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The article is devoted to a numerical study of a one-dimensional non-stationary problem

on thermomechanical processes in a snowpack with account of effects of melting and

freezing. Snow is modeled as a continuous medium consisting of water, air and porous

ice skeleton. The governing equations of snow are based on the fundamental conservation

laws of continuum mechanics. A finite-difference algorithm is constructed and a series

of numerical experiments is fulfilled. The results of the computations correspond well to

laboratory observations.
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Introduction

Adequate mathematical modeling of thermomechanical processes inside and near
snowpacks is in a great demand due to the need to build calculations and forecasts of
spring flood hydrographs and water quality in receiving reservoirs, to make assessment
of the risk of avalanches in the mountains and the risk of collapse of membrane-like
constructions caused by the weight of snow, etc. To date, there is a number of works
devoted to modeling snow taking into account phase transitions, which use observational
data and empirical dependencies. A fairly extensive review on this topic can be found in
[1]. The present article is devoted to a study of the one-dimensional mathematical model
of air and water filtration in a snowpack in the presence of ‘ice-water’ phase transitions.
The snowpack is modeled as a three-phase continuum consisting of water, air (vapor in
pores) and immovable porous ice skeleton. The precise formulation of this model is posed
further in Sec. 1 along with the necessary explanations on its physical background. Because
of nonlinearity and high inter-connection between equations, the rigorous mathematical
results on existence and uniqueness of classical or generalized solutions to boundary value
problems for the considered model are unavailable, at least, so far. Therefore, in this
article we concentrate on a numerical analysis for the initial-boundary value problem for
the model. More precisely, in Sec. 2, we construct the finite-difference algorithm and carry
out a series of numerical experiments using both the test data and the data of laboratory
experiments. The results of the computations appear to correspond well to laboratory
observations. Ending this introduction, it is worth to notice that the present study is
rather close to a set of recent works devoted to the mathematical modeling of processes
in snowpack, see [2, 3, 4], and can be referred to as their extension.
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1. The 1D Model of Thermomechanical Processes in a Snowpack

At temperatures close to the freezing point of water, snow can be described as a
three-phase medium consisting of water, air (water vapor) and ice. In this case, ice is a
solid porous skeleton, and a mixture of water (in liquid form) and air is a two-component
continuous medium filtering through the pores. We introduce a mathematical description
of the balance of mass, momentum and heat on the basis of the fundamental conservation
laws in continuum mechanics, following the presentation from the monographs [1, Ch. 3,
Secs. 1-2], [5, Ch. I, Sec. 1.7], [6, Ch. 4, Secs. 4.1-4.2]. In one-dimensional case, with the
help of the technical procedure described in detail in [1, Ch. 3, Secs. 2-3], [5, Ch. V, § 1,
Sec. 1], the basic three-dimensional model consisting of a system of conservation laws and
clarifying and simplifying phenomenological hypotheses is reduced to a nonlinear system of
mixed type consisting of five differential equations. Now we formulate the initial-boundary
value problem for this system and give the necessary comments on its physical meaning.
After that, in Sec. 2, we carry out a numerical analysis of this problem.

We suppose that Ω := (0, l) is an open bounded interval in the space R of physical
positions x, where the coordinate x = 0 corresponds to the bottom surface of a snowpack
bordering on a frozen base (ground, ice, rooftop, etc.), and x = l is the upper surface
bordering an open air. By t we denote the time variable.

Problem 1D. (The dynamical one-dimensional model of a snowpack.) In the
space-time domain ΩT = Ω× {0 < t < T}, where T = const > 0 is a given time moment,
find the water saturation in pores s = s(x, t), the reduced pressure p = p(x, t), the intensity
of the ‘ice-water’ phase transition I = I(x, t), the temperature of snow θ = θ(x, t), and
the total velocity of filtration v = v(x, t), satisfying the reduced balance of mass equations

∂
[

(1− s)φ(x, θ)
]

∂t
+

∂

∂x

[

a(s, φ(x, θ))
∂s

∂x
+ b(s)v + F (s, φ(x, θ))

]

= 0, (x, t) ∈ ΩT , (1a)

∂

∂x

[

K(s, φ(x, θ))
∂p

∂x
− f(s, φ(x, θ))

]

=

(

1−
ρ03
ρ01

)

∂φ(x, θ)

∂t
, (x, t) ∈ ΩT , (1b)

∂φ(x, θ)

∂t
=

I

ρ03
, (x, t) ∈ ΩT , (1c)

the reduced Darcy law

v = −K(s, φ(x, θ))
∂p

∂x
+ f(s, φ(x, θ)), (x, t) ∈ ΩT , (1d)

the heat balance equation

Q(s, φ(x, θ))
∂θ

∂t
+ V

(

v, s, φ(x, θ),
∂s

∂x

)

∂θ

∂x
−

∂

∂x

(

λc(s, φ(x, θ))
∂θ

∂x

)

= −(c1 − c3) θ I,

(x, t) ∈ ΩT , (1e)

and the boundary and initial conditions

s|x=0 = s0(0, t), p|x=0 = p0(t), θ|x=0 = θ0(0, t), t ∈ (0, T ], (1f)
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s|x=l = s0(l, t),
∂p

∂x

∣

∣

∣

x=l
= 0, θ|x=l = θ0(l, t), t ∈ (0, T ], (1g)

s|t=0 = s0(x, 0), θ|t=0 = θ0(x, 0), x ∈ [0, l]. (1h)

In conditions (1f)-(1h), p0 = p0(t) is a given function on [0, T ] and s0 = s0(x, t) and
θ0 = θ0(x, t) are given functions on ⊔T , where ⊔T =

(

{0 ≤ x ≤ l} × {t = 0}
)

∪
(

{x =
0, x = l} × (0, T ]

)

, i.e., ⊔T is the ⊔ -shaped part of ∂ΩT .
In equations (1a)-(1e), the nonlinear (in general) functions φ, a, b, f , k, K, F , Q,

and V are given. They are uniquely defined by the given physical characteristics of the
components of the snow via the following formulas:

φ(x, θ) = φ− for θ < θ−,
∂φ

∂θ
(x, θ) ≥ 0 for θ ∈ [θ−, θ+], φ(x, θ) = φ+ for θ > θ+, (2a)

a(s, φ) = −K0(φ)
k01(s)k02(1− s)

µ2k01(s) + µ1k02(1− s)
p ′

c(s), b(s) =
k02(1− s)

µ2k(s)
, (2b)

f(s, φ) = −K0(φ)

[(

k01(s)

µ1

ρ01 +
k02(1− s)

µ2

ρ02

)]

g, k(s) =
k01(s)

µ1

+
k02(1− s)

µ2

, (2c)

K(s, φ) = k(s)K0(φ), F (s, φ) = −
k02(1− s)

µ2k(s)
f(s, φ)−K0(φ)

[

k02(1− s)

µ2

ρ02 g

]

, (2d)

Q(s, φ) = c1sφρ
0

1 + c2(1− s)φρ02 + c3(1− φ)ρ03, (2e)

V (v, s, φ, ζ)= c1ρ
0

1

[

(1− b(s))v−a(s, φ)ζ−F (s, φ)
]

+c2ρ
0

2

[

a(s, φ)ζ+b(s)v+F (s, φ)
]

. (2f)

Here,

• φ(x, θ) is the snow porosity, i.e., the volumetric part of pores in the specific volume
of snow; for fixed x, it is a piece-wise differentiable function of θ and it is postulated
following [7], namely, φ(x, θ) is a prescribed function on the segment {θ− ≤ θ ≤ θ+},
values φ− and φ+ are constant and belong to (0, 1], values θ− and θ+ are also constant
and satisfy the inequality 0 < θ− ≤ θ+, and θ+ is the temperature of ice melting;

• K0(φ) is a nonnegative porous skeleton permeability coefficient such that K0(0) = 0;

• k01(s) ≥ 0 and k02(1 − s) ≥ 0 are the phase permeability coefficients of water and
air (water vapor), respectively, such that k01(0) = 0, k02(0) = 0;

• µ1 and µ2 are the positive constant dynamical viscosity coefficients of water and air,
respectively;

• pc(s) is the capillary pressure, which is the given function that has the properties
pc(s) > 0, pc(0) = ∞, pc(1) = 0, and p′c(s) < 0 [5, Ch. 5, Sec. 1.1];

• ρ01, ρ
0
2, and ρ03 are the constant genuine densities of water, air, and ice, respectively;

• g = const > 0 is the acceleration of free fall;

• c1, c2, and c3 are the positive constant coefficients of specific heat capacity at constant
volume of water, air, and ice, respectively;
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• λc(s, φ) is the heat conductivity of snow, which is given according to experimental
data and satisfies the positiveness property λc(s, φ) ≥ λ− = const > 0, ∀ s, φ ∈ R.

The formulation of Problem 1D takes into account the postulate of immobility of the
porous ice skeleton, the postulate of equality of the temperature in all three phases in
each point of continuum, and the natural observations (see, for example, [6, page 105])
that sublimation is negligible, i.e., the ‘ice-air’, ‘air-ice’, ‘water-air’, and ‘air-water’ phase
transitions are absent. The latter implies that only the intensity I of the ‘ice-water’ phase
transition, or, equivalently, the intensity −I of the ‘water-ice’ phase transition, takes place
in the equations. Also, in (1) and (2) we impose the physically reasonable requirements
ρ02 < ρ03 < ρ01 on the genuine densities of phases and c1 > c3 on the specific heat capacities.

We note that, having the five sought functions s, p, I, θ and v found, one can determine
separately the velocity of filtration of air v2 and the velocity of filtration of water v1 by
the formulas

v2 = a(s, φ(x, θ))
∂s

∂x
+ b(s)v + F (s, φ(x, θ)), v1 = v − v2, (3)

the air pressure p2 and the hydraulic pressure p1 in pores by the formulas

p2 = p−

1
∫

s

k01(ξ)p
′

c(ξ)

µ1k(ξ)
dξ, p1 = p2 − pc(s), (4)

and the reduced densities of water (ρ1), air (ρ2) and ice (ρ3) by the formulas

ρ1 = sφρ01, ρ2 = (1− s)φρ02, ρ3 = (1− φ)ρ03. (5)

Remark 1. Note that the formulations based on modifications of system (1) have already
been considered by various authors. For example, in [2], a numerical study of an initial-
boundary value problem for a system of the form (1) was carried out, in which, on the
right-hand side of the equation (1e), the sum −νI takes place instead of −(c1 − c3)θI,
where ν = const > 0 is the given specific latent heat of the ‘ice-water’ phase transition
and the intensity of the phase transition I = I(φ, θ, s) is a given function of a very special
form. Note that in the setting considered in the present article, the value I is a sought
function, not a given one. The same model (with minor changes) as in [2] was considered
earlier in [7], where the unique solvability was proved for the self-similar setting.

2. Numerical Study of Problem 1D

2.1. Foreword. Bringing Problem 1D to a Dimensionless Form

Let us carry out a numerical study of Problem 1D, providing it with specific model
input data. We develop the finite-difference algorithm similar to the one proposed by A. N.
Sibin and A. A. Papin in [2].

We take K0(φ) := Bφ 3 (B = const > 0), as in [8, Sec. 9.10, formula (9.9)], and
λc(s, φ) = ac + bcρ

2
c(s, φ), where ρc(s, φ) = sφρ01 + (1− s)φρ02 + (1− φ)ρ03, ac = const > 0,

and bc = const > 0, as in [6, Ch. 4, Secs. 4.1-4.2].
We bring Problem 1D to a dimensionless form. The choice of the independent and

dependent dimensionless variables (all of them are marked with tildes) is such that
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equations (1a)-(1e) exactly preserve their forms, whereas the dimensionless quantities in
the equations are related with the dimensional ones by the formulas

t̃ = t/tsc, x̃ = x/xsc, p̃ = p/psc, Ĩ = tscI/ρ
0

3, θ̃ = θ/θsc, ṽ = v/vsc,

ã(s, φ) =
tsc
x2
sc

a(s, φ), b̃(s) =
tscvsc
xsc

b(s), F̃ (s, φ) =
tsc
xsc

F (s, φ),

K̃(s, φ) =
psc

vscxsc

K(s, φ), f̃(s, φ) = f(s, φ)/vsc, Q̃(s, φ) = Q(s, φ)/(c3ρ
0

3),

λ̃c(s, φ) =
actsc

x2
scρ

0
3c3

(

1 +
bc
ac
ρ2c(s, φ)

)

, Ṽ
(

ṽ, s, φ, ∂s/∂x
)

=
θsc

ρ03c3xsc

V
(

v, s, φ, ∂s/∂x
)

,

where xsc = l, psc = ρ01gl, vsc = Bρ01g/µ1, θsc = θ+, and tsc are the characteristic scales of
length, pressure, velocity, temperature, and time, resp. Also, coefficient −(c1 − c3) in the
right hand side of equation (1e) becomes −(c1/c3 − 1) in the dimensionless version of this
equation.

2.2. Numerical Algorithm

In this paragraph, for simplicity, we omit tildes over dimensionless terms and refer to
the dimensionless equations by the same formula numbers as for dimensional equations, but
with the subscript ≪d-l≫. Equation (1a)d-l is approximated using the directional difference
for the convective term. Equations (1b)d-l and (1e)d-l are approximated by an implicit
second order precision scheme. As a result, from (1a)d-l-(1e)d-l and (3)d-l we derive the
system of difference equations

φn
i

sn+1

i − sni
τ

=
1

h2

(

an
i+ 1

2

(sn+1

i+1
− sn+1

i )− an
i− 1

2

(sn+1

i − sn+1

i−1
)
)

+
(∂F

∂s

(

sni , φ
n
i

)

− vni
∂b

∂s
(sni )

)sn+1

i+1 − sn+1

i−1

2h

+
∂F

∂φ

(

sni , φ
n
i

)∂φ

∂θ
(iN−1, θni )

θni+1 − θni−1

2h
+ (1− sni )

∂φ

∂θ
(iN−1, θni )

θn+1

i − θni
τ

, (6a)

1

h2

(

Kl(p
n+1

i+1
− pn+1

i )−Kω(p
n+1

i − pn+1

i−1
)
)

+
fn
i+1 − fn

i−1

2h
=

=
(

1−
ρ03
ρ01

)∂φ

∂θ
(iN−1, θni )

θn+1

i − θni
τ

, (6b)

vni = −K(sni , φ
n
i )
pni+1 − pni

h
+ fn

i , (6c)

(v2)
n
i = a(sni , φ

n
i )
sni+1 − sni

h
+ b(sni )v

n
i + F (sni , φ

n
i ), (v1)

n
i = vni − (v2)

n
i , (6d)

Qn
i

θn+1

i − θni
τ

=
1

h2

(

λn

ci+ 1

2

(θn+1

i+1
− θn+1

i )− λn

ci− 1

2

(θn+1

i − θn+1

i−1
)
)

−
(|V n

i |+ V n
i )θ

n+1

i+1 − 2|V n
i |θ

n+1

i + (|V n
i | − V n

i )θ
n+1

i−1

2h

+

(

c1
c3

− 1

)

θni
∂φ

∂θ
(iN−1, θni )

θn+1

i − θni
τ

, (6e)
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where i = 0, . . . , N, n = 0, . . . ,M − 1, and the following notation is used:

φn
i := φ(iN−1, θni ), fn

i := f(sni , φ
n
i ), V n

i = −(v1)
n
i ρ

0

1c1/(ρ
0

3c3)− ρ02c2(v2)
n
i /(ρ

0

3c3),

an
i+ 1

2

=
K0(φ

n
i+1)a(s

n
i+1, φ

n
i+1) +K0(φ

n
i )a(s

n
i , φ

n
i )

2
,

an
i− 1

2

=
K0(φ

n
i−1)a(s

n
i−1, φ

n
i−1) +K0(φ

n
i )a(s

n
i , φ

n
i )

2
,

λn

i− 1

2

=
2λc(φ

n
i−1, s

n
i−1)λc(φ

n
i , s

n
i )

λc(φn
i−1

, sni−1
) + λc(φn

i , s
n
i )
, λn

i+ 1

2

=
2λc(φ

n
i+1, s

n
i+1)λc(φ

n
i , s

n
i )

λc(φn
i+1

, sni+1
) + λc(φn

i , s
n
i )
,

Kl =
2K(φn

i , s
n
i )K(φn

i+1, s
n
i+1)

K(φn
i , s

n
i ) +K(φn

i+1
, sni+1

)
, Kω =

2K(φn
i , s

n
i )K(φn

i−1, s
n
i−1)

K(φn
i , s

n
i ) +K(φn

i−1
, sni−1

)
.

The algorithm for the numerical solution of the initial-boundary value problem is as

follows. We solve (6e) for
θn+1

i − θni
τ

, by first taking θ0i instead of θ1i in the first two terms

in the right hand side. Then we substitute the result into (6b) and, using θ0i and s0i , we
find p0i (i = 0, ..., N). Further, using p0i , s

0
i and θ0i , we determine φ0

i and v0i , (v1)
0
i and (v2)

0
i

from (6c) and (6d). After this, from (6a) we find s1i and from (6e) we find θ1i . Next, we
calculate p1i from (6b), and so on. Repeating this algorithm further for n = 1, 2, . . . ,M−1,
we find the values of the sought functions over the entire time interval.

2.3. Numerical Illustrations

For the numerical study of Problem 1D, we use the empirical relations from [9].
Namely, we take pc(s) = (s−1 − 1)γ, where γ = 0.0007Pa; xsc = 1m; tsc = 1 h; g =
9.8m/s2; K0(φ) = Bφ3, where B = 1mkm2; θ− = 268.3K; θ+ = 278.15K; φ− = 0.6;

φ(θ) = φ− for θ < θ−, φ(θ) = φ− + (1− φ−)(θ − θ−)(θ
+ − θ−)−1 for θ ∈ [θ−, θ+],

φ(θ) = 1 for θ > θ+;

k01(s) = 0 for s ≤ 0, k01(s) = s3 for s ∈ [0, 1], k01(s) = 1 for s ≥ 1;

k02(1− s) = 1 for s ≤ 0, k02(1− s) = (1− s)3 for s ∈ [0, 1], k02(s) = 0 for s ≥ 1.

We remark that in this section (Sec. 2.3) the physical quantities are taken in dimensional
form for better clarity of illustrations. In the boundary and initial conditions below the
unit of time measurement is an hour. These conditions are set up as follows:

θ(x, 0) = 268.3K s(x, 0) = 0.01 + 0.5 x, x ∈ (0, xsc) = (0, 1),

p(0, t) = 101325Pa, s(0, t) = 0.01, θ(0, t) = 268.3 + 10 sin(t π/12)K, t > 0,

(∂p/∂x)(1, t) = 0, s(1, t) = 0.51 + 0.01 cos(t π/12), θ(1, t) = 268.3K, t > 0.

Notice that the initial data for p(0, t) corresponds to the atmospheric pressure. The values
of the rest of the coefficients and parameters for numerical simulations are borrowed
from [10] as follows: h = 0.01, N = 100, τ = 0.01, M = 100, ρ01 = 1000 kg/m3,
ρ02 = 1.292 kg/m3, ρ03 = 916.2 kg/m3, c1 = 418 J/(kgK), c2 = 1005 J/(kgK), c3 =
206 J/(kgK), µ1 = 0.001787 kg/(ms), and µ2 = 0.0000171 kg/(ms).
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The numerical algorithm allows us to determine all thermomechanical characteristics
of snow. In this article, we focus on defining porosity φ, the water saturation in pores s
and temperature θ. Figs. 1-6 show the results of the performed simulations. Fig. 1 shows
the porosity profile at t = 1.74 h. Fig. 2 shows the distribution of porosity; one can see
that, over time, porosity increases with increasing temperature. Figs. 3 and 4 show the
temperature distribution. Figs. 5 and 6 show the saturation distribution; it can be seen
that over time the saturation also increases with increasing temperature, like the porosity
does.

From Figs. 1-6 we can notice that the lifespan of the numerical solution for the given
input data is not short, about three hours. This allows to conclude that the numerical
solution of Problem 1D is rather good for description of fairly regular weather regimes,
despite the fact that the global existence theorems for Problem 1D cannot be achieved.

Thus, numerical illustrations indicate good consistency of Problem 1D with real physics
of the melting/freezing processes. Worth noticing that the analogous experiments also were
carried out in [2] and [11] and gave somewhat similar results.

Fig. 1. Profile of porosity at t = 1.74h. The

porosity φ is plotted as the function of the

hight x of the snow mass

Fig. 2. Porosity distribution in the

snowpack plotted as the function of the

hight x (m) and time t (s)

Fig. 3. Temperature distribution on the

snow surface plotted as the function of t (s)
Fig. 4. Temperature distribution in the

snowpack as the function of x (m) and t (s)
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Fig. 5. The water saturation distribution in

the snowpack plotted as the function of the

hight x (m) and time t (s)

Fig. 6. Profile of the water saturation in

pores at the hight h = 0.02m, i.e., near

the frozen bottom. The water distribution

is plotted as the function of time t (s)

Conclusion

For a highly nonlinear one-dimensional problem of description of thermomechanical
processes in a snowpack, the finite-difference algorithm is constructed and the series of
numerical experiments is fulfilled. The results of these experiments correspond well to
laboratory data.

Acknowledgment. The work was carried out in accordance with the State
Assignment of the Russian Ministry of Science and Higher Education entitled ≪Modern
methods of hydrodynamics for environmental management, industrial systems and polar
mechanics≫ (Govt. contract code: FZMW-2020-0008, 24 January 2020).

The numerical experiment was worked out using the Computing Cluster of the Co-
working Center ≪Siberian Supercomputer Center≫ (Computing complex of the RSK
≪Tornado≫), according to the Action Plan for the implementation of the agreement between
the Lavrentyev Institute of Hydrodynamics SB RAS and Altai State University for 2020-23.

References

1. Korobkin A.A., Papin A.A., Khabakhpasheva T.I. Matematicheskiye modeli snezhno-
ledovogo pokrova [Mathematical Models of Snow and Ice Cover]. Barnaul, Altai State
University, 2013. 116 p. Available at: http://elibrary.asu.ru/handle/asu/918 (accessed
28 September 2021).

2. Sibin A.N., Papin A.A. Heat and Mass Transfer in Melting Snow. Journal of
Applied Mechanics and Technical Physics, 2021, vol. 62, no. 1. pp. 96–104.
DOI: 10.1134/S0021894421010120

3. Papin A.A., Tokareva M.A. [Dynamics of Melting Deformable Snow-Ice Cover]. Vestnik
of Novosibirsk State University. Series ≪Mathematics, Mechanics, Informatics≫, 2012,
vol. 12, no. 4, pp. 107–113. (in Russian)

24 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

4. Tokareva M.A., Papin A.A. Mathematical Model of Fluids Motion in Poroelastic Snow-
ice Cover. Journal of Siberian Federal University. Mathematics & Physics, 2021, vol.
14, no. 1, pp. 47–56. DOI: 10.17516/1997-1397-2021-14-1-47-56

5. Antontsev S.N., Kazhikhov A.V., Monakhov V.N. Boundary Value Problems in
Mechanics of Nonhomogeneous Fluids. Amsterdam, North Holland, 1990. 309 p.

6. Kuchment L.S., Demidov V.N., Motovilov Yu.G. Formirovaniye rechnogo stoka.
Fiziko-matematicheskiye modeli [River Flow Formation. Physical and Mathematical
Models]. Moscow, Nauka, 1983.

7. Papin А.А. Solvability of a Model Problem of Heat and Mass Transfer in Thawing
Snow. Journal of Applied Mechanics and Technical Physics, 2008, vol. 49, no. 4, pp.
527–536. DOI: 10.1007/s10808-008-0070-y

8. Bear J., Zaslavsky D., Imray S. Physical Principles of Water Percolation and Seepage.
Arid Zone Research XIX. – Paris, UNESCO, 1968.

9. Rathfelder K., Abriola L.M. The Influence of Capillarity in Numerical Modeling of
Organic Liquid Redistribution in Two–phase Systems. Advances in Water Resources.
1998, vol. 21, no. 2, pp. 159–170. DOI: 10.1016/S0309-1708(96)00039-5

10. Gray J. Water Movement in Wet Snow. Philosophical Transactions of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, vol. 354,
no. 1707, pp. 465–500. DOI: 10.1098/rsta.1996.0017

11. Daanen R.P., Nieber J.L. Model for Coupled Liquid Water Flow and Heat Transport
with Phase Change in a Snowpack Journal of Cold Regions Engineering, 2009, vol.
23, no. 2, pp. 43–68. DOI: 10.1061/(ASCE)0887-381X(2009)23:2(43)

Svetlana V. Alekseeva, MS (Math), Junior Research Scientist at the Laboratory for
Mathematical and Computer Modeling in Natural and Industrial Systems, Altai State
University (Barnaul, Russian Federation), and Postgraduate Student at the Department
of Mechanics and Mathematics, Novosibirsk State University (Novosibirsk, Russian
Federation), svetlana.alekseeva.vl@yandex.ru.

Sergey A. Sazhenkov, PhD (Math), Docent, Principle Research Scientist at the
Laboratory for Mathematical and Computer Modeling in Natural and Industrial Systems,
Altai State University (Barnaul, Russian Federation), and Senior Research Scientist at
the Theoretical Department, Lavrentyev Institute of Hydrodynamics (Novosibirsk, Russian
Federation), sazhenkovs@yandex.ru.

Received September 12, 2021

2021, vol. 8, no. 4 25



S. V. Alekseeva, S. A. Sazhenkov

УДК 517.957+519.63 DOI: 10.14529/jcem210403

ЧИСЛЕННЫЙ АНАЛИЗ ОДНОМЕРНОЙ МОДЕЛИ
ТАЮЩЕГО ИЛИ ЗАМЕРЗАЮЩЕГО СНЕЖНОГО
ПОКРОВА

С. В. Алексеева, С. А. Саженков

Статья посвящена численному исследованию нестационарной одномерной задачи

описания термомеханических процессов в снегу с учетом эффектов таяния и промер-

зания. Снег моделируется как сплошная среда, состоящая из воды, воздуха и пористо-

го ледяного скелета. Базовые уравнения, описывающие состояние снега, основаны на

фундаментальных законах сохранения механики сплошных сред. Проводится постро-

ение конечно-разностного алгоритма и выполняется серия численных экспериментов.

Результаты расчетов хорошо соответствуют лабораторным наблюдениям.

Ключевые слова: фильтрация; фазовый переход; снег; конечно-разностная схема.
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