Riemannian Manifolds without Boundary. Global and Stochastic Analysis,
2018, vol. 5, no. 2, pp. 145-159.

. Warner F. Foundations of Differentiable Manifolds and Lie Groups. N. Y., Springer-

Verlag., 1983.

Gliklikh Yu. E. Global and Stochastic Analysis with Applications to Mathematical
Physics. London, Springer-Verlag, 2011. DOI: 10.1007,/978-0-85729-163-9.

Dmitry E. Shafranov, PhD (Math), Docent, Associate Professor at the Department

of Equations of Mathematical Physics, South Ural State University (Chelyabinsk, Russian
Federation), shafranovde@susu.ru.

Received February 25, 2021.

YK 517.9 DOI: 10.14529/jcem210204

UUNCJIEHHOE PEIHTEHVE YPABHEHUNA XODDA

C AJZNTNBHBIM <«BEJIBIM IITYMOM >

B ITIPOCTPAHCTBAX /TUOPEPEHIINAJIBHBIX ®OPM
HA TOPE

. E. Ilagparos

Pabora mocssiiiieHa MOUCKY YUCAEHHBIX pelleHnii 3agadn Komm Jijisi JIMHEWHOTO CTO-
XaCTUIECKOT0 ypaBHeHus Xodda B IPOCTpaHCTBe TIaAKUX JuddepeHImalbHbX (GopM Ha
tope. Vcxo/ist U3 paHee MOJIyYEHHBIX PE3YJIBTATOB [0 BUIY AHAJUTHIECKOTO PEIIEHUs CTO-
XaCTUYIECKOT BapuaHTa ypaBHeHuss Xodda B IpOoCTpAHCTBAX MNIAAKUX JAuddepeHITnaIbHBIX
dopM Ha IVIAJKUX KOMIAKTHBIX PUMAHOBBIX MHOI0000pa3usx 6e3 Kpasi U BbIOUpast U3 aHa-
JINTUIECKOTO PEIIEHNST HECKOJIBKO CJIaraeMbIX, CTPOSITCSI I'PaOUKU YUCTI€HHOTO PEIIeHUS JJIst
Pa3JIMYHBIX 3HAYEHUI KO DUIMEHTOB 1 HEOJHOPOIHOTO YjIeHa. DTO YPABHEHUS] OTHOCUTCS
K ypaBHEHHsIM COOOJIEBCKOT'O TUIA C BBIPOYKJIEHHBIM OIEPATOPOM IIPU IPOU3BOHON, 9TO U
[TO3BOJIIJIO PEIUTh PA3IMIHbIE HAYAJbHO-KPAEBbIE 389K C TIOMOIIBI0 TEOPUH BBIPOXK JIEH-
HBIX QHAJMTHYECKUX IPYII U MOJIyTPYIII Pa3perialonux onepaTopos. B nerepmunnpoBaH-
HOM CJIyYae pelleHre CTPOUTCsI Ha (ha30BOM IIO/IIPOCTPAHCTBE UCXOJHOTO IPOCTPAHCTBA. B
IIpocTpaHCcTBax AuddepeHnnaabHbIX (POPM UCIOJIb3YETC sl HHBapUAHTHAs (hopMa Jialliacua-
ua — oneparop Jlamraca — Beasrpamu. Metos (ha3oBoro npocrpaHcTBa TaKKe UCIOJIB3YETCs
B HEJIETEPMUHUPOBAHHBIN CJIydae, HO, B CUIy HeauMOepeHIUpyeMOCTH <6ejioro mymMas B
OOBITHOM TOHUMAHUHU, MBI UCIIOJb3yeM mpon3Bonuyio Hembcona — Inmmkauxa. JIBymepHbIit
TOP B HaIlleil cTaThe UTrPaeT POJIb IJIAJKOIO KOMIIAKTHOIO OPUEHTHPOBAHHOIO PUMAHOBOTO
MHOrooOpasusi 6e3 Kpasi. Unc/ieHHbIE pellleHrs] HaXOATCs [IPU IIOMOINK MeTojia 1 ajiepKu-
Ha — [leTpoBa u npejcTaB/IEHBI JIJIsi HECKOJIBKUX (DUKCUPOBAHHBIX MOMEHTOB BPEMEHU, KaK
rpadukn KoapdunueHToB auddepeHnuaIbHbIX (POpM, MOTyUIeHHBIX B cucTeme Maple.

Karoueswie crosa: ypasrenus coboaesckozo muna; npouseodnas Heavcona — Lnukaiuza;

onepamop Jlansraca — Beavmpamu; duddepenyuarvroe Gopmol; pumaroso MHo2000pasue.
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