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DISTORTED BY INTERFERENCE OF VARIOUS TYPES
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The article describes the preliminary stage of the optimal dynamic measurement
problem. Namely, an algorithm for constructing observation values based on the values
obtained during the experiment is given. We assume that the experimental data can be
affected by various types of interference, including <«white noise>, which is understood as a
derivative of Nelson — Gliklikh from the Wiener process. To construct the observation values,
a priori information about the form of the function describing the observation values is used.
The article consists of two parts. The first part contains an algorithm for constructing the
observations values. And in the second part, the results of computational experiments are
presented.
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Introduction

The study of the optimal dynamic measurement problem [1, 2| is based on the search
for the penalty functional optimum for the norm of the difference between real observation
and virtual one. By the real observation we mean a values based on data obtained
during a full-scale experiment. And by virtual observation we mean data obtained using a
computational algorithm [3]. This optimum is declared an optimal dynamic measurement.
To date, within the framework of the optimal dynamic measurements theory [1, 2, 3], cases
have been investigated when the measurement is distorted by the inertia of the measuring
device [4], resonances in its circuits [5] or its degradation [6]. The article [7] considers a
model that takes into account the distortion of measurement by all three interferences
simultaneously. However, due to the fact that the basis for solving this problem is the
theory of optimal control by solutions of Leontief type equations [8], then real and virtual
observation should be sufficiently smooth functions. And if for the virtual observation
this means choosing the type of this function, then for the real observation it is rarely
possible without preprocessing the data [9]. This leads to interest in the preliminary stage
of the optimal dynamic measurement problem, which we call the stage of constructing
observations from distorted data.

Let’s consider the results of real observations distorted by interference, i.e. we will
assume that they have the form

77(t) = ye(t> + l/(t)a

where y.(t) is the useful part of observations and v(t) is the distort part of measurements.
Unlike the case discussed in [10], this article assumes that the noises can be different. For
the sake of certainty, we have considered two cases. The first one is the case of the normal
distribution of interference, i.e. v(t) is a Wiener process. And the second one is the case of
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v(t) is a <white noise> |7], which is understood as a derivative of Nelson —Gliklikh [11, 12]
from the Wiener process. When constructing the reconstructed values, we assume that
the useful part of the signal is described by a smooth convex up function with a single
maximum.

1. The Algorithm of Constructing the Useful Part of Observation

Suppose that, as a result of an experiment, we simultaneously observe variables
characterizing the observed process at time interval [a,b], @ > 0. This interval has
a sampling frequency of N, ie. {t; : j € T}, T = {0,1,...,N}, to = a, ty = b. As a
result of such observations, we obtain n(t;) (j = 0, N). In addition, we know a priori
information about the useful part of observed variable 1(t). Namely, the useful part of the
signal is described by a smooth upward convex function with a single maximum. However,
due to the influence of random noise, the observed variables {n(¢;) f;o do not have these
properties. Taking in account these assumptions there is the algorithm of constructing the
useful part of observation distorted by Wiener process or «white noises (see Fig. 1).

@
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observation data
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l Find the useful part
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of maximum point s

8
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4 output of resuit
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Fig. 1. Algorithm of constructing the useful part of observation

Let the shape of the useful signal depend on the parameter k& € Z, which indicates
the position of the maximum point. We find with a given probability v an estimate of the
parameter ko from the measured signal

77(75) = ye(t) + V(t)7 Ye S Vk:m vt € [tO;tN]v (1>

where v(t) is a Wiener process or <white noise> [7]. That is, we assume that at the useful
component of the signal y.(¢) has a maximum in the point kq of a uniform grid, i.e. y. € Vj,.
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Here _
Qf(t]) 2 f(tjfl)—i_f(thrl)a j = 17N_17

Vk = f c C[to,tN] : f(tj) < f(tj+1), j = O, k — 1, . (2)
ft5) > fltjs), j=kN-1

is a class of functions of upward convex functions with a single maximum at the point %,
which are defined on a uniform grid {;}/2,.

Based on the results of [7], to estimate the parameter kg € Z, we use either the
statistics 75, from [13] for the Wiener process v(t), or the statistics 75, from [10] for «white
noise> v(t). The value of the constructed statistics is used to find the value of the parameter
k, at which the useful part of the signal (1) is closest in shape with its projection on the
set of functions (2). The problem of constructing the values of observations on a uniform
grid {t; }j-vzo is considered as the problem of the best approximation by elements of the set
Vi, from (2) and its solution is given in [7].

The steps of the algorithm in Fig. 1 for interference v(¢) in the form of «white noise> are
described in [10]. For the Wiener process in this algorithm, the calculation formulas of 2 and
5 blocks are changed to the standard [13|, and in 8 block, the need for data transformation
disappears.
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Fig. 2. Graphs of the noisy signal (grey line) and

the reconstructed signal (black line)

2. The Computational Experiments

This algorithm was implemented in C++. The input data is a file with information
about the interval [a,b], its sampling frequency N, the values of observations {m};\f:m
where we understand 7; = n(t;) (j = 0, N). The program calculates an array of points
{t; };V:O and then according to the algorithm. The output data is a file containing an array
{yj = ve(t;)} o

Here are the results of the program.

Example 1. Let a =0, b = 2, N = 20 and the results of observations are distorted by
<white noise>. The application of the algorithm gives the values, the graphs of which are
shown in Fig. 2 and Fig. 3.
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Fig. 3. Graphs of the original signal (black dotted line)

and the reconstructed signal (gray solid line)
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Fig. 4. Graphs of the noisy signal (grey line) and

the reconstructed signal (black line)

On the graph, you can see that at the beginning of the interval the large bursts give
worse values of the restored observation than at the end of the interval.

Example 2. Let a =0, b= 2, N = 200 and the results of observations are distorted by
Wiener process. The application of the algorithm gives the values, the graphs of which are
shown in Fig. 4 and Fig. 5.

This example illustrates that as the sampling rate increases, we get smoother data.
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Fig. 5. Graphs of the original signal (black dotted line) and

the reconstructed signal (gray solid line)

Conclusion

In the future, we plan to expand the class of functions describing the useful
part of the signal. In addition, the described procedure will be used in the analysis
of the dynamics of the solar activity [14].

This work was supported by the Ministry of Science and Higher Education of the
Russian Federation (grant Ne FENU-2020-0022 (20200721'3)).
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IIOCTPOEHUE HABJIIOJIEHUN 1O JTAHHBIM,
NCKAYKEHHBIM TIOMEXAMUI PA3HOTO BUJIA

M.A. Caeadeesa, O.B. Mumun

B crarbe onuckiBaeTcs peBapuUTEIbHbBIN TAIT 331491 ONTUMAJIHLHOTO JTUHAMUYIECKOTO
u3MepeHust. A UMEHHO, IPUBEJIEH AJI'OPUTM MOCTPOECHUS 3HAYCHU HAOJIOICHHS 110 3HAYE-
HUAM IOJIyYEeHHBIM B XOJI€ 9KCIEPUMEHTa, KOTOPbIE IIPEJII0/IaraloTcs NCKaKeHHBIMI HEKO-
TOPBIMU CJIydaiiabiMu Bo3aeiicTsusimu. [Ipenmonaraercs, 910 Ha SKCIIEPUMEHTAIbHDIE [TAH-
HbIE MOT'YT BO3/IEICTBOBATH IIOMEXU PA3HOTO BUJIA, B TOM YHCJE <OeJIblil IIyMs, KOTOPBIi
IMOHUMaeTCs Kak npousdBojuas Henbcona — [mknxa oT BUHEPOBCKOTO Iiporiecca. JLys mo-
CTPOEHUsI 3HAYeHUIT HADJIIOIEHUsI UCIIOJIB3YeTCsl allpruopHasi nHpopMalus o (popme QyHK-
U, ONKMCHIBAOIIEl 3HadeHust Habronenusi. CTarhbst cocTouT U3 AByX dacreil. [lepBast qacTb
COJIEPXKUT aJOPUTM IIOCTPOEHUs 3HaYeHui HabJogeHnii. A Bo BTOpOil 4acTH IPUBEIEHBI
Pe3yabTaThbl BBIYUCIUTEIbHBIX IKCIIEPUMEHTOB.

Karouesvie ca06a: nNose3nas 4aCmy Cuznaia; 6uiNYKAGA 66epT GYHKUUA; CMAMUCTIU-
YecKas 2Uunomesa.
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