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The article is devoted to the study of the existence of one or more solutions of a
mathematical model of the propagation of a nerve impulse in a membrane based on a
degenerate system of Fitz Hugh — Nagumo equations, given on a certain domain with
a smooth boundary or on a connected directed graph with the Showalter — Sidorov initial
condition. A nondegenerate mathematical model of the propagation of a nerve impulse in the
membrane is widespread and is studied using the theory of singular perturbations. A feature
of the process of the described investigated mathematical model is that the rate of change
of one of the components of the system can significantly exceed the other, which means that
the rate of the derivatives, which is much lower, can be considered equal to zero. Hence,
it becomes necessary to study precisely the degenerate system of Fitz Hugh — Nagumo
equations. The degenerate system of Fitz Hugh — Nagumo equations belongs to a wide class
of semilinear Sobolev type equations. To investigate the existence of solutions of this system
of equations, the phase space method will be used, which was developed by G.A. Sviridyuk
to study the solvability of semilinear Sobolev-type equations. Conditions for the existence
and uniqueness or multiplicity of solutions to the Showalter — Sidorov problem for the
model under study are revealed, depending on the parameters of the system. The obtained
theoretical results made it possible to develop an algorithm for the numerical solution of the
problem based on the modified Galerkin method. The results of computational experiments
are presented.
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solutions.

Introduction

To study the phenomena observed in the cells of striated muscles, intestinal smooth
muscles, and the cardiovascular system, it is necessary to understand the dynamic
principles of the operation of neurons, axons, dendrites, which are surrounded by a
membrane envelope. It has a conductivity that depends on its current state and properties,
which in turn are manifested in the dynamics of ionic currents Na, and K, and changes in
the membrane potential and generate a nerve impulse as a response to external influences.
The Fitz Hugh — Nagumo system allows one to describe the occurrence of impulses running
along a nerve fiber due to the equation characterizing the ion flux in the membrane sheath
and belongs to a wide class of reaction-diffusion systems. It was shown that the Fitz Hugh
— Nagumo system of equations

3

€10y = 1 Av + frw — v, (1)
oW = AW + Lo — 3600 — W"°,
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helps to investigate not only the process of propagation of a nerve impulse, but also blood
coagulation, contraction of the heart muscle, and the work of the brain. As in the case
with the rest of the reaction-diffusion equations, most researchers considered the system
of equations (1) only under the assumption that 1,5 # 0. An analytical study of the
case when 9 = 0 was was carried out in the works [1] and it was shown that the phase
space of the Fitz Hugh — Nagumo system of equations contains singularities of the Whitney
assembly type and, as a consequence, there can be several different solutions of this system.
Numerical methods for solving direct and inverse problems for the Fitz Hugh — Nagumo
model were studied in the works [2—4]|. The work uses the Galerkin method, which was also
used for numerical studies of Sobole-type equations in the works of G.A. Sviridyuk and
his students [5-7]. In the case of degenerate semilinear equations for finding approximate
solutions, the Galerkin method was used in the works of M.A. Sagadeeva, S.A. Zagrebina,
N.A. Manakova A.A. Zamyshlyaeva, O.N. Tsyplenkova, S.I. Kadchenko, E.A. Soldatova,
K.V. Perevozchikova and many others [8-14| In this paper, we will carry out a numerical
study of the phenomenon of the existence of several solutions to the mathematical model
of the propagation of a nerve impulse in the membrane sheath in the case when €5 = 0.

1. Mathematical Model in Case ¢9 =0 9 =0

Consider the degenerate system of equations (1) in the case €5 = 0, which takes the
form
v = 1 Av + frw — 20,
{ 0 = A Aw + Bow — 2090 — w3, (2)

in the cylinder @ = 2 x R, , where ) C R" is a bounded domain with a smooth boundary
of class C* with boundary conditions

v(s,t) =0, w(s,t) =0, (s,t) € 02 x R,. (3)
Reduce the problem (2), (3) to a semilinear Sobolev-type equation

L x= Mx + N(x). (4)

ol ol
Take the spaces $) = 1 X H2 = Wo(Q) X W, (Q), U = L XLy = Lo(£2) X Lo (€2). Denote
[z,(] = (v,&) + (w,n) as the scalar product in the space U, where x = (v,w),( = (§,n)
and (-,-) is the scalar product in Ly(Q). Let § be the conjugate of §) space with respect
to duality [-,]. There are dense and continuous embeddings

H—=>U—=F. (5)
Construct linear operators L, M : il — § by the formulas
[Lu, (] = (w,§), u,( €Y, (6)

[Mu, (] = —a(vs,, &,) — aalws,, ms,), u, ¢ € Y, where dom M = §. (7)

(Einstein’s convention on summation over repeated indices is satisfied everywhere.) By
construction, the operator L € L(LU,F), M € CI(LL; F).
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Denote by {vx} the sequence of eigenvalues of the following spectral problem:

—Ap =vyp, s €, (8)
o(s) =0, s € 09,

where the eigenvalues are numbered in non-decreasing order taking into account their
multiplicity, {¢} care the corresponding eigenfunctions, orthonormalized in the sense of
the scalar product (-, -).

Construct a nonlinear operator by the formula

[N(2),¢] = (Brw = 300,€) + (Baw — s5v — w®, ) (9)

and put dom N =B =B, X By = Ly(Q) x Ly(Q).
Let’s construct an auxiliary space i,. Take tf, = {9 @ 8}, where 1) = {0} x W3 (Q),
UL = 4> x {0}, U = L,(Q). For n < 4 there are dense and continuous embeddings

H=Uy =B — U= B —F, (10)

then the operator N € C*(U,; §) (see [1]).
Consider the Showalter — Sidorov problem

L(z(0) — x) =0, (11)
which in this particular case has the following form:
v(0) = vy. (12)
Thus, we are interested in the solvability of the problem (2), (3), (12) for any z, =
(vo, wo) € Ly

Definition 1. Vector-function = €  CY(0,7);80) N C((0,7); Uy, satisfying
the equation (4), is called a solution of the equation. The solution x =
x(t) of the equation (4) is called a solution of the problem (4), (11), if

i [ (t)—z0)]|5=0.
Following the phase space method [1,15], we construct 9t of the form

M = {u €y —(v,n) = <—@w+ iw3ﬂ]> + <%w8i7n8i>} (13)
2

2 2

and note that all solutions of the system of equations (2) satisfying the boundary conditions
(3) lie in this set.

In the work [1], conditions were found for the existence of a unique solution to the
problem (2), (3), (12).

Theorem 1. [1| For any ag, 0 € Ry, By € (0,a011) and xy € i, there is a unique
solution to the problem (2), (3), (12).

Consider the case 8, = vy, put

gt = {vt ey : (vt p) =0}, Hy = {w € Hy: (wh, @) =0}
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If v € 4" and w € §, are represented as v = v +rp and w = w +qp, where r, ¢ € R, ¢
is the eigenfunction of the problem (8), corresponding to the eigenvalue v; and normalized
in the sense of Ly(Q2), then the set M takes the following form:

4 ( A
/—anlds = f <—%wlnl sﬁsﬂ”
Q @ X
M=uei,: +—(wt + qgo)?’nL> ds, . (14)
)
—tyr = /(wL + qp)’pds
\ \ Q ),

Note that the system of equations defining the set (14), is obtained from the equation
defining the set (13), if we put § = a1, — 1 in it and then instead of i substitute first n*,
and then ¢y.

Let us turn to the second equation of the system defining the set (14). Transforming
the resulting equation, we get:

2ol L) + 3q2/wL<p3ds + Bq/(wl)%?ds - /ga(wL)Sds +r=0.  (15)

Q Q Q

Equation (15) is a cubic general equation ag® + bg® + c¢* + d = 0 with respect to q.
According to Cardano’s formulas, any cubic general equation by replacing ¢ = y — % can
be reduced to the canonical form y? + py + e = 0 with coefficients

a = [[oll7,) b :3£wiga3ds,c:3f(w )22ds, d = f<p 1Y3ds — ser,

pzzagcébaye:%@b;_@ _),Q(q, L) = pB e, (16)
R(q,wt) = @l¢ll7, +2¢ [ *wrds + [ @?*(wh)? = 0.
Q Q
For convenience of further consideration, introduce the following sets:
= {w € H, : R(q,w™) = 0},
= {w € H2: Qg,w) > 0},
9y, ={w € Hy: Qg w) < 0}.

Theorem 2. [1| For any ag, 36 € Ry, r € R, fy = oy, n < 4, and xy € U* such that
(i)vg € U*($H5 there is exactly one solution to the problem (2), (3), (12);
(ii)vg € U* (N H5 there are exactly three solutions to the problem (2), (3), (12).

Consider the system of equations on the graph G:
Vjr = a1 Vjes + Braw; — Brivy,
3 (17)
0 = awjss + Brow; — Bavj — ws,

where each function v; = v;(s,t) and w; = w;(s,t), v € (0,];) and t € Ry, satisfies the
continuity condition

v;(0,t) = v(0,1) = Vi (I, t) = V(L 1),
w;(0,t) = wi(0,t) = Wy, (I, t) = wy(ly, 1), (18)
E;, By € E°(V)), En, E, € E“(V),
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flow balance condition

>, duis(0,t) — > dju(lyt) =0,

E]'EE(’(W) EjEE""(Vi) (19>
Yo dwis(0.t) — >0 dywis(ly,t) =0,
EjeE*(V;) EjeE“(V;)

where E*“)(V;) denotes the set of edges with the beginning or end at the vertex V;, and
the initial condition

0,(0) = vjo. (20)

Arguing in the same way as in the derivation of the assertion of Theorem 2, taking
into account the peculiarities of the spaces constructed for the graph G, we obtain the
following theorem.

Theorem 3. For any as, Bo1 € Ry, r € R, Pog = avry, and xg € X such that
(i)vg € U* () Hy there is exactly one solution to the problem (17) — (20);
(ii)vg € U* () H3 there are exactly three solutions to the problem (17) — (20).

2. Algorithm for a Numerical Method for Finding a Solution to
the Showalter—Sidorov Problem

Let us describe an algorithm for the numerical solution of the problem (2), (3), (12)
on a given domain 2 or the problem (17) — (20) on graph G. The algorithm is based
on the modified Galerkin — Petrov method and allows one to find approximate solutions
on a given domain 2 or a geometric graph G for given initial values vy(s) and values of
coefficients aq, i, 1, B2, 51, 225 for the model of the propagation of a nerve impulse in the
membrane sheath of the nerve, as well as to obtain graphs of approximate solutions.

Stage 0. Find the eigenfunctions {¢x(s)} of the homogeneous Dirichlet problem of the
Laplace operator (—A) in the domain Q or {(s)} - the eigenvectors of the operator

lj

<A90777Z)> = Z dj /(@js¢js + )\(,OQﬁ)dS,

E]'EG 0

where d; € R, [; € R} is the length and the cross-sectional area of the edge E; of a finite
connected directed graph G = G(V;€), V = {V,},L, is a set of vertices, £ = {E;}1, is a
set of edges.

Stage 1. Following the Galerkin — Petrov method, we seek an approximate solution
Z = (0,w) of the problem (2), (3), (12) for the case e = 0 as sums

[
NgE

Ui(s, 1) vi(t)pi(s),

w;(t)pi(s).

.
Il
—

(21)
’U~}Z‘(S,t)

[
NgE

s
I
i

Stage 2. Taking for r = v1(0), ¢ = w1(0), vX = 3 ve(t)or, wt = > wi(t)pr, and
k=2 k=2
substituting the obtained values into the formulas (16), check uniqueness or multiplicity

of the solution to the Showalter — Sidorov problem under the given initial conditions wy(s)

36 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

for the case 1 = 0 or vy(s) for the case e5 = 0 and the obtained v;(0) or wy(0). In the case
when R < 0, the required problem has three solutions (v, (s,t), wi(s,t)), (va(s,t), wa(s,t)),
(vs(s,t),ws(s,t)), consequently, the system of differential algebraic equations has three
solutions and three sets v (t) and wy(t) for each of the solutions, respectively. In this case,
all subsequent steps must be done three times for each of the sets v (t) and wy(t).

Stage 3. To find the unknowns v;(t), w;(t), we substitute the Galerkin sums (21) into
the system of equations (2), and then we multiply the resulting system of equations
scalarly in Ly(2) or Ly(G) by the eigenfunctions ¢;(s), i = 1, m, thus obtaining a system
of algebraic-differential equations of the form:

ar Y vk () vi(v, 1) + B Zwk {Pr i) —
= " (22)
—5a ) vk (1) (pr, ) = 0,

k=1

Z di )ors ) — a2 > wi (£) vileor, i)
. = . s
B ) wi, () (o, i) + 722 Z vk, (£) (@, i) + (Z wy (£){r, @i)) =0,
with condition i i i
(w(0) — wo, ¢;) = 0. (24)

Stage 4. Find wy(0) by scalar multiplication in Lo (£2) La(€2) or Ly(G) initial condition
( 24) to eigenfunctions p;(s), i = 1, m.

Stage 5. Solving the system of algebraic equations (22) with respect to wy(0), we obtain
the values of vy (0).

Stage 6. Using the Runge — Kutta method of order 4-5, we find a solution to the system
of differential equations (22), (23) with the initial conditions (24).

3. Description of the Operation of Computer Programs

The described algorithm was implemented in the Maple 2017 computer mathematics
system for Windows 7, 8.1, 10 as a set of programs. This system of computer mathematics
differs from analogs by the presence of a built-in apparatus for analytical calculations
of integrals student, a package of commands for solving differential equations, including
systems, DEtools. The program complex «Numerical study of the non-uniqueness of the
Showalter—Sidorov problem for the model of the propagation of a nerve impulse in the
membrane of the nerve membrane> is intended to find an approximate solution of the
Showalter—Sidorov problem for the model of the propagation of a nerve impulse in the
membrane of a nerve in the case of uniqueness or multiplicity of solutions. The program
implements the modified Galerkin method and the phase space method. The software
package consists of the following programs: «Numerical study of the non-uniqueness of
the Showalter—Sidorov problem for the model of the propagation of a nerve impulse in
the membrane sheath of the nerve axons, «Numerical study of the non-uniqueness of
the Showalter—Sidorov problem for the model of the propagation of a nerve impulse in a
rectangular membrane>, «<Numerical study of the non-uniqueness of the Showalter—Sidorov
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problem for a model of the propagation of a nerve impulse in the membrane sheath of a
cubic nerve the shell of the nerve systems.

Complex of programs «Numerical study of the non-uniqueness of the Showalter—
Sidorov problem for the model of the propagation of a nerve impulse in the membrane
sheath of a nerves can be used to study the propagation of a nerve impulse by the
propagation of a nerve impulse along neurons, axons, dendrites, along cells of striated
muscles, smooth muscles intestines, cardiovascular system. The described complex of
programs is of interest to specialists in the field of biomechanics. The coefficients of the
system a, aa, f1, B2, 31, 2 of the function of initial values vy(s) for the initial Showalter—
Sidorov condition, area parameters €2 or G. At the output, each program of the complex
produces approximate solutions (v(s,t),w(s,t)) and builds their graphs.

The complex of programs is intended only for work on a personal computer with a
processor of at least 4 cores, with a frequency of at least 3400 MHz, 16 GB RAM running
64-bit operating systems Windows 7, 8.1, 10 with the Maple 2017 computer mathematics
system installed.

Let us describe the logical structure of the operation of each of the programs in the
complex in more detail. The program includes the following steps.

Step 1. Introduce system coefficients system coefficients o, as, 51, Bo, 511, 265 functions
of initial values vg(s) for the case €5 = 0 for the initial Showalter — Sidorov condition, the
parameters of the domain €2 or G, as well as the number of Galerkin approximations m.

Step 2. From a separate file eigenfunction.mw using the built-in procedure read,
the previously found normalized system of functions ¢;(s) for the considered domain 2 or
graph G.

Step 3. The procedure unapply allows you to represent the sought approximate
solutions as a sum

v = unapply(v (£)p1 () + va(E)a(s) + .. + V(B (5)),
w = unapply(wy (Dp1(5) + ws()92(3) + .. + W () Pm(5)).

Step 4. Take for

r:=v1(0),
vh = 02(0)pa(s) + . .. + U (0) o (s), (25)

’LUl = Wy,

and substitute the obtained values into the formulas

A(vh) =4 (int((v )’ whe}, s = Q))2 — 4 -int(wtgl, s = Q)-
dint((vh)2wter, s = Q) + int(yer, s = Q).

The built-in procedure if. .. else ... fi is used to check the existence of one or two solutions
to the Showalter — Sidorov problem under the given initial conditions.

Step 5. The expressions compiled at step 3 are substituted into the algebraic equation
of the system and in the loop for i to 1 do m end do are multiplied by the eigenfunctions
p; and integrated in the considered domain €2 or on the graph G using the procedure
int. Using the built-in procedures subs and solve, with the setting RealDomain,
we solve the resulting system of algebraic equations for the unknowns v(0),...,v,(0),
w1(0),...,w,(0). In the case when the system of equations has two solutions and,
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therefore, two sets v1(0), ..., v,(0), wi(0),...,w,(0) for each of the solutions, respectively.
In this case, all subsequent steps must be done twice for each of the sets vy (t) and wy(t) for
the <software package Numerical study of the non-uniqueness of the Showalter—Sidorov
problem for the model of nerve impulse propagation in the cell membrane>. To realize the
possibility of finding two different solutions using the built-in procedure save, the initial
conditions are saved in the file usl.mw, the first set is v;(0), ..., v,,(0), w1(0),. .., wy,(0)
is saved in the file reshl.mw, the second set is v1(0), ..., v,,(0), w1(0), ..., w,,(0) is saved
in the file resh2.mw.

Step 6. Using the built-in procedure read, the initial conditions and one of the sets
v1(0), ..., vm(0), w1(0),...,w,(0) stored in files reshl.mw or resh2.mw. In the loop (for
i to 1 do m end do), obtained in the third step, after substitution (procedure subs), the
differential equation of the system is multiplied by the eigenfunction ¢;(s) and integrates
(int) in the considered domain €2 or on the graph G. As a result of performing steps 5 and
6, we obtain a system of algebraic-differential equations for determining the coefficients of
approximation vy(t), ..., Uy (t), wi(t), ..., wy(t).

Step 7. The system obtained in step 6 is solved with the initial conditions stored in
the file reshl.mw using the built-in procedure dsolve.

Step 8. The solution is compiled and displayed in the form of a graph by the built-in
procedures plot or plot3d.

4. Computational Experiments in the Case ¢, =0

Let us consider model examples of the numerical study of the question of the
unambiguous solvability of the mathematical model of the propagation of a nerve impulse
in the membrane sheath based on the implementation of the algorithm and the complex
of programs described in Sections 2, 3.

Example 1. It is required to find a solution to the Showalter — Sidorov problem
v(s1,82,0) = vg(s1, $2), (26)

for the system of equations

0= Wyys; + Weps, — 2w + v + w3, 27)
UVt = VUsysy + Vsyse — U + w,
with the Dirichlet boundary condition
v(s1, 82,t) = w(sy, s9,t) =0, 81,8 € It € (0,7T), (28)

i Q= (0,7) x (0,7), T =1, v(s) = sin(sy) sin(sz)  2sin(2s) sin(252)'

™ ™

Approximate solutions of the problem (26) — (28) in Q can be represented
as  O(si,sot) = on(Hen(sys) + ova()ealsnsy) + via(t)era(sise) +
va2()pa2(s1,82),W(s1,82,8) = win(t)@ra(s1,82) + wan(t)@21(s1,82) + wia(t)pra(s1,52) +
Waa(t)pas(s1,52), where @i, k,(s1,52) = \/gsin(klsl)sin(kQSQ), ki1 =1,2, ks = 1,2. Using
the formulas (16) we get R = —74.9130174376168. The problem (26) — (28) has there
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solutions. The system of differential-algebraic equations:

0= <w8181 + Wsysy — 2w+ 0+ w37 SOz‘,j>,
- . - R (29)
</Ut> (101> = <’U5151 + Vsgsg — U + w, @i,j)?
has three numerical solutions, one is presented in Fig. 1 and in Tables 1, 2, the second —

in Fig. 2 and in Tables 3, 4, the third — in Fig. 3 and in Tables 5, 6.

52 s2

Fig. 1. Numerical solution of the problem (26) — (28) with the first set of initial
conditions

52 s2

Fig. 2. Numerical solution of the problem (26) — (28) with the second set of initial
conditions

Example 2. It is required to find a solution to the Showalter — Sidorov problem

v1(8,0) = vp1(8), v2(s,0) = vea(s), (30)

for the system of equations

— . 4y — a3
{ 0 —_wjfs + 4w7 - v? wy, =13, (31)
Vjt = Vjgs + W5 — vy,
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52

Fig. 3. Numerical solution of the problem (26) — (28) with the third set of initial
conditions

52

Table

Numerical solution v(s,t) of the problem (26) — (28)
with the first set of initial conditions

1

t ’1)171(15) ’1)172(75) ’1)271(15) UQ’Q(t)

0 | 0.50000000000000 0 0 -1
0.1 | 0.50474737464685 | —0.00378596339014 | —0.01132841745124 | —0.99074317029085
0.2 | 0.50954103298720 | —0.00763462825812 | —0.02277869603904 | —0.98134022817570
0.3 | 0.51438125054744 | —0.01154672318445 | —0.03435202378101 | —0.97178928680988
0.4 | 0.51926830164218 | —0.01552298765680 | —0.04604959619960 | —0.96208843443162
0.5 | 0.52420245910820 | —0.01956417144735 | —0.05787261474166 | —0.95223573603009
0.6 | 0.52918399297524 | —0.02367103538201 | —0.06982228451234 | —0.94222923275891
0.7 | 0.53421317038958 | —0.02784435257844 | —0.08189981575520 | —0.93206693850785
0.8 | 0.53929025561584 | —0.03208490845317 | —0.09410642386611 | —0.92174683988056
0.9 | 0.54441551003694 | —0.03639350072158 | —0.10644332939327 | —0.91126689619464
1.0 | 0.54958919215410 | —0.04077093939790 | —0.11891175803715 | —0.90062503948159

Table 2
Numerical solution w(s,t) of the problem (26) — (28)
with the first set of initial conditions

t wl,l(t) ’LULQ(t) w271(t) w272(t)

0 | 0.0275674820000000 | 0.375485293000000 | 1.12678818500000 | —1.91843959200000
0.1 | 0.0277003268507354 | 0.377933394820338 | 1.12758664566055 | —1.92370050341620
0.2 | 0.0278518193776941 | 0.380391130307696, | 1.12838176241711 | —1.92900275951681
0.3 | 0.0280223833352694 | 0.382858823660083 | 1.12917297772719 | —1.93434687459740
0.4 | 0.0282124710580565 | 0.385336820257002 | 1.12995969554066 | —1.93973339207338
0.5 | 0.0284225494175228 | 0.387825477710281 | 1.13074129859244 | —1.94516287085048
0.6 | 0.0286530973839448 | 0.390325164106441 | 1.13151715192417 | —1.95063588292930
0.7 | 0.0289046282421600 | 0.392836272124868 | 1.13228657495344 | —1.95615303544047
0.8 | 0.0291776897461898 | 0.395359219136418 | 1.13304884127861 | —1.96171497079806
0.9 | 0.0294728641192399 | 0.397894447203412 | 1.13380317867878 | —1.96732236669955
1.0 | 0.0297907680536997 | 0.400442423079641 | 1.13454876911386 | —1.97297593612581
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Table 3
Numerical solution v(s,t) of the problem (26) — (28)
with the second set of initial conditions

t ’1)171(75) 1}172(75) ’1)271(75) ’1)272(15)

0 | 0.500000000000000 0 0 -1
0.1 | 0.498181166583331 | —0.06372573439956 | —0.06372574497351 | —0.86068505071632
0.2 | 0.496665288192605 | —0.13614269635676 | —0.13614271049472 | —0.70152839041682
0.3 | 0.495314693602840 | —0.21818527773320 | —0.21818529434947 | —0.52008875918929
0.4 | 0.493995360147506 | —0.31089424783432 | —0.31089427023601 | —0.31366388351641
0.5 | 0.492575542128448 | —0.41542632862256 | —0.41542635345785 | —0.07926300878279
0.6 | 0.490924690073997 | —0.53306483385921 | —0.53306486338922 | 0.18642365550176
0.7 | 0.488912630697838 | —0.66523149145803 | —0.66523152433477 | 0.48705909394149
0.8 | 0.486409102883660 | —0.81349954028520 | —0.81349957845022 | 0.82669793416681
0.9 | 0.483283897933602 | —0.97960793329704 | —0.97960797726163 | 1.20982919656711
1.0 | 0.479407927169453 | —1.16547652430062 | —1.16547657386734 | 1.64142406783334

Table 4
Numerical solution w(s,t) of the problem (26) — (28)
with the second set of initial conditions

t wl,l(t) w12 (t) wz’l(t) w272(t)

0 | 0.520174093400000 | 0.596666903400000 | 0.596666903200000 | —2.30147487600000
0.1 | 0.514621498571012 | 0.615514766883433 | 0.615514774422498 | —2.34917936453044
0.2 | 0.510771696656523 | 0.634511943102271 | 0.634511952472695 | —2.40023189713826
0.3 | 0.508443293072450 | 0.653744608178142 | 0.653744620754558 | —2.45467677735339
0.4 | 0.507472966020829 | 0.673281592493410 | 0.673281604812851 | —2.51255355502799
0.5 | 0.507711898258124 | 0.693176675397257 | 0.693176687434395 | —2.57390248987583
0.6 | 0.509022293684011 | 0.713469737844490 | 0.713469750707949 | —2.63876904163250
0.7 | 0.511273347486573 | 0.734186819311963 | 0.734186831694194 | —2.70720771405273
0.8 | 0.514336112718496 | 0.755338841577821 | 0.755338856134556 | —2.77928586865398
0.9 | 0.518076466504951 | 0.776918461902812 | 0.776918475041570 | —2.85508831325540
1.0 | 0.522344530131669 | 0.798893759116052 | 0.798893773913075 | —2.93472388889472

Table 5
Numerical solution v(s,t) of the problem (26) — (28)
with the third set of initial conditions

t ’1)171(15) 1}172(15) 1}271(15) 1}272(15)

0 0.50000000000000 0 0 -1
0.1 | 0.45720164617699 | —0.07052997798714 | 0.07052997798714 | —0.97156402634621
0.2 | 0.40766281478719 | —0.14929685224525 | 0.14929685224525 | —0.93594697610189
0.3 | 0.35054335018670 | —0.23721091501194 | 0.23721091501194 | —0.89212494015368
0.4 | 0.28491400511567 | —0.33527087856784 | 0.33527087856784 | —0.83894967137105
0.5 | 0.20974713012607 | —0.44457159091336 | 0.44457159091336 | —0.77513193721708
0.6 | 0.12390664054813 | —0.56631172670231 | 0.56631172670231 | —0.69922195782794
0.7 | 0.02613697348867 | —0.70180139053204 | 0.70180139053204 | —0.60958567782432
0.8 | —0.08494899090398 | —0.85246894772638 | 0.85246894772638 | —0.50437505602464
0.9 | —0.21088253507104 | —1.01986512645267 | 1.01986512645267 | —0.38148942865899
1.0 | —0.35335227940796 | —1.20566165334988 | 1.20566165334988 | —0.23852126918506
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Table 6

Numerical solution w(s,t) of the problem (26) — (28)
with the third set of initial conditions

wl,l(t)

U)Lg(t)

wg’l(t)

wg’g(t)

0.896875988000000

0.666943335600000

-0.666943335600000

-1.25158542500000

0.1

0.917557177184330

0.674507051263782

-0.674507051263782

-1.29021876647179

0.2

0.939482678299100

0.682519434527073

-0.682519434527073

-1.33133732079518

0.3

0.962660021775526

0.690917334609731

-0.690917334609731

-1.37508634912818

0.4

0.987095703978462

0.699624012407593

-0.699624012407593

-1.42163954440554

0.5

1.01279468351171

0.708544342076834

-0.708544342076834

-1.47120939724315

0.6

1.03975937640447

0.717557252823475

-0.717557252823475

-1.52406263784026

0.7

1.06798773707065

0.726503239509183

-0.726503239509182

-1.58054464731150

0.8

1.09746985017752

0.735162625735116

-0.735162625735116

-1.64112122192264

0.9

1.12818187230430

0.743215340433790

-0.743215340433790

-1.70645508358176

1.0

1.16007428787653

0.750158184299418

-0.750158184299418

-1.77756172576667

on the graph G (Fig. 4) with the boundary conditions

lfll =T, lQ =T, T= 17 1)01(5) =

vls(llat) = st(Oat)a Uls(oa t) = 07/025([27 t) = Oavl(llat) = UQ(Oat)a
wls(lh t) = w23(07 t)a wls(07 t) = 07 wQs(l27 t) = 07 wl(lla t) = w2(07 t)a

_Lﬂ_i_

0.1cos(0.5s)
Nz

Approximate solutions of the problem (30) — (32) for

the j-th edge (j =

1,2) of the graph have the form

05(s,t) = 1(s)vi(t) +025(s)va(t), wi(s, t) = 1;(s)wi(t)+

‘|'<P2j(3)w2(t)a where ¢, = ﬁa P12 =

2 = ——=sin(3). Using the formulas (16) we get R =
—1.97834612093402. The problem (30) — (32) will have three
solutions. System of algebraic-differential equations

0 = (Wiss + 4w1 — v1 — W3, 1), 0 = (Wass + 4wy — vo + W3, Vi2),
(V1t, i) = (Viss + w1 — V1, @i1), (Var, Pin) = (Vass + Wa — Vo, Yja).

Fig. 4. Graph G

(32)
, vop(s) = —J — 2SO,
f, G 5
%’ P21 = ﬁCOS(g)7 o

(33)

has three numerical solutions, one is shown in Fig. 5 and in Table 7, the second — in Fig. 6
and in Table 8, the third — in Fig. 7 and in the Table 9.

Fig. 5. Numerical solution of the problem (30) — (32) with the first set of initial
conditions
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Fig. 6. Numerical solution of the problem (30) — (32)
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Fig. 7. Numerical solution v(s,t) of the problem (30) — (32)

with the third set of initial conditions

Table 7

Numerical solution of the problem (30) — (32) with the first set of initial conditions

t (%] (t) (%) (t) w1 (t) w9 (t)

0 -2 0.10000000000000 | —3.26186277900000 | —0.0155999674700000
0.1 | —2.11912321080735 | 0.08687045867908 | —3.24234664666796 | —0.0138129921390193
0.2 | —2.22514173576231 | 0.07544283146120 | —3.22464146698823 | —0.0122081852938851
0.3 | —2.31946847952800 | 0.06550066779187 | —3.20860931693606 | —0.0107710211819444
0.4 | —2.40336874288482 | 0.05685435887580 | —3.19411783341095 | —0.00948745328897828
0.5 | —2.47797511278246 | 0.04933786674653 | —3.18104078450014 | —0.00834400852713155
0.6 | —2.54430094304637 | 0.04280584883696 | —3.16925850534588 | —0.00732786647687465
0.7 | —2.60325181696900 | 0.03713127103391 | —3.15865820955832 | —0.00642692164068414
0.8 | —2.65563685704343 | 0.03220310314814 | —3.14913414982495 | —0.00562982580336433
0.9 | —2.70217858573811 | 0.02792436963864 | —3.14058767996199 | —0.00492601581335811
1.0 | —2.74352145710651 | 0.02421049539553 | —3.13292722382306 | —0.00430572520358850

Acknowledgments. The research was funded by RFBR and Chelyabinsk Region,
project number 20-41-740023.

44 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

Table 8
Numerical solution of the problem (30) — (32) with the second set of initial conditions

t Ul(t) Ug(t) wl(t) wg(t)

0 —2. 0.10000000000000 | —1.72889837400000 | —1.99048868700000
0.1 | —1.9724672826105 | —0.09963991899961 | —1.69365461874690 | —2.00651223474666
0.2 | —1.944371897897 | —0.27727034558707 | —1.66188522635914 | —2.02137060046327
0.3 | —1.916080089710 | —0.43537648838320 | —1.63322699785695 | —2.03523392749820
0.4 | —1.887890777513 | —0.57616540364265 | —1.60735894782894 | —2.04823079447017
0.5 | —1.860045661714 | —0.70159534680157 | —1.58399581060419 | —2.06045888061259
0.6 | —1.832737843105 | —0.81340258652561 | —1.56288311024144 | —2.07199295770342
0.7 | —1.806119138499 | —0.91312547251681 | —1.54379331194129 | —2.08289089381452
0.8 | —1.780306411616 | —1.00212631127421 | —1.52652267461806 | —2.09319820418380
0.9 | —1.755387118062 | —1.08161138445297 | —1.51088857273152 | —2.10295150309030
1.0 | —1.731423915532 | —1.15264826107150 | —1.49672727285616 | —2.11218104841890

Table 9
Numerical solution of the problem (30) — (32) with the third set of initial conditions

t ’Ul(t) ’1)2(15) w1 (t) ’U)Q(t)

0 —2 0.100000000000000 | —1.69619066600000 | 1.99750109900000
0.1 | —1.96951985348201 | 0.276776135539865 | —1.66429844386661 | 2.01308075952797
0.2 | —1.93905895100012 | 0.434193370747943 | —1.63552572682035 | 2.02760829357643
0.3 | —1.90889638201649 | 0.574434207291382 | —1.60954947182180 | 2.04121686142368
0.4 | —1.87925574678267 | 0.699435652921811 | —1.58608299530547 | 2.05400817751996
0.5 | —1.85031363698218 | 0.810915513012296 | —1.56487087922689 | 2.06606065282851
0.6 | —1.82220685520647 | 0.910396154177116 | —1.54568498559748 | 2.07743550278310
0.7 | —1.79503866311456 | 0.999226187366611 | —1.52832119906028 | 2.08818136392446
0.8 | —1.76888418148664 | 1.07860009998420 | —1.51259668833203 | 2.09833777124319
0.9 | —1.74379483328738 | 1.14957507319829 | —1.49834766134174 | 2.10793770214928
1.0 | —1.71980244366911 | 1.21308710081427 | —1.48542727871022 | 2.11700950512056
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YAK 517.9 DOI: 10.14529/jcem210303

YN CJIEHHOE NCCJIEJOBAHUE OJJHO3HAYHOI
PASPEININMOCTHN 3AJAYUN

IIIOYOJITEPA — CUJIOPOBA OJId MATEMATNYECKON
MOJEJIN PACITPOCTPAHEHU A

HEPBHBIX IMITYJILCOB B MEMBPAHOI OBOJIOYKE

O. B. I'aspunosa

CraThst OCBSIIEHA UCCIIEOBAHUIO CYIECTBOBAHUS OJIHOTO MJIN HECKOJbKUX DPEIIeHuit
MaTeMaTUIeCKON MOJIEIN PACIIPOCTPAHEHNs] HEPBHOI'O UMITYJIbCa B MeMOpaHe Ha OCHOBE BbI-
poxKieHHO# cucreMbl ypaBuenuii @uri Xbio — Harymo, 3aaHHO#l Ha HEKOTOPOIt 00J1acTH C
IJIaJIKOM TpaHUIEeil NIu Ha CBSI3HOM OPUEHTHPOBaHHOM rpade ¢ HadabHbiM yeaosueM [1lo-
yoarrepa — CugopoBa. HeBbIpoKieHHAST MATEMATUYIECKAsT MOJIETh PACIPOCTPAHEHUST HEPB-
HOT'O MMITYJIbCA B MEMOPAHHOI 000JI0UKE SIBJISIETCS PACIPOCTPAHEHHON U UCCIIEYETCS C TI0-
MOIIIBIO TEOPUU CUHTYJISIDHBIX BO3MyIIeHuil. OCcOOEHHOCTHIO IIPOIECCa OIMUCHIBAEMOTO UCCJIe-
JLyeMOii MaTeMaTUIeCKON MOJEJIH sIBJISETCsI TO, YTO CKOPOCTh M3MEHEHUsI OHON 13 KOMIIO-
HEHT CHCTEMbI MOXKET 3HAYUTEIbHO IIPEBOCXOIUTDH JPYIYIO, & 3HAYUT Ty U3 IPOU3BOIHBIX
CKOPOCTb KOTOPOI 3HAYUTEIHLHO HUXKE, MOYKHO CIMTATH paBHOI Hysr0. OTCIONa 1 BOZHUKAET
HEOOXOMMOCTD B MCCJIEIOBAHUN MMEHHO BBIPOXKIEHHOM cucTembl ypaBHueHuit @uriy Xbio —
Harywmo. Beipoxaennas cucrema ypasuennit @uri; Xbpio — Harymo oTHOCUTCST K IITIPOKOMY
KJIACCY IOJIYJIMHENHBIX YpaBHEHU cO00JIEBCKOTO THIia. Jljis mccieloBaHus CyIeCTBOBaHUS
pellleHnii JJAHHON CUCTEeMbl ypaBHEHUI OyIeT UCIIOJIB30BaH MeTO (DA30BOT0 IPOCTPAHCTBA,
KOTOPBI 0T paspaboran I.A. CBUPHIIOKOM JJIsI UCCJIEOBAHUS PA3PEIIUMOCTH TOJTYJIH-
HEeHBIX ypaBHEHUI cODOJIEBCKOrO THIA. BBISIBIEHBI YCIOBUS CYIIECTBOBAHUS U €IMHCTBEH-
HOCTH WJIM MHOYKecTBeHHOCTH perennii 3aa4u [lloyonarepa — CumopoBa [t uccjeryeMoit
MOJIEJIN, B 32BHCUMOCTH OT [IAPaMeTPOB cuCTeMbl. [lo/ryueHHbIe TeOpeTHIeCcKre Pes3yIbTaThl
[TO3BOJIMJIN Pa3paboTaTh aJrOPUTM JUCJIEHHOTO PEIleHns 3a(a9i, OCHOBAHHBIN Ha MOIu(U-
nupoBaHHOM MeTogze [anepkuna. IIpuBeneHbl pe3ysibTaThl BHIYUCIUTEIBHBIX IKCIEPUMEH-
TOB.

Karuesvie caosa: ypasnenus coboaesckozo muna; 3adaya Illoyoamepa — Cudoposa;
HEeeQUHCTNBEHHOCTL PeULeHU.
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