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We obtained the classification of solutions to a functional equation arising from the

research into mathematical models of critical states of the plastic layer. The layer is

exposed to a tensile stress under conditions of plane deformation. The function of the layer

heterogeneity depends presumably on two variables. We demonstrated how the research

into the mentioned mathematical models can be reduced to the solution of some nonlinear

systems of ordinary differential equations under the conditions of separating the variables

for tangent stress and for the heterogeneity function.
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Introduction

Normally the stresses on the contact surface between the plastic layer and the
compressive surfaces are unknown. To define the tensile (compressive) force, it is necessary
to solve the inverse boundary problem of defining normal stresses on the contact
surface. Various mathematic models of the stress state of a plastically deformed body at
compression or tension are based, as a rule, on the differences of technological processes.
At compression, what is important is the presence or absence of sliding of contact surfaces
as well as the value of the friction factor. At compression and tension of the welded joints,
the characteristics of the model are influenced by the deformation of the contact surfaces
as well as by involvement of the more solid area in the process of plastic deformation. The
suppositions applied quite often take the form of limitations over the function classes in
which the solution is being looked for [1, 2]. The hypothesis of the variables separation for
tensile stresses has proved to be effective [1 – 4].

τxy = X(x)Y (y). (1)

In practice, not only the whole joint but also its soft layer is heterogeneous. The basis
of the mathematical model is the approximate [1 – 5] system of equations of the plastic
equilibrium taking the following form for the heterogeneous layer [1, 2, 6, 7]:

∂σx

∂x
+

∂τxy
∂y

= 0;
∂σy

∂y
+

∂τxy
∂x

= 0; σx − σy = ±2(Z + µτ 2xy/Z). (2)

Here σx, σy τxy – are normal and tangent stresses, Z = Z(x, y) – is the function of the
soft layer heterogeneity. In articles [1, 2, 6, 7] the function of heterogeneity was supposed
to be dependent on one variable: Zxy = Z(y). It allowed us to reduce the system of the
plastic equilibrium equations (2) under certain simplifying conditions to a combination of
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some nonlinear systems of ordinary differential equations. The approach was based on the
following statement [1, p. 80, lemma 2; 2, p. 86, lemma 1].

Functional equation
f(x) + g(y) + f1(x)g1(y) = 0 (3)

can be solved if and only if either f and f1 are constants or g and g1 are constants.
In articles [8 – 10] the stressed state of the layer with the heterogeneity function of

the following type has been studied for the first time:

Z(x, y) = U(x)V (y). (4)

The research into mathematical models of critical states of the plastic layer was reduced
there to the solution to some nonlinear systems of the ordinary differential equations. To
do this, the research into the functional equation was carried out

f(x) + g(y) + f1(x)g1(y) + f2(x)g2(y) = 0. (5)

If instead of hypothesis (1) we use a more general assumption,

τxy = X(x)Y (y) +X1(x)Y1(y),

the method used in articles [8 – 10] will require the research in the properties of solutions
to the following equation:

f(x) + g(y) + f1(x)g1(y) + f2(x)g2(y) + ...+ f5(x)g5(y) = 0.

The purpose of the paper is investigation into the properties of a more general than
(5) functional equation

f(x) + g(y) + f1(x)g1(y) + f2(x)g2(y) + ... + fn(x)gn(y) = 0, (6)

as the basis of the development of method in papers [8 – 10] used for mathematical
modeling of critical states of the plastic layers.

1. Functional equation. Basic theorem

Let functions

f(x), f0(x) ≡ 1, f1(x), .., fn(x), g(y), g0(y) ≡ 1, g1(y), ..., gn(y)

be defined in set D having, at least, n+ 1 elements (n = 1, 2, ..) and acquire values in the
arbitrary field F with zero characteristic.

Lemma 1. Let functions f1, .., fn be linearly independent over field F . Let Φ = (fi(xj)) –
matrix n× n. Then there exist such x1, x2, ...xn ∈ D, that det Φ 6= 0.

Proof.
Let us suppose that this is not the case. Among all the minors of all numerical

matrices obtained by substitution of the arbitrary elements from set D instead of variables
x1, x2, ...xn in matrix Φ = (fi(xj)), let us choose the largest in order minor M , being other
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than zero. Its order is presumably smaller n. Let us choose arbitrary minor M1, bordering
M , and choose in it nonintersecting minor M column fi(xk) ( parameter i runs a multitude
of line numbers of minor M1). By the construction for every value of x = xk minor M1 = 0.
Let us expand determinant M1 over the chosen column. We will obtain a linear combination
of functions fi(x), with at least one of the coefficients, namely M , being other than zero.
Hence, functions f0, f1, .., fn are linearly dependent. This is a contradiction.

✷

Lemma 2. Let functions f0 ≡ 1, f1, .., fn be linearly independent over field F . Let functions

f(x), f1(x), .., fn(x), g(y), g1(y), ..., gn(y) (7)

satisfy equation (6). Then functions g(y), g1(y), ..., gn(y) are constant.

Proof.
According to lemma 1, there exist such elements x0, x1, ...xn of set D that (n + 1) ×

(n+ 1) determinant det Φ(fi(xj)) 6= 0.
Let us consider a system of linear equations with respect to the unknown g, g1, ..., gn:

f(xi) + f0(xi)g(y) + f1(xi)g1(y) + f2(xi)g2(y) + ... + fn(xi)gn(y) = 0, i = 1, 2, . . . , n.

The matrix determinant of this system by condition is other than zero. The only
solution to this system does not depend on variable y, therefore it is constant: g = const,
g1 = const, . . . , gn = const.

✷

Theorem 1. Let functions f0 ≡ 1, f1, .., fk be linearly independent over field F and
functions fk+1, . . . , fn linearly depend on them. Let functions (7) satisfy equation (6).
Then functions g(y), g1(y), . . . , gk(y) linearly depend on functions g0(y) ≡ 1, gk+1(y), ...,
gn(y).

Proof.
By condition,

fs =

k
∑

i=1

αsifi(x), s = k + 1, ..., n.

Substituting these expressions in equation (6), we obtain:

k
∑

i=1

fi(x)gi(y) +

n
∑

s=k+1

(

k
∑

i=1

(αsifi(x) + αs)

)

gs(y) + f + g = 0,

k
∑

i=1

fi(x)

(

gi(y) +
n
∑

s=k+1

αsigs(y)

)

+
n
∑

s=k+1

αsgs(y) + f + g = 0.

Since by condition functions fi, i = 0, 1, ..., k, are linearly independent, from lemma 2
it is evident that

gi(y) +
n
∑

s=k+1

αsigs(y) = ci; i = 1, ..., k;
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n
∑

s=k+1

αsgs(y) + g = c.

Hence, functions g(y), g1(y), ..., gk(y) linearly depend on functions g0(y) ≡ 1, gk+1(y),
..., gn(y).

✷

We can suggest another statement of theorem 1.

Theorem 2. Let there be rf of linearly independent functions over field F among functions
f0 ≡ 1, f1, ..., fn, there is rg of linearly independent functions over field F among functions
g, g0, ..gn and functions

f(x), f1(x), .., fn(x), g(y), g1(y), ..., gn(y)

satisfy equation (6). Then rf + rg ≤ n + 2.

From the viewpoint of applications to heterogeneous plastic media, of particular
interest is case n = 2, i.e. equation (5).

Theorem 3. With n = 2 the following cases are realized.
Case 1: rf + rg = 2. Then all the functions

f(x), f1(x), f2(x), g(y), g1(y), g2(y)

are constant. These constants have to satisfy equation (5):

f + g + f1g1 + f2g2 = 0.

Case 2: rf + rg = 3. Let rf = 1, rg = 2. Then functions

f(x), f1(x), f2(x)

are constant. Functions
g(y), g1(y), g2(y)

are not constant. For some elements of field F α, α1, α2, α2 +α2
1 + α2

2 6= 0 the following
equations holds:

αg(y) + α1g1(y) + α2g2(y) = 0,

as well as equation (5)
f + g(y) + f1g1(y) + f2g2(y) = 0.

Functions g1(y) и g2(y) depend linearly on g(y). If rf = 2, rg = 1, then functions

g(x), g1(x), g2(x)

are constant. This case is symmetrical to the previous one.
Case 3: rf + rg = 4. If rf = 1, rg = 3, then functions f(x), f1(x), f2(x) are constant.

This variant was considered in case 1. Let rf = 2, rg = 2. Then two subcases are possible.
Case 3.1. There exist α, β 6= 0, γ, δ ∈ R such that

f2(x) = α + βf1(x),
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f(x) + δf1(x) + γ = 0,

g(y) = αg2(y) = γ,

g1(y) + βg2(y) = δ.

Case 3.2. There exist α 6= 0, β, γ ∈ R such that

f1(x) ≡ α,

f(x) + βf2(x) + γ = 0,

g2(y) = β,

g(y) + αg1(y) = γ.

2. Example of reducing system (2) to a system of ordinary
differential equations

The result of system (2) under conditions (1) and (3) is equation [8, 9]:

(2U ′/X)(2V ′/Y )− (1/X)(X2/U)′(1/Y )(Y 2/V )′ +X ′′/X − Y ′′/Y = 0. (8)

Suppose, using designations from (1),(4) and (5),

f(x) = U ′/X, g(y) = 2V ′/Y, f1(x) = −(1/X)(X2/U)′,

g1(y) = (1/Y )(Y 2/V )′, f2(x) = X ′′/X, g2(y) = −Y ′′/Y.

Then each of the three mentioned cases of theorem 3 results in the system of ordinary
differential equations. As an example, let us consider the case when all the 6 values of
g, g1, g2, f, f1, f2 are constant. Then the following system of equations with an independent
variable y occurs:

V ′/Y = g, (1/Y )(Y 2/V )′ = g1, Y ′′/Y = g2, (9)

as well as the similar system with variable x. Solution to system (9) with initial conditions
(7) yields three cases depending on the sign of constant g2. Suppose g2 = −a2, a 6= 0..
Then from (9) follows equation

Y ′′ + a2Y = 0.

Solution to this equation under condition (7) is function

Y = C1 sin(ay),

where C1 is an arbitrary constant. Using the other equations of system (9), we can obtain

a =
√
−gg1, V = 0.5(1 + cos

√
−gg1y), Y = 0.5

√

−g1/g sin
√
gg1y).

If g2 = a2, a 6= 0, we can obtain similarly:

V = 0.5(1 + ch(
√
gg1y)), Y = 0.5

√

g1/g sh(
√
gg1y).

Thus we get similar expressions of the second system of equations for the functions
depending on x. Depending on the increase or decrease of functions U, V , four variants of
solution to equation (6) are obtained. For example, if functions U(x), V (y) are decreasing,
then

Z(x, y) = U(x)V (y) = 0.25(1 + cos
√
−gg1y)(1 + cos

√

−ff1x).

Tangent stresses in the layer are calculated according to formula (1).Using equations
of equilibrium and the condition of plasticity (2), by integration we can get analytical
expressions for calculating normal stresses and critical load.
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