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The problem of stabilization of a linear system of differential equations with constant
delay containing fast and slow variables is considered. The systems of this kind can be
obtained from the systems with linear delay by replacing an argument. An algorithm for
stabilizing this system with delay is proposed and implemented using Matlab application
software package.
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Introduction

The controlled system of differential equations with constant delay
dr(t)/dt = Ayx(t) + Biz(t — 7) + Agy(t) + Boy(t — 7) + Crua(t),
dy(t)/dt = Voe'[Asx(t) + Bsx(t — 7) + Asy(t) + Bay(t — 7) + Caus(t)], (1)
t >0, Yg=const, ¥g >0, 7=const, 7>0

is considered. The systems of this kind can be obtained from the systems with linear delay
(1 — p)9, 7 = —In(p) by the substitution ¢ = In %. Systems with linear delay occur
in problems of mechanics, physics [1], biology, information exchange. For example, in the
study of oscillation process of the current collector of the moving locomotive at interaction
with the contact wire (taking into account the impact of elastic supports) [2]. In this case,
if a <light> suspension is used during dynamic interaction, then at some (sufficiently high)
speeds of movement of the locomotive, a large <separation> of the skid of the pantograph
from the contact wire occurs, i.e. instability of movement. The problems of stabilization
of other (simpler) systems with linear delay were considered, for example, in |3, 4].

One can see that the considered system for sufficiently large values of the argument
is a combination of two subsystems containing fast y(¢) and slow z(¢) motions. This
classification is proposed in [5], where similar complex systems are considered and one
of the two subsystems contains a small parameter at the derivative.

Matrices A;, B; (7 = 1,2, 3, 4) have dimension [m x m/|, vector-functions x(t), y(t) have
dimension m. The components u;(t) of control u(t) = {ui(t),us(t)}" are r-dimensional
vector functions, the matrices C; have dimensions [m x r]. If for u(t) = 0 the solution
of the system is unstable, then the problem of stabilizing the system on an infinite time
interval [6] arises. The goal of stabilization proposed by the authors is to develop such
stabilization algorithms that can be obtained, for example, by solving equations of the
Lyapunov—Riccati type. Note that the authors have solved the problem of stabilization of
a particular unstable fourth-order system using these algorithms.
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1. Exponential Stability Conditions and Stabilization of Weakly
Coupled Systems

We consider the linear normalized space R™ in which the norm of a vector w = {w;}"
(here w; (j = 1,...,2m) are components of the vector w, T is transpose icon) is defined,

for example, as
2m

lwll =) Juwjl.

J=1

We define the norm of the matrix D = {d;;} (¢,j = 1, ..., 2m) in accordance with the norm
of the vector [7]: ||D|| = max ) |d;;|. In favor of this choice, we can say that the norm of
P

a matrix is defined in almost tile same way as the norm of a vector.

Consider u(t) = 0. Setting x,.1(t) = x(t + n7), Yns1(t) = y(t +n7): ¢t € [0, 7], we
pass to the countable differential-difference system on the finite time interval [0, 7] [1]. We
have the relations

A1 (t)/dt = A1y 41(t) + Biay(t) + Asynia(t) + Bayn(t),
Endyni1(t)/dT = €'[A3zy11(t) + Bszn(t) + Agyns1(t) + Bayn(t)], (2)
Mn

= 19—0, te [0,7‘], Z‘n+1(0) = Jj'n(T), ynJrl(O) = yn(T)'

g’ﬂ

Consider asymptotic properties of the differential system (2) for small values of &,.

Obviously, the system contains slow z,(t) and fast variables y,(t) [5]. As shown in |3,

9], the problem of obtaining sufficient stability conditions (and hence, in what follows,

constructing a stabilization algorithm) is reduced to studying the asymptotic properties
of the simpler system

dx2+1(9n)/d9n = en[(A1 + Bl>x2+1(9n> + A2yg+1(9n> + 3292(071)]7
dyp 11 (0)/d0, = ™" [(As + Bs)a 1 (0n) + sy (0n) + By, (0,)], 3)
6, = L.
En

Since subsystems in system (3) may be weakly connected [6], 3], we assume that for the
matrices A, By the following terms are valid:
1) the eigenvalues A of matrix A; have negative real part

Re(M\) < =1, B = const, B > 0;
2) the eigenvalues A of the matrix A; + B; also have a negative real part, i.e.
Re(\) < —f2, [ = const, By > 0; (4)

3) for the second subsystem in (3) we suppose that for the eigenvalues A of the matrix A,
the following inequality is valid

Re(X\) < —B3, f33 = const, B3 > 0;
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4) for the eigenvalues p of the matrix —A; ' B, the following inequality holds
lp| <, 7=const, 0 <~vy<1. (5)

In the work [8] it is shown that conditions 1-4 are often insufficient for the asymptotic
stability of the system (2). The asymptotic stability conditions for the original system
(1) (using the Laplace transform method) are obtained in [10]. We will obtain somewhat
different sufficient conditions (simpler than for stabilizing the system (2)) for asymptotic
stability, which essentially takes into account the small parameter ¢,,.

First, consider the asymptotic properties of the first subsystem in (3) containing only
the variables x? (0,,). In general, we assume that at least one element of the matrices Az, By
is nonzero. Obviously, this subsystem does not contain the delay terms. Since the matrix
By can be zero, the necessary conditions for asymptotic stability are condition 1. Further,
for the <limit> matrix A; + Bj, conditions 2 are also true since the <limit> system has
the form

/
dal,(60,)/d0, = (A1 + By)al, 1 (0,),0, = —. (6)

€n

This follows in view of relation

t t = t =
Tnt1(Enbn — T) = Tnt (5_) e, [Afl?nﬂ (5_ - 9n> + Brpia (5_ —On — 7')} =

= O(en)[S;lp |20 (0)]| + S;lp [zn—1(0n)], 0 < O < 1.
Finally, from this we obtain that the solution of the system (6) (the solution of the
unperturbed system) is exponentially stable.

Taking into account the above, consider the problem of stabilization of the system of
<slow> motions

dz’(t)/dt = A2°(t) + B1a®(t — 7) + Chu(t). (7)

Let for u(t) = 0 the solution of this system be unstable, or stable, but not asymptotically.
If condition 1 is not satisfied, we stabilize the system without delay terms, for which we
use the method proposed in [6], assuming the control action ul(t) = —C| I'12°(t), where
[’y is a symmetric matrix of dimension [m x m]| satisfying equation

P1A1 + (Al)Tfl — 2F101(01)TF1 = —a1F1 — (51E,

E is an identity matrix of dimension [m x m]; §; is a small positive number; «; is a
positive value that we can set. Since for the eigenvalues Aj of the <corrected> matrix
Aj = Ay — C1(Cy) Ty the relation Re(A$) < —4L is valid, due to the choice of oy (making
the value of oy large enough) it is often possible to achieve that, along with the fulfillment
of the inequality (4) it is also true that (5). Otherwise, we perform further stabilization,

we set u?(t) = —C| Ty2®(t — 7) solving the matrix equation
Ty(A5 + By) + (A + B1) Ty — 2I5C1(C1) Ty = —aol — B, A7 = Ay — C1(Cy) 'T.

Now assuming in (7) the control u;(t) = —(C;) 'T12%(t) — (C}) "T'92°(t — ), we obtain the
exponential stability of the <limit> system (system of «slows motions).
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Let us now consider the behavior of the second subsystem in (1) in the absence of
variables x(t), z(t — 7). Obviously, for uy(t) = 0 we have system

dy®(t)/dt = Ve [Agy°(t) + By (t — 7)]. (8)

To justify the stabilization algorithm for the second subsystem in (1), we prove that
inequality 3 is very important in determining the sufficient conditions for the solution of
the full system.

Lemma 1. Let among the eigenvalues ;\j of the matrix A, there is No: max; Re(;\j) =
Re(Xo) = a > 0. Then the system (8) is unstable for any matriz By.

Proof.
Let’s make in (8) the substitution
y(t) = ~y(t)exp{fo(a+ E)e'}

(¢ is a sufficiently small positive number, ~(¢) is a bounded vector function of dimension
m x 1). Substituting this expression in (8) and reducing both sides of the resulting relation
by exp{fy(a@ + £)e'}, we obtain for v(¢) equation

dy(t)/dt = Ope" [[Ag — (@ + &) E]y(t) + Byeap{bo(a+&)(e ™ — eIyt —7)] . (9)
The corresponding differential-difference system has the form
enynr1(t)/dt = €'[(As — (@ + &) E)ynsa1(t) + Baeap{bo(a + ) (e — Dp"e' ey (t)].
Assuming the terms containing 7, (¢) to be inhomogeneous, we write down the solution of

the system (9) in integral form [1]

t
s

Yn1(t) = Yig1(t, 0)1m41(0) + /Yn+1(t, s)Byexp{o(a + €)](e”" — 1)65}%%(3)615- (10)

Here Y,11(t,s) = exp{Oop"[As — (& + E)E][e! — €°]}, 0 < s <t < 7, E is the identity
m x m matrix. Obviously, the eigenvalues A: of the matrix Ay — (& + &)FE satisfy the
inequality Re(\:) < —¢1, 0 < & < &. Then the estimate

1Yoia(t,8)|| < Mexp{—0opu~"1(e" —€*)}, M = const, M > 1 (11)
is valid. Taking into account this estimate, from (10) we obtain inequality

1Bl < Meap{—bopu~"1(e" = 1)}H7ar1(0) ]|+

t

68
+ [ S Menp{—tu (e = e))eapletton e (s = DHIB (o) |ds.
0

(12)

Consider the integral term on the right-hand side of this inequality. Obviously, the relation

t
e’ —-nz= 8 s -nz=
/ < Meap{~8u~"e") yerple o "n(n — D} Bullln(s) s <
0
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M
< —
1

max ||y, (t) [ exp{e’fop™"E1} || Ba]

is true. Then from (11), (12) we obtain inequality

. M .
Iy Bl < Meap{—bop~"e1(e" — 1)} (0)] + X 1y (E)llezp{e’Oop™" €1} | Ball.

Hence, for ¢ = 7 we obtain

(1) = M s
V(7Y nsall < Meap{—bop~ 1)61(1—u)}|l%+1(0)|l+7m§w<||%(1t)IIBZL“JD{Qou g1} Bl <

M
< lMepr{—@oM(nl)gl(l — )}t + ;exp{Hou”fi}HleH] max [ (O)]]-

Therefore, for max | Ynt2(t)|| from (12) we have the estimate
—(n-1)= M —n=
mx [a(0)] < M [ Meap{~Sop= " Vex(L = )} + = eopfop-2n} | Ball| max 0]+

M —(n+1) =
o e (1) fep{ B D2} B

Denoting max; ||v,(t)|| = vn, we obtain from the last estimate the inequality

M
Upyo < M lMexp{—QOM_(n_l)gl(l — )} + ;exp{eo'u_nél}HBZlH} ot

M - _ _
+7H€$p{6’oﬂ +151}’|B4||Un+1 = /3711+1Un+1 + ﬁivn-

Hence it follows that the value v, 12 does not exceed the solution of the second-order system
[10]

Vpyp1 = Apln, Uf =0, U2 = Upy1, Ap= ( 91 —21 ) . (13)
ﬁn n+1

Let us note the properties of the matrix A4,. The "limit" matrix is

- 01
(00,

The coefficients of the matrix A, have the following properties: 37 > 0, Y.3/ < oo
n

(j = 1,2). Since the <limit> matrix has eigenvalues \; = Ay = 0, the difference system
(13) is exponentially stable [10]. Therefore, 7, (t) is exponentially stable. Obviously, for
the value |7, (t)|| we have the estimate ||7,(t)|| = O(exp(—0oé1p~")). Hence it follows
y°(t) = O(exp(Bpa — 1 )exp(t)), which implies the instability of the solution of the system
(8) for any matrix B,. The lemma is proved.

O
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Taking into account the lemma, we see that at the first stage it is necessary to stabilize
the following system for (8) in the absence of delay terms:

dgo(t)/dt = 1906t[144g0(t) + Og’ag(t)]

Its stabilization can be carried out, for example, by Furasov’s method, which we outlined
in the stabilization of the system (7). Having stabilized this system, let us consider its
behavior in the presence of delay terms. If the resulting system

dyd(t)/dt = Ope'[Agsyd(t) + Bayl(t — 7) + Cous(t)]

is unstable again with us(t) = 0, then we will stabilize the "degenerate" difference system
11, 12]
ygnJrl = —A B4ys n AZSICQ’LLSJL = A@S,n + Cgus,n (14)

with minimization of the functional

Q= Z[(yg,j)TGyg,j + UST,jDUs,j];

J=0

applying the algorithm suggested in [12], namely, setting the control u, = [D +
(Cy)TPCy) " (Co)TPAjs, = Aijjsn. Here P is a symmetric, positive definite matrix
satisfying the equation [12]

(A)TPA—P+G —[(Cy)"PA]T[D + (Co) T PCy~H(Cy) TPA =0, (15)

where G, D are positive definite matrices of dimension, respectively, m x m and r x r.
Note that the nonlinear matrix equation (15) is solvable provided that the system (14) is
completely controllable. Thus, setting in the second controlled subsystem of the system
(1) the control uy(t) = —(Cy) TTyy(t) + [D + (Cy)PCol "1 (Co)P A y(t — 1), we get that the
second subsystem in the absence of terms x(t), x(t — 7) on the right side is exponentially
stable [12].

2. Stability and Stabilization of the Original System

Obviously, the sufficient conditions for exponential stability for weakly coupled
systems obtained in the previous section, are not sufficient conditions for the asymptotic
stability of the original system (1). Taking into account the results obtained in the previous
section, we first stabilize the first subsystem in (1) (in the absence of the terms y(t), y(t—7)
on the right-hand side). Methods for stabilizing this system are given earlier in the previous
section. Further, considering this subsystem stabilized in this way in the presence of terms
containing y(t), y(t — 7)), we obtain from (3) the subsystem

dxd . 1(0,)/d0, = e {[(Ar + B1)zd 1 (0,) — 1(Ch) "T1a®(t) — 1(Ch) "T9a(t — 7)+

+A292+1(9n) + 3292(071)} R 5n{[(A1,s + Bl,SDanrl(en) + A2yg+1(9n> + Bng(en)}'

Due to the presence of the multiplier ¢,, on the right-hand side, the value x,1(t) satisfies
asymptotic equality

Tnpa1(t) = —(A1s+Bis)” (A2yn+1( )+ BQZUn( )+ Oz (B) |7+ 1Ynsr ()l + () ]|7),
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therefore, the first approximation system is the difference (degenerate) system

T1(0n) = =[Ars + Bia] " [Agyy i1 (0n) + Bay,(00)]}-

whence, taking into account the second subsystem (3) we obtain the controllable first
approximation system

Endyps1(t)/dt = e'{—[Az + Bs][Ars + B1| "' [Asypni1 (t) + Bay,(t)] +

16
+ A1 (8) + Bayp (1)} = e {=A" 1 (t) + Byn(t) + Cous(t)}. .
This system (in the case of instability or stability, but not asymptotic) is quite simply
stabilized by the algorithms presented in the previous section. In the papers [8, 13] it
was proved that in the case of exponential stability of the stabilized subsystem (16) and
exponential stability of the stabilized system (7) the original system is exponentially stable.
Due to the fact that the matrices A;, B; j = 1,2, 3,4 are constant, when stabilizing
the system (1) the Lyapunov—Riccati equations with constant coefficients are solved by
the methods proposed in the Matlab package. To implement the methods outlined by
the authors, a software based on the Matlab package has been created, which makes it
possible effectively stabilize the systems under consideration. The example given below
and the numerical calculation of the solution illustrate the applicability of the proposed
algorithms for stabilizing the considered system.

3. Example

Consider a fourth-order system
drq(t)/dt = x1(t) + 0.1ao(t) + 1 (t — 1) + 1 () + 11 (t — 1) + uy(2),

dxo(t)/dt = 0.1z1 4+ xo9(t) + ya(t) + y2(t — 1) + uy (%),
dy,(t)/dt = e'[z1(t) + z1(t — 1) + y1(8) + 201 (¢ — 1) + ua(2)],
dys(t)/dt = e'[zo(t) + zo(t — 1) 4+ 0.2y1(t) + ya(t) + yo(t — 1) + ua(t)].

The original system is unstable, which can be seen from the graph shown in Figure 1. The
system of slow variables is also unstable, which can also be seen from the corresponding
graph shown in Figure 2. Let’s stabilize the system of slow variables. This system
becomes exponentially stable, as shown in Figure 3. Let us now consider the system
of «fast> movements. This system is unstable because matrix A, has the eigenvalues
A =X\=1

We will stabilize the system in two stages. The corresponding subsystem becomes
exponentially stable, which can be seen from the graph shown in Figure 4. However, the
original system stabilized in this way is unstable, since the matrix A° has eigenvalues
A0 =1.135 + 2.3i, A = 1.135 — 2.3i. Finally, having stabilized in two stages the system

dy®(t) = Doe' [A%°(t) + BYy°(t — 1)],

from the graph shown in Figure 5 we see that the original system also becomes
asymptotically stable. Note that this graph shows the solution in variable .
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CTABNJIN3AIINYA OJHON CUCTEMBI C JIMHENHBIM
3AIIA3IBIBAHUEM

B. I'. I'pebenuuxos, A. B. Jloorcruros

PaccmaTpuBaercs 3amada crabumiamsarun JWHEHHON cucTeMbl qudhepeHnua bHbIX
YPaBHEHUI ¢ MOCTOSTHHBIM 3alla3/bIBaHUEM, COjiepKalneil ObICTPbIe U MeJJIEHHbIE TePeMeH-
uble. K cucremam 1mosio6HOrO BHJIA 3aMEHO BpeMeHH (apryMeHTa) NPUBOJSITCS CHCTEMBI C
JIMHEWHBIM 3ama3abiBanueM. [IpejjioykeH aJiropuT™ CTabUIM3aIUN STONH CUCTEMbI 3aI1a3/Ibl-
BaHUEM, KOTOPBIil peaim30BaH C MOMOIIbI0 makera Matlab.

Karouesvie cr08a: aCuMnmomuieckas Ycmoiuusocms, sunetdnoe 3ana3dveanue; cma-
bUNU3AUUA.
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