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The article proposes an information-logical model for the study of non-classical linear
models of mathematical physics. Information-logical modelling is based on the stages of
research of mathematical models and methods of system analysis. The decomposition carried
out takes into account the following: the peculiarities of analytical and numerical methods
for studying various initial-boundary value problems for Sobolev-type equations, various
applied problems that are solved using non-classical linear models of mathematical physics.
When constructing an information-logical model for the study of non-classical linear models
of mathematical physics with a random external influence, general structural elements were
identified, which made it possible to represent a set of studied information objects, their
attributes and relations between them.
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Introduction

In theoretical and applied research related to the problems of information processing
and analysis, identification and control, stochastic models are used to assess the state of
complex physical and financial systems and their parameters. Despite the fact that, for
describing and modelling a large number of physical, technical and technological processes,
the stochastic Sobolev-type equations

Ldn = Mndt + Ndw (1)

are used, where L, M and N are linear continuous operators acting from the Hilbert space
il into the Hilbert space §; n = 1(t) is a required process, and w = w(t) is a given stochastic
K-process. In each case, equation (1) is endowed with either the Cauchy equation

1n(0) = &, (2)
the Showalter—Sidorov condition
P(n(0) — &) =0, (3)

or the initial-final value condition

Py(n(0) = &) = Pi(n(ty) — &) = 0. (4)
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Here P, Py and P, are relatively spectral projectors, and

§o = Z VEorpr, &= Z VE PR,
k=1 k=1

&0, &1 € Ly are pairwise independent Gaussian random variables such that D&y, D&y <
Cj,keN,j=0,m.

The purpose of this article is information-logical modelling of research of non-classical
linear models of mathematical physics with a random external influence. The method of
information-logical modelling, using the methods of structural system analysis, makes it
possible to represent a set of information objects, their attributes and the relationship
between them [1].

1. Main Blocks of Information—Logical Model

The process of constructing an information-logical model for the study of non-classical
linear models of mathematical physics begins with constructing a context diagram (Fig.
1), which displays the process of work with the mathematical model as a whole.

I. Original real object
(or process)

T R
—— lll. Statement of the problem[*
B I1l. Non-classical model l—
= N of mathematical physics |
g ! o
L =
g [ IV. Mathematical methods N 8
= to study the model JoS
Z : 3
= 3
‘g ] V. Software (or a complex =
? - of computer programs) o @
* R V1. Analysis of results RN
-/ ! N

VII. Qualitative conclusions.
Directions of the further work

Fig. 1. Context diagram of work with non-classical models of mathematical physics
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There are seven main stages: description of the original real object (or process),
allowing to start work with it; statement of the problem, allowing its formalization;
construction of a non-classical model of mathematical physics; application of mathematical
methods to study the model; development and application of a software (or a complex of
computer programs); analysis of results; conclusions on the result of work. Note that the
seven stages are defined on the basis of generally accepted approaches to construction
of a mathematical model (for example, [2]), taking into account its integration into the
processes of systems analysis and synthesis (for example, [3|). In the context diagram, the
stage numbers are indicated by Roman numerals.

After describing the process of work with a mathematical model as a whole (context),
its functional decomposition is carried out. The top-level decomposition diagram (Fig. 2)
consists of seven main functional blocks.

Within the framework of constructing decomposition diagrams, both of the second
and subsequent levels, the dashed lines of structural objects highlight those elements that
are directly related to this study.

The analysis of the studied objects and processes using non-classical models of
mathematical physics showed that the following processes are currently the most actively
studied [4 - 13]:

— filtration of liquid in fractured porous and other media;

— distribution of the potential of the speed of movement of the free surface of the
filtering liquid;

— evolution of the free surface of the fluid filtering in a reservoir of limited thickness;

— deformation of the I-beam and the I-beam structure;

— vibrations in a thin rod and in the construction of thin elastic rods;

— flow of a viscoelastic fluid through a pipeline;

— propagation of long waves in shallow water;

— small vibrations of the rotating fluid;

— motion of an incompressible viscoelastic fluid in the earth’s magnetic field;

— dynamics of a weakly compressible viscoelastic fluid;

— propagation of a potential electric field in a semiconductor;

— propagation of Rossby waves or planetary waves, which have a long-wave character
and a low frequency;

— propagation of linear waves in plasma in an external magnetic field;

— vibrations in the DNA molecule;

— propagation of a nerve impulse in the membrane sheath;

— processes of the type <reaction — diffusions.

Fig. 3 shows the indicated processes in the form of a hierarchical tree structure. The
group of the first two digits clearly postulates the structural connections of each process
with the objects of the decomposition diagram.

There are four goals of mathematical modelling:

— descriptor goal related to the description and understanding of the device of a specific
object, its structure and basic properties, the laws of its dynamics and relationship with
the surrounding world;

— optimization goal associated with the search for the best values of the parameters
and (or) characteristics of the model under the given criteria;

— control goal related to the determination of the control capabilities of an object or
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Fig. 2. Top-level decomposition diagram

process and finding the best control method for the given goals and control criteria;

— predictive goal associated with predicting the consequences of the implementation
of specified methods and forms of impact on an object or process.

Note that, in the ongoing research of non-classical models of mathematical physics,
only the following two types of goals were realized: descriptor ones, for example, |7, 10, 13]
and control ones, for example, [14, 12, 15|. Fig. 4 shows the structure of non-classical
models of mathematical physics in relation to various goals of mathematical modelling.
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So, if the goal of modelling is control, then the mathematical model includes the penalty
functional, control criteria.

Control problems were not considered within the framework of the ongoing studies
of stochastic nonclassical linear models of mathematical physics. When the blocks of the
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Fig. 3. Investigated processes using non-classical models of mathematical physics

mathematical model are decomposed (Fig. 5), it is assumed that the input parameters can
be both stochastic and deterministic. For example, the initial state can be specified as a
random variable, and the boundary condition can be specified as a deterministic zero value.
In addition, in the block of initial and boundary conditions, the Cauchy condition, the
Showalter—Sidorov condition [16], the initial-final value condition [17], and the multipoint
initial-final value condition [11| are highlighted. Note that, if a mathematical model
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assumes consideration of a graph [18], then, in the block of initial and boundary value
conditions, the condition of the balance of flows and the conditions of continuity at the
vertices of the graph are distinguished. An important characteristic of a mathematical
model is the presence of an external uncontrolled or controlled impact, while in the
framework of the study, mathematical models are studied in the presence of an uncontrolled
external impact of a stochastic nature.

| I.1. Conceptual statement of the problem I—»l 11.2. Determination of modelling purposes |
L.l 11.2.1. Descriptor goal |—
e e S
’_.J 11.2.2. Control goal Jf - — -
| o |
— 11.2.3. Optimization goal ]l | :
| s e e o |
—* I1.2.4. Predictive goal Jl | :
|
| ! !
11.3. Conceptual description of an object (or a process) I—-l 1L.4. Conceptual scheme of an object (or a process) | :
| |
i ——— | I |
111.2. Uncontrolled | 1.3, C?ntrollediparameters — |
parameters Lo SOOI IMPaCt: !
of environment W s v e |
[ 111.5.2. Penalty | |
3 A e
1.1, Input | |_ (quality) functional | |
parameters VA A |
‘ ‘ 111.5.3. Control criteria :& 7777777 I
| et ses s w0 e e e
\
! !
lll.4. Qutput
111.5.1. Sobolev-type equation (system of equations) —] Parameters
(characteristics)
I
11.5.4. Initial, L ,,,,,,, - I

initial-boundary
value conditions

Fig. 4. Structure of non-classical models of mathematical physics, taking into account the goals
of mathematical modelling

When decomposing the block of analytical research, the following two main directions
are identified: the mathematical foundations of the research and theoretical research of
the considered mathematical problems (Fig. 6).

Mathematical foundations involve the development of mathematical theories and
methods that allow theoretical research. As the main ones, the following methods of
classical theories and branches of mathematics are highlighted: functional analysis;
equations of mathematical physics. For research of nonclassical models of mathematical
physics, the following are used [19, 20]:

— theory of relatively p-bounded operators and the resolving groups generated by them;

— theory of relatively p-sectorial operators and the analytic resolving semigroups
generated by them;

— theory of relatively p-radial operators and strongly continuous resolving semigroups
generated by them.

When considering finite-dimensional mathematical models [21], the theory of
descriptor (or algebraic — differential) systems [21, 23], is used, including the theory of
Leontief-type systems.
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Fig. 5. Decomposition of the structure of non-classical models of mathematical physics

IV.1. Analytical methods
for studying non-classical models —l

of mathematical physics

IV.1.2. Theoretical study

IV.1.1. Mathematical basis of the study

of the mathematical problems
—-I IV.1.1.1. Functional analysis | —-| IV.1.2.1. Direction of the study
—-| IV.1.1.2. Equations of mathematical physics | —| [Vv.1.2.1.1. Study of solvability of a problem
IV.1.1.3. Theory of relatively p-bounded 1V.1.2.1.2. Study of uniqueness
| operators and the resolving groups generated of a solution to a problem
by them = =
1V.1.2.1.3. Obtaining an analytical
| P S S S e s | i solution to a problem
| IV.1.1.4 . TTheory of relatively p--sectorial
—» operators and the analytic resolving semigroups | ——I 1V.1.2.2. Methods of the study |
| | generated by them |
| T e o e - —~| IV.1.2.2.1. Constructing a phase space |
,,,,,,,,,,,,,,,,,,,, q
| : :
J IV.1.1.5. Theory of relatively p-radial - | | | 1v1.2.2.2. Method of reducing a problem
— operators and strongly continuous resolving | to an abstract one and obtaining results for it
| | semigroups generated by them |
[ cemigrofipsgenensEfAYERER oo o1 D Eemm e ——————
[ e ettt L _' 1V.1.2.2.3. Obtaining conditions I
| IV.1.1.6. Theory of descriptor | | |L for a particular equation B
(or algebraic -- differential) systems | T e S L R T I e T
b = — = . L | IV.1.2.2.4. Mony4eHne ycnoBuii |

| " ANA BblfeNeHHOro KNacca ypaBHeHN |
|

L | IV.1.2.2.5. Constructing a sequence |
g of approximate solutions |

Fig. 6. Analytical methods of research of non-classical models of mathematical physics
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When carrying out theoretical studies, directions are distinguished related to the study
of the solvability of various problems for Sobolev-type equations, obtaining conditions for
the uniqueness of a solution, and obtaining an analytical solution to the problem. As the
research methods that are used in this case, let us single out those that are used in the
works of the scientific school of Professor G.A. Sviridyuk, and in other scientific schools
[5, 7, 8, 24, 25].

In the study of a mathematical model with the initial Cauchy condition, a method for
constructing a phase space was developed in the Chelyabinsk scientific school [24]. Most of
the mathematical models are reduced to an abstract problem, which is then investigated on
the basis of the theory of degenerate (semi)groups. In line with these methods, stochastic
nonclassical linear models of mathematical physics are studied, which are presented in the
next paragraph of the article.

Fig. 7 shows the decomposition of the block of numerical research methods.

IV.2. Numerical study of nonclassical

models of mathematical physics —I
IV.2.1. Choice, modification and development IV.2.2. Evaluation of effectiveness
of a humerical method of a numerical method
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(or Runge - Kutta - Feldberg) method |—— - T T ————————
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3
! 1IV.2.1.3 Multi-step method | [ e e
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Fig. 7. Numerical methods for studying non-classical models of mathematical physics

The first step is the selection, modification or development of a numerical method.
After analyzing various studies, the following approaches were identified:

— modifications of the Galerkin method [10-12];

— Runge — Kutta (or Runge — Kutta — Feldberg) method [26];

— multi-step method of coordinate descent and its modifications |27, 12];

— decomposition method and penalty method [12];

— Ritz method [27, 12];

— methods based on the theory of algebraic-differential systems [28, 29].

An important stage in the numerical study is the evaluation of the efficiency of the
constructed algorithm. The main elements of such an assessment are to clarify issues
related to the convergence and (or) stability of the numerical method. In addition, the
estimation of the errors of the method for one or another of its characteristics gives
an idea of the effectiveness of the numerical algorithm. It is important to estimate the
computational resources used in the implementation of the algorithm.
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The decomposition of the software block for the study of a mathematical model
is shown in Fig. 8. The program can be implemented in such mathematical software
packages as Matlab, Maple, Mathcad, etc., or written in various programming languages,
for example, C++, Python, Fortran, etc. Undoubtedly, the important elements of software
implementation are computational experiments and processing of information obtained on
their basis.

V.1. Software packages V.2. Software packages V.3. Software on
for symbolic operations for numerical methods |different program languages I
; | Vis A | Va1 [o..71
vit | | | ovis | ) vis. V3.1, L_ V3.2
Maple [« Maxima Statistica Ct++ Fortran
’ l J il J 7 Fertan
| vis | Via T i | Vas L
Vi2. |4__> vid. | ] Vs | V33, L_ V.34, |
Mathcad Matlab SPSS hon Julia
ITJ lTJ Lr__l lP_yi_J +IT_

V.4. Conduction
of computational
experiments

V5. Information
processing

Fig. 8. Structural diagram of the software stage for work with a mathematical model

2. Information — Logical Model of Research of Stochastic
Nonclassical Linear Models of Mathematical Physics

Let us apply the method of information-logical modelling to the study of three non-
classical linear models of mathematical physics with a random external influence (Fig. 9).

Stochastic Barenblatt — Zheltov — Kochina model [30]. Let G C R? be a
bounded domain with the boundary 0G of the class C*°. Let us search for n = n(z,1t),
satisfying, in the cylinder G x R, the equation

(A — A)dn = aAndt + Ndw, (5)
the Dirichlet condition
n(wt) =0, (z,t) € 0G x Ry, (6)
and the Cauchy condition
n(z,0) = mo(x). (7)

Here the parameter o € R\ {0}, A € R characterizes the environment. Model (5), (6)
describes the dynamics of fluid pressure, which is filtered in the fractured porous media.
(Note that this equation has universal character, since it also simulates the process of
moisture transfer in soil and the process of heat conduction with two temperatures).

In Fig. 9, consideration of this model begins with pp. I.1 Filtration processes — 1.1.1.
Filtration of liquids in fractured porous media — I1.1.1. The Barenblatt - Zheltov - Kochina
model is used to find the pressure of a liquid filtering in fractured porous media.
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Oskolkov’s stochastic model on a graph [31]. Let G = G(; &) be a finite
connected oriented graph. Here, denote by U = {V;} the set of vertices, and by & = {E,}
the set of edges. On the edges E; of the graph G, we define the one-dimensional linear
stochastic Oskolkov equations

)\jduj — dujm = ozjujdt + Ndw, (8)

with the Showalter—Sidorov condition

P(u(0) — &) =0, (9)
and, at the vertices V; of the graph G, we set the continuity conditions

u;(0,t) = ug(0,t) = wp (I, t) = un(ln, t),
E;, E, € E*(V;),E,,, E, € E¥(V})

and the flow balance conditions

> du(0t) = Y dguke(l t) =0, (11)

BjeEe(V;) EyeE=(V;)

where P is a relatively spectral projector, £« (V) is the set of edges having begin (end)
at the vertex V;. It is important to note several separate cases for the vertices and edges
of the graph.

(i) If a graph has two vertices (i.e., the graph is represented as one non-cyclic edge),
then condition (10) is absent, and condition (11) is transformed into the Neumann
condition.

(ii) If a graph has one vertex (i.e., the edge is cyclic), then conditions (10), (11) turn
into a matching condition.

Equation (8) simulates the pressure and velocity dynamics of a viscoelastic
incompressible fluid moving in the j-th section of the pipeline. As an example of such
a liquid, we can use highly paraffinic oil grades, which are produced in the fields of
Western Siberia. The parameter a« € R\ {0} characterizes the elasticity of the fluid,
the parameter A € R describes the viscosity of the fluid, the random process u; =
uj(z,t), (z,t) € (a,b) x R, characterizes the change in the velocity and pressure of a
viscoelastic incompressible fluid in the j-th section of the pipeline.

In Fig. 9, consideration of this model begins with pp. 1.3. Hydrodynamic processes -
[.3.1. Flow of a viscoelastic fluid through a pipeline — II.1.1. The Oskolkov model is used
to find the pressure of a viscoelastic incompressible fluid in pipeline sections.

Stochastic Hoff model on a graph [32]. Let G = G(*B; &) be a finite connected
oriented graph. Denote by B = {V;} the set of vertices, and denote by € = {E,} the set
of edges. In addition, each edge E; has two parameters. First, it has a length, which we
denote by [; > 0. Second, it has a cross-sectional area, which we denote by d; > 0. Next,
consider the Hoff linear stochastic model on the graph G

)\jdu]' + dujm = Oéju]'dt + deQj, (12)
with the initial-final value condition
Po(u(mo) — &) = Pi(u(r) — &) =0, (13)
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Fig. 9. Information-logical research model
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and, at the vertices 28 of the graph G, we set the continuity condition

uj(ov t) - uk(()?t) = um(lmu t) = Un(ln,t),
E; By € E“(V}), B, E, € E¥(V}),

and the flow balance condition

> dup(0t) = > dpugg(lk,t) = 0. (15)

J:E;€B%(V;) k:EjeB<(V;)

(14)

Equation (13) describes the buckling dynamics of I-beams in a structure under a
constant load with a random external action. Here, the parameter A € R, characterizes
the load on the j-th beam, the parameter o € R, in turn, describes the properties of the
j-th beam material, the random process u; = u;j(z,t), (z,t) € (a,b) x R characterizes the
deviation of the j-th beam from the position equilibrium, dW; = dW;(t) corresponds to a
random load on the j-th beam, Py, P; are relatively spectral projectors.

In Fig. 9, consideration of this model begins with pp. [.2. Elasticity processes — 1.2.2.
Deformation of an I-beam structure — I1.1.2. Hoff’s model is used to find the buckling
dynamics of I-beams in a structure.

In the information-logical model of the study of all three models, there are structural
elements inherent in all three models, they are marked with double lines in Fig. 9, for
example, pp. I[.2 — Descriptor purpose of mathematical modelling. Common structural
elements are as follows: stochastic linear Sobolev type equation; the theory of relatively
p-bounded operators and the theory of degenerate groups generated by them; a study of
the solvability and uniqueness of the solution with obtaining an analytical solution; in the
numerical study, modifications of the Galerkin method are used, and the Matlab program
is used to implement them. These structural elements create an unified concept for the
study of different three mathematical models. Differences in other structural elements are
due to different parameters and characteristics of the models, different initial conditions
and other features of the investigated mathematical models.

In conclusion, we note that the construction of an information-logical model allows
achieving the goals of cross-disciplinary research developments in various subject areas.
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NH®OPMAIINMOHHO-JIOTNTYECKOE MOJIEJIMPOBAHIUE
B ICCJIEJOBAHUYAX HEKJIACCUYECKUX JINMHEMHBIX
MOJEJIENI MATEMATNYECKOI ®MN3NKN

E. A. Coadamosa, A. B. Keanep, C. A. 3aepebura

B crarbe npemioxkena nHOGOPMAIMOHHO—JIOTHYIECKAsT MOJEb UCCIEIOBAHUS HEKJIAC-
CHYECKUX JIMHEMHBIX MOJejieil MaTeMaTudeckKoil ¢usuku. B ocHoBe uHMOpMaAIMOHHO—-
JIOTIYECKOTO MOJIEJINPOBAHMS JIEZKAT TAIBI UCCIAEJOBAHNS] MATEMaTUIeCKUX MOJIeJIeil u Me-
TOJBI CHCTEMHOI'0 aHaJn3a. [IpoBojiuMast IeKOMIIO3UIUSI YIUTHIBAET: OCOOEHHOCTU aHAJIU-
TUYECKUX W YUCJIEHHBIX METOJ0B UCCIEIOBAHNS PA3JIMIHBIX HAYAJIbLHO-KPAEBBIX 33184 JIJIs
ypaBHEHU CODOJIEBCKOrO THIIA, PA3JUYHbIE MPUKJIATHBIE 33Ja9U, KOTOPBIE PEIAITCS C
HCIIOJIb30BAHUEM HEKJIACCUYECKUX JIMHEHHBIX Mojesieii MmaTemarudeckoii ¢pusuku. [lpu mo-
CcTpoeHn HH(MOPMAIIMOHHO—/IOTUIECKON MOJIEIN MCCJIEIOBAHNS HEKJIACCUIECKUX JIMHEHHBIX
MOJIeJIell MaTeMaTUIeCKOH (PU3UKU CO CJIyUYailHbIM BHEITHUM BO3IECTBUEM BbIJIEJIEHbI 00-
e CTPYKTYPHBIE 3JIEMEHTBI, 9TO TMO3BOJIMIIO MTPEJICTaABUTH COBOKYITHOCTH U3yIaeMbIX WH-
dOPMAITMOHHBIX 00BEKTOB, NX ATPUOYTOB W OTHOIIEHUN MEXKIy HUMH.

Karuesvie crosa: UH&O])M&MUOHHO*AOZU%@C%O@ MO&@,/LU])OGCLHU@,’ cucmemmoll aHanu3;
HEKAACCUMECKUE MOOCAU MAMEMATNUYECKOT @USUKU
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