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The article is devoted to a numerical study of the Boussinesq — Love mathematical
model considered on a graph. The model under study describes longitudinal vibrations
in a construction consisting of thin, elastic rods, taking into account the external load
acting on them. To find the solution, the method of successive approximations is used,
and the model itself is reduced to an incomplete second-order Sobolev type equation. The
first paragraph contains the results on an analytical study of the model. In the second
section, the developed algorithm of the numerical method and its scheme are presented.
The third section presents the results of computational experiments obtained using the
program developed in the Maple environment based on the developed algorithm. All the
obtained results can be applied in the field of mathematical modeling, for example, when
calculating the longitudinal vibrations in a construction, taking into account the external

load acting on it.
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Introduction

Let G = G(D, €) be a finite connected oriented graph, where ® = {V;} is the set
of vertices, and € = {E;} is the set of edges. Each edge is characterized by two numbers
l;,d; € Ry, denoting the length and cross-sectional area of the edge E; respectively. On a

graph G consider the Boussinesq — Love equations [1]
(= Aoy = B(A — v)v +qf,
v = (Ul,Ug,...,Uj,...), f:(fl,fg,...,fj,...),

with the conditions at each vertex V; of the graph

> dpi(0.) = Y dmvma(lm,t) =0,
)

EeE(V;) EmeB=(V;

Uj(ov t) = Uk(o,t) - Um(lma t) = Un(lm t),
initial conditions
v(z,0) = (), ©=(P1, P2 Pjs ),

’Ut(l',O) :w(ﬂf), w: (wlaw%'“aw]’?“')

and overdetermination condition

< U(I,t),K(l‘) >= q)(t), K= (Kl,KQ, ...,Kj, ),

(1)
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where f(x,t), p(z), ¥(x), K(z) are given vector-functions, ®(t) is given function and

<v(z,t), K(z) >= Z/U(I,t)K(I)dI

is the inner product in space L*(G). Function v;(x,t) defines a longitudinal displacement
at point x at moment ¢ for the j-th element of construction. The coefficients «,  and ~
characterize the properties of the rods material construction. Function f(z,t) sets the
known external load and ¢(t) is its coefficient. Usually, (2) is the «flow balance» condition,
and condition (3) means <continuity> of the solution v(z,t). Condition (4) specifies the
initial position, the condition (5) specifies the initial velocity. Condition (6) is necessary
to restore the coefficient ¢(t) in equation (1).
The problem of finding a pair of functions

v(z,t) = (vi(x,t),va(x, t), ..., v;(z, t),...) and ¢(¢)

from relations (1)—(6) is called the inverse problem.

Sobolev type equations have already been studied in various aspects [2-9]. In [3], an
initial-boundary value problem is considered for the modified Boussinesq equation used to
describe the propagation of waves in shallow water under the condition of conservation of
mass in the layer and taking into account capillary effects, showing that the solution
constructed by the Galerkin method from the system of orthonormal eigenfunctions
of the homogeneous Dirichlet problem for the Laplace operator, converges x-weakly to
the practise solution. Paper [4] presents the results of investigation of the solvability of
boundary value problems for some classes of linear Sobolev type equations of the fourth
order. In [5], sufficient conditions are presented for the existence of positive solutions
to the Showalter — Sidorov and the Cauchy problem for an abstract linear equation of
this type. Paper [6] is devoted to the study of the degenerate holomorphic groups of
operators in Sobolev spaces generated by linear and continuous operators L and M.
Such equations find their application in modeling of various processes and phenomena
[7, 8], such as, for example: modeling the vibrations of a rotating viscous fluid using;
modeling of gravitational-gyroscopic and internal waves; modeling of sound waves in
smectics; modeling of longitudinal vibrations in bars (1)—(6). A numerical study of the
direct problem for the Boussinesq — Love equation on graphs has already been carried out
in [8]. The numerical study of the mathematical model of the starting regulation of the
distribution of the electromagnetic field potential in a crystalline semiconductor, based
on the starting control problem and final observation of solutions to a semilinear Sobolev
type equation was made in [7].

Works [2, 9-12| are devoted to the study of inverse problems. In [10], the continuity
of the solution to the inverse problem for the equation of radiation transfer in multiband
regions, in which the scattering coefficient and radiation intensity are located, are studied.
Article [11] is devoted to the inverse problem of determining the permittivity tensor and
thickness of a thin film deposited on a glass substrate with known optical properties and
thickness. Investigation [12] allows to find the function of the electromagnetic field by
the known function of the spectrum, which has a finite number of zeros in the frequency
interval.
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1. Analytical Investigation of the Mathematical Model

Let U = {u € W2(Q) : u(z) = 0,2 € 09}, F = WHQ), Y = F. Here W.(Q) are
Soboloev spaces. Similarly to [9] problem (1)—(6) is equivalent to the problem of finding
the functions u € C%([0, T};U'), w € C*([0, T];U°), ¢ € C*([0,T]; V) from the relations

u’(t) = Su(t) + (A1) "' Qa(t) f(1), (7)
uw(0) = ug, u'(0) = uy, (8)
Cu(t) = ¥(t) = Cu(t), 9)
Huw"(t) = w(t) + (Bo)~' Pa(t) f(t) (10)
w(0) = wy, w'(0) =wy, (11)
where
S = ZB )< Xy >X,, H= Z — M < Xp > Xy,
X a— A 5 )\k - )
L7
=) <X >X, P=1-Q=) < X, >X,
ApFa A=
_ < - Xk > _ < - Xk >
At = ——X By)™' = — 777X
(A1) AZ T e (BT = ) g
EFQ A=
:Z<907Xk>xkzy U1=Z<¢,sz>xkz,
ApFa ApFo
=) <o X >Xp, wi= ) <X > X
A=« A=«
C=) <-K(@@)> U =kerP, U =imP
ApFa
Here, according to [9], {\¢} = o(A) denotes the set of eigenvalues numbered in

non-increasing order with multiplicity, and {X;} denotes the family of corresponding
eigenfunctions orthonormal with respect to the inner product < -,- > in L*(G).

Theorem 1. Let K,up,u; € U', f € C*([0,T]; L(V; F)),® € CH[0,T);Y), one of the
conditions a ¢ o(A) or (o € o(A)) A (o # ) be fulfilled, the conditions:

. K
ApFa k
D <uy, K(-) >='(0)
A Fa
be satisfied for initial value uy € U, and the initial values wy = (I — P)v, € U°, k=0,1
satisfy
q(0)f(-,0)
<wog+ L2 X, >=0 fork: )\ = a, 12
B =) o -
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Bk =)
Then there exists a unique solution (v,q) of the inverse problem (1)—(6), where
qg € C¥[0,T];)), v = u + w, whence u € C*([0,T];U") is a solution of (7)~(9) and
the function w € C*([0,T};U°) is a solution of (10)~(11) given by
q@)f (1)

wt)=-> < B(T:’I;)’Xk > X (14)

< wp +

X >=0 for k: A\ = «. (13)

A=«

Proof. The conditions of |9, Lemma 2| are satisfied. Since K € U, then U° C ker C'. For
y € Y due to the orthonormality of the system of eigenfunctions in Lo(G)

C(Al)ley: (Z <f('7t)afk_>)\j on, K >> y = <Z < f)(\,_t)),\lf(>> y

AFENE AFEA

This operator is reversible in ) when

< f(,t), K >
> ey vt el
A£A,

and the inverse operator is continuously differentiable by ¢.

Thus, all the conditions of |2, Theorem 4| are satisfied, then there exists a unique
solution (v,q) of inverse problem (1)—(6), where ¢ € C*([0,7];)), v = u + w, whence
u € C*([0,T];U") is the solution of (7)—(9) and the function w € C?([0,T];U°) is a
solution of (10), (11) given by (14).

m
2. Algorithm of Numerical Method

Let us describe the algorithm developed for the numerical solution of the inverse
problem for the Boussinesq — Love equation in steps corresponding to the block diagram
presented in Figures 1.

Start of the program.

Step 1. Input the incidence matrix of the graph and parameters: the coefficients of
the Boussinesq — Love equation «, 3, <; the lengths of graph edges /;; the time limit 77
the permissible error ¢ for the desired function ¢(t); the minimum number N of terms of
the Galerkin sum. Input functions: the known part of the external load f(z,t); the initial
position of the rods ¢(x); the initial velocity 1 (z); the kernel K (x); the righthand side
®(t) of the overdetermination condition.

Step 2. Solution of the Sturm — Liouville problem on a graph and obtaining the
number n of terms of the Galerkin sum.

Step 2.1. Find A\, from the system of equations.

Step 2.2. Find the normalized eigenfunctions Xj(x) on the graph, using the
eigenvalues \g.

Step 2.3. Specifying the number of terms of the Galerkin sum, taking into account
the given N and the possible coincidence of Ay with the parameter o for some k.
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Start

|-

Input initial
parameters and
functions
]

Solution of the Sturm —

Liouville problem _ A
: Anything unrelated
_ _| to a function ¢(?)
-=

: There is also the number of
| | terms of the Galerkin sum
I

The conditions of the
theorem are satisfied?

No

Output «Input
other parameters
and functionsy

Finding an expression for making
successive approximations of the
function ¢(?) with setting initial

approximation |
]
Calculation of the first
approximation ¢/1/(t), as well as
ocenka — the error estimate

: Cycle by i starting from 1
| while ocenka > ¢

]
(Cycle 1, stop ocenka < S\J- B _: with step equal to 1
|

-

1
Calculation of the next
approximation ¢/i+1]/(t)

and new ocenka value
T

(S Cyze 1 1
| -

Output ocenka, ¢(?) a _: A graph of all obtained successive
and its graph

: approximations is also displayed

Representation of
the solution v(x,?) in the form
of the Galerkin sum

Funding a solution to the
regular problem u(x,?)

Output
«No solution»

Degeneracy found?

Finding a solution to the

singular problem w(x,?) wxt) =0

Output
V(X H)=u(x, ) tw(x,)
and its animation in
the time t

End )

Fig. 1. Diagram of the algorithm
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Step 3. Check the conditions of Theorem 1, which do not contain the function ¢(t).
If all conditions are met, then go to step 5, otherwise go to step 4.

Step 4. Print <Input another parameters and functions> Go to step 1.

Step 5. Find an expression for successive approximations of the function ¢(t) using
the formula from work [2]:

— CSVip(t)up—y — C’S/Vm(t — s)h(s)ds — C’h(t)) +

0

(15)

+ R(H)CS / Vin(t — $)0(s)qli] (s)ds.

Step 6. Calculate the first approximation ¢[1](¢) from the given initial approximation
q[0](t) = 0, using formula (15). Calculate the estimation error ocenka, which is equal to
the norm (in space L*(G)) of the difference between the 1st approximation and the initial
one.

Step 7. Cycle over i starting from 1 while ocenka > <. If the loop condition is satisfied
go to step 8, otherwise go to step 10.

Step 8. Calculate the next approximation g[i + 1](¢) from the previous approximation
q[i](t) by formula (15). Calculate a new estimation error ocenka, which is equal to the
norm of the differences between the (i 4+ 1)-th approximation and the i-th.

Step 9. Increse index ¢ by one, go to step 7.

Step 10. Print the found approximate solution ¢(t), as well as the resulting estimation
error ocenka for the found function. Plot the found function ¢(¢) and the functions of all
obtained successive approximations.

Step 11. Check the remaining conditions of Theorem 1, which are related to the found
function ¢(t). If all conditions are met, then go to step 13, otherwise go to step 12.

Step 12. Print <No solution>. Stop the program.

Step 13. Represent the solution v(x,t) as a Galerkin sum.

Step 14. Obtain an approximate solution of the Boussinesq — Love equation for the
calculated function ¢(t). The cycle in 4, starting from 1, until ¢ < N with the step equal
to 1. Multiplication of the Boussinesq — Love equation, as well as the initial conditions, by
the eigenfunction X;. Solution of second order ordinary differential equations with initial
conditions. Go to the next iteration. Bottom line: getting a solution to the regular problem
u(z,t) from (7)—(9).

Step 15. Check the degeneracy. If no degeneracy is found, then go to step 16, otherwise
go to step 17.

Step 16. The solution w(z,t) to the singular problem (10)—(11) is equal to zero. Go
to step 18.

Step 17. Find the solution w(z,t) to the singular problem (10)—(11) given by (14).

Step 18. Calculate the required function v(x,t) as the sum of two previously obtained
functions u(x,t) and w(x,t). Print the resulting function v(x,t). Plot an animated graph
of the function v(z,t) by variable t.

End of program.

76 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

3. Computational Experiments

Present the results of computational experiments carried out using the developed
algorithm, which was implemented in the Maple software package.
Example 1. Let the graph G; (Figure 2) consist of two edges with lengths I} = I, = 7,

connecting three vertices.
[
N
[ [ ]

Fig. 2. Graph G,

Set the parameters
a=-025 fg=-3, y=1,e=1,n=3T=1

and functions
o(z) = <cos(2x) —1,cos(2(z — 7)) — 1),

o) = (2(008(29&) — 1)7 2(cos(2(x — 7)) — 1)) 7

™ ™

f(z) = (sin(6x), sin(6x)), K(z) = (Cos(x), cos(x)), F(t) = —cos(t) + 1
be given. Consequently, the Boussinesq — Love equation (1) takes the form
(—0.25 — A)vyy = —=3(A — Vv + q(t) sin(6z), v(z,t) = (vi(z,t),va(x, 1)),
condition of «balance of flows> (2) and <continuity of the solution> (3):
vi(m,t) =0, v14(0,8) +v94(0,8) = 0, wou(m,t) =0, v1(0,t) = v2(0,1),
the initial condition for the position of (4) and the velocity of the edges of the graph (5):

v(x,0) = cos(2z) — 1, v(x,0) = 2(008(2:) — 1),

and the overdetermination condition (6):

™

/v(x, t) cos(x)dx = — cos(t) + 1

0

are set. For such parameters and initial functions, all the conditions of Theorem 1 are
satisfied. Using the developed algorithm an approximate solution to the problem was
found: 35 cos(t)

cos
reaching admissible error 0.678389994 < ¢ at the 1-th step of approximation. Figure 3
shows the graph of the function ¢(t).

2021, vol. 8, no. 3 7



A. V. Lut, A. A. Zamyshlyaeva

0.75 | \
0.70

0 01 02 03 04 05 06 07 08 09 1
t

Fig. 3. Function ¢(t) graph

Further in the program, the required functions
Ul(xa t) = ul(xa t) + U}l(l', t): U2(x7 t) = UQ(xa t) + w2(x7 t)a
where
32 —4/2 5./30¢
uy(z,t) = 5175 ((cos(lbx) - 1) <f\f/)_ + 7r) <cos(1.5x) + 1)6— B

+<COS(1-5:L") - 1) (% + w) <Cos(1.5x) + 1)eﬁ%@+

7 cos(z)m!? <6_2‘/§t +e2V2 9 cos(t)) )

- 264

ug(w,t) = 21_—;:225 ((cos(lbx) — 1) <%§f + 7r> <cos(1.5x) + 1)6— SR

+<cos(1.5x) — 1) (% + 7r> <cos(1.5x) + 1>eﬁﬁt+

7 cos(z)m!? <e*2\/§t +e2V2t 2 cos(t)) )

264
wy(x,t) =0, wy(x,t)=0

representing longitudinal vibrations in the rods were found. The last step of the program
was in construction of a time-animated graph of the found vector-function v(z,t). Figures
4 and 5 show the graphs of the vector-function v(z,t) at different time ¢.
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[’%)
[¥%)

(3%
(%]

-3 =12 -1 0 1 -3 =12 -1 0 1
x X
1 1
2 2
2 B
x x
—— function : vy (x.t); —— function : vz(x,t)l |— function : vy (xt); —— function: vz(pgt)l
a) b)

Fig. 4. Function v(z,t) graph at: a) t =0; b) ¢t = 0.33

/T

1/
D! 1/ 7\
%

3/\1/) I "3f’\ :l/o’ T
11, [N L,
[ 1\

['%)

[3%)

.

i J
—— function : v, (x.1; —— function: vz(x,t)l |— function : v;(ut); —— function: vz()gt)l
a) b)

Fig. 5. Function v(z,t) graph at: a) t =0.6; b) t =1

Example 2. Let the graph Go (Figure 6) consist of two edges with lengths I} = I, = 7,

connecting three vertices.
[ J
N
[ ] [ ]

Fig. 6. Graph G,

Set the parameters
a=4 B=1~v=1 =08 n=3 T=10, | = (71',7T>
and functions

o(x) = (cos(x), cos(x + 7r)>, P(x) = (005(53:), cos(b(x + 7r)>,
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flz) = <cos(x),cos(x)), K(x) = <cos(x),cos(x)), F(t) = 40?;(75).

Consequently, the Boussinesq — Love equation (1) takes the form

(4 —A)vy = (A —1D)vg + q(t) cos(z), v(x,t) = (v1(z,t),v2(x, 1)),
condition of <balance of flow> (2) and <continuity of the solution> (3):
01:(0,t) =0, wvie(m,t) = v9(0, ), vou(m,t) =0, wvi(m, t) =v9(0,1),
the initial condition for the position of (4) and the velocity of the edges of the graph (5):
v1(x,0) = cos(x), wa(x,0) = —cos(z), vy (x,0) = cos(bz), wvy(x,0)= —cos(bx),

and the overdetermination condition (6):

[ _ 4cos(t)
/v(m, t) cos(z)dr = 3

0

are set. For such parameters and initial functions, all the conditions of Theorem 1 are
satisfied. Using the developed algorithm an approximate solution to the problem was
found:

0 — 4 cos(t)(1762152484 cos? () — 8037989418 cos(t) + 17837462559)
A= 20647703175 ’

reaching a admissible error 0.6551933817 < ¢ at the 3-rd step of approximation. Figure 7
shows the graphs of the function ¢(¢) and successive approximations.

\

N

0.75
o} RY L
02511 i | B 12 3 4 6 9 10
—0.25 ¥4 I 1 ]
0 T T — |
3 3 4 ] @ 1p —0.50 |

~0.25 1 / \J/

| —— function : g, (t); finction : g,(t);
J —— fimction : r}_;(t);
b)

\ 1.25 1

RIS

-0.501

Fig. 7. Graph: a) of function ¢(t); b) of functions of all approximations

Further in the program, the required functions

1

t) =
1) = 6550929463301 785762572

(41672863088678571750 (ﬁ cos (g) +
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2) 4718607460875 2 17
3 [ 3z 15870782349800 3 V13t
% <\/7_TCOS (7) —Vrsin (?) 5500823428529 ) o8 (7) €08 < 5 ) *

85t
1952562806598051950 cos (g) N <Cos (§> + sin <§>> sin <*/_ ) —

1710915042072 ¢
/T sin (f) 71091504207 8) cos (f) cos (ﬁ) 4 7501115355962142915 %

2 2 17

13t
—1585189213009751250 cos (3;) V13w (cos (3;) — sin (3;)) sin (Q) +

+ (10311572610396391 1520 cos(t) — 4120106614179674560 cos(2t)+

+192244245554109840 cos(3t) + 51913343338663899456) cos @) +

2679329806 cos(2t)
92602205123

3
+18560830698713504073 cos (;) ( cos(t)

440538121 cos(3t) n 8037989418 )
338477025622 41511333331/ )’

1

t) =
V(1) = G 0920463301 785 762572

((( ~ 41672863088678571750v/7 cos (5 ) +

+151101207074002246256) sin (g) + 41672863088678571750 <cos (g) _ 1) x

“ /T <cos @) + 1) ) cos (@) + cos (@) <<75011153559621429150><

3 3
X /T cos (Ex) — 216419542895695230000) sin (;) + 75011153559621429150x

XA/ (COS (3;) — 1) (COS (3;) + 1) ) + 25256280659805195vV 857 X

2 2

x <cos2 (33“:) + cos (3; sin (3;)) - 1) sin (@) +

+(—103115726103963911520 cos(t) + 4120106614179674560 cos(2t)—

85t
X <cos2 @) — cos (f sin (f)) - 1) sin <%> — 1585189213009751250v/137

—192244245554109840 cos(3t) — 51913343338663899456) sin (g) +

2679329806 cos(2t)
92602205123

3
+185608306987135040736 sin (;) (cos(t)
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440538121 cos(3t)
338477025622

8037989418 )
41511333331

representing longitudinal vibrations in the rods were found. The last step of the program
was in construction of a time-animated graph of the found vector-function v(z,t). Figures

8 and 9 show the graphs of the vector-function v(z,t) at different time ¢.
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b)

Fig. 8. Function v(z,t) graph at: a) ¢t =0; b) ¢t = 3.33
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YN CJIEHHOE NCCJIEJOBAHUE OBPATHON 3AJAYN
I MATEMATUYECKOI MOJAEJII BYCCUHECKA —
JIABA HA I'PA®E

A. B. JIym, A. A. Bamvrwuasnesa

Crarbsl MOCBSAINEHA TPOBEJICHUIO YHCIECHHOTO HUCCJEJOBAHUS MaTEMATHIECKON MOoje-
s Byccunecka — JIsBa paccmarpuBaemoit Ha reomerpudeckoM rpade. Wcciemyemasi Mo-
JleJIb OINKCHIBAET ITPOJIOJIbHBIE KOJIEOaHUsI B KOHCTPYKIMH COCTOSAIIEN U3 TOHKUX, YIIPYTUX
CTepKHEN IpHU ydueTe BHEIHEH cO3/1aBaeMoii HAarpy3Koi Ha HuxX. JIjisi HaX0XK IeHnsT peleHust
HCIIOJIB3YETCsI METOJ] [TOCJIEI0BATEIbHBIX IPUOJIMKEHNU, 8 caMa MOJIEIb CBOIUTCSH Y HEIOJI-
HOMY yPaBHEHHIO CODOJIEBCKOTO THIIA BTOPOTO IOpsaKa. B mepBoM maparpade mpuBeaeHbl
pe3yJIbTaThl AHAJUTUIECKOT0 MCCIOBaHNs TaHHONW Moze . Bo BTopoM maparpade mpu-
BeJieH pa3pabOTAHHBIN aJIrOPUTM YUCJEHHOI'O METOJN M €ro Cxema. B TperbeM IpuBeIeHbI
Pe3yJIbTaThl BEIYUCIUTE/IbHBIX SKCIIEPUMEHTOB IIPOrpaMMbl paspaboranHoil B cpege Maple
HAa OCHOBE IOJIy9€HHOTO ajiropurma. Bee mosrydennbie pe3ysibTaTbl MOTYT OBITH ITPHMEHEHBI
B 00JIACTH MATEMATUIECKOTO MOJEIUPOBAHNs, HAIIPUMED, DA PACYeTe IMPOJIOJIbHBIX KOJIe-
OaHMil KOHCTPYKITUHU TIPU yUeTe CO3TaBaeMOil Ha Hee BHEITHEH HATPY3KH.

Karouesvie caosa: mamemamuueckas modeav Byccunecka — Jlasa; obpamnas 3adava;
YUCAEHHOE UCCAEDOBANUE; YPABHEHUE CODONEBCKO20 MUNA; MEMOO NOCAeJOBAMENDHBIT NPU-
baustcenusi.
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