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The mathematical model of the cell cycle is considered. It is shown that a balance

dynamic model of the cell cycle for the mitotic cell division is degenerate. The method of

constructing of the degenerate balance dynamic model of the cell cycle is submitted. The

methods of the theory of degenerate groups and the numerical methods for the initial value

problem for the Leontiev type systems are applied to the studied model. The numerical

investigation of a model example of a degenerate balance dynamic model of the cell cycle

is performed. The construction of the mathematical model will allow to reduce a time

of studying of the processes occurring in the cell, to develop the possible scenarios of

development in accordance with the changing of environmental factors and to optimize

the process of removing of the division defect.

Keywords: model of the cell cycle, numerical solution, Leontieff type models,

computational efficiency of the algorithm.

Introduction

The subject of research is at the intersection of three directions. The first one is the
research of the Showalter – Sidorov problem for the Leontieff type systems as a special
finite case of Sobolev type equation based on the theory of degenerate groups. The theory
of this direction is developing by S.A. Zagrebina, A.A. Zamyshlyaeva, M.A. Sagadeeva,
N.A. Manakova and others [1–5] under the leadership of G.A. Sviridyuk in Chelyabinsk
mathematical school.

The second direction is the numerical research of models of Leontieff type having
application in economics and engineering. The numerical research of the Cauchy problem
for Leontieff type systems was performed by G.A. Sviridyuk, S.V. Brycheva and
I.V. Burlachko [6, 7]. The Showalter – Sidorov problem for Leontieff type systems in the
economics is considered by A.V. Keller, T.A. Shishkina [8]. The dynamic measurement
problems in the technique are considered by A.L. Shestakov, A.V. Keller, E.I. Nazarova,
Yu.V. Khudyakov [9-11].

The third direction is the research of the balance dynamic model of the cell cycle,
which was conceptually proposed by N.D. Gernet and A.I. Bozhkov [12]. But its detailed
research showed that this model for the mitotic cell division is degenerate. During mitosis,
the genetic information is not synthesized and the hereditary material can not stock up.
This corresponds to the economic models, where the individual elements (e.g., a labor)
are not stocking. Note that V.V. Leontieff repeatedly accented that the balance models
are naturally degenerate [13].

The paper presents the results of the research of balance dynamic model of the cell
cycle. First of all we show that this model is degenerate. The technique of composing of the
degenerate balance dynamic model of the cell cycle is developed on the base of the methods
of the input-output balance. The model example is presented. A numerical algorithm for
solution of the Showalter – Sidorov problem for the Leontieff type systems was adapted
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to research of the balance dynamic model of the cell cycle to perform computational
experiments. Finally, the results of a computational experiment for a model example and
an analysis of their adequacy are presented.

1. Dynamic balance model of the cell cycle

A living cell produces a new cell during the time interval [t0, t0 + τ ], where t0 is a
initial moment of the cell cycle, τ is a time of a new cell creation. The time t ∈ [t0, t0 + τ ]
determines the current moment of the process of new cell creating. It is assumed that at
the initial moment t0 the cell has a real potential (matter reserve) m0 = m(t0), an energy
potential (energy reserve) e0 = e(t0) and the information potential (information resource)
u0 = u(t0).

A vector Bx0 = Bx(t0) = (m0, e0, u0) determines the initial reserves of a matter, an
energy and an information in the cell. The completion of a new cell creation is determined
by the existence of a double reserve Bx(t0 + τ) = 2Bx(t0) = 2BX0.

A vector x(t) determines the volume of a matter production (x1(t)), an energy (x2(t))
and an information (x3(t)) at the moment t ∈ [t0, t0 + τ ]. A and B are square matrices
of order n. Matrix A is a matrix of unit costs of a matter, an energy and an information
which are necessary to maintain the functioning of the cell. Matrix A shows cost norms
of i-th resource on the synthesis of j-th resource unit. Matrix B is a matrix of unit
costs. It determines norms of increment of intracellular flow of i-th resource on a gain
of j-th resource unit. Let us consider only linear production process [12]. Then the costs
akj(t0)x(t) of k-th resource in the moment t for the production of j-th resource having
volume xj(t) linearly depends on xj(t). If arj(t) = 0, then r-th resource is not consumed
in the production of j-th resource. The coefficients arj(t) form a matrix A(t) = (arj(t)),
r, j = 1, 3 of direct costs of resources in the cell.

Each component of a vector f(t) = (fm(t), fe(t), fu(t)) consists of three terms
fi(t) = fi0(t) + fi1(t)− fi2(t), where fi0(t) is a meeting the needs of the cell by produced
resources, fi1(t) is a meeting the needs of the cell by external environment resources,
fi2(t) is a outflow of produced resources of the cell into the external environment at the
moment t.

In view of the mentioned circumstances the following balance relation is executed at
each moment:

x(t) = Ax(t) +B
dx(t)

dt
+ f(t) (1)

with the conditions

x(t) ≥ 0, B
dx(t)

dt
≥ 0.

In this model we take into account the interacting intracellular flows (matter, energy,
information).

In the beginning of its division a cell has initial reserves of matter, energy and
information. In the preparatory phase (presynthetic, synthetic and postsynthetic) just
before mitosis a DNA replication doubles, the cell is actively grows in size and stores the
matter. During mitosis, genetic information is not synthesized and hereditary material can
not stock up for future use. We consider a degenerate balance dynamic model of the cell
cycle as a special case.
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As part of a degenerate dynamic balance model of the cell cycle (1) we consider the
flows of a matter, an energy, an information for the construction of the matrices elements
with the release of the three groups of the corresponding flows of a matter, an energy, an
information. We will call them groups of structural elements.

Intracellular flow of matter (S). The reactions of respiration supply the cell with
not only an energy, but also with a construction protein for the synthesis of a different
molecules.

Intracellular flow of energy (E) consists of two groups. The first one is a group of
anabolic reactions. They are reactions of fusion of large molecules from smaller and simpler
ones, for this process an energy is expended. The second group is a group of catabolic
reactions. They are reactions of decomposition of larger molecules into smaller and simpler
ones, with energy release. A metabolism of the cell is the set of catabolic and anabolic
reactions which occur in the cell at any given moment.

Intracellular flow of information (I). Due to the flow of an information the cell gets a
structure corresponding to the criteria of the living, supports it in time, as well as transfers
it among generations. A nucleus, macromolecule bringing an information (messenger
RNA) into the cytoplasm, a cytoplasmic translation apparatus (transfer RNA, ribosomal
polynomials), and others are involved in the flow of an information.

The mitosis provides a transmission of characteristics and properties among
generations of cells during the development of a multicellular organism. Due to the
distribution of chromosomes all cells of a single organism are genetically identical. The
mitosis determines the most important phenomenons of life activity: growth, development
and repair of tissues and organs, asexual reproduction of organisms.

We introduce the following notation:
ℓ – the number of subdivisions of matter flows which are needed to maintain of the

functioning of the cell, as well as for the reserve of matter;
m – the number of subdivisions of energy flows which are needed to maintain of the

functioning of the cell, as well as for the reserve of matter;
k – the number of subdivisions of information flows which are needed to maintain of

the functioning of the cell, as well as for the reserve of matter;
n – the common number of subdivisions of flows of a matter, an energy, an information

which are needed to maintain of the functioning of the cell, as well as for the reserve of
matter;

There are the following structural elements in group S:
– a splitting of lipids, nucleic acids, proteins, fats (lysosomes);
– a synthesis of proteins, fats, carbohydrates, and transportation (ESR, Golgi complex,

ribosome).
Therefore, ℓ = 2.
There are the following structural elements in group E:
– a synthesis of large molecules from smaller with energy absorption (anabolism);
– a splitting of larger molecules into smaller with energy release (catabolism).
Therefore, m = 2.
There are the following structural elements in group I:
– a regulation of all kinds of cellular activity (nucleus);
– a transfer of genetic information of DNA.
Therefore, m = 2 и n = 6.
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Let:
Xij be a matrix of direct costs, reflecting the volume of a matter, an energy and

an information of i-th structural element by j-th structural element to maintain the
functioning of the cell;

Zij be a matrix of the reverse volumes of a matter, an energy and an information of
i-th structural element by j-th structural element to maintain the functioning of the cell
and for the preparation of a cell division;

Xi be the common number of flows of a matter, an energy, an information which are
used for the functioning of the cell during the reproduction process of a new one.

Table 1

The degenerate dynamic balance model of the cell cycle is presented as a table

Intracellular
flows

Intracellular flow,
which is needed
to maintain the
functioning of the
cell

Increment of
intracellular flows

Needs
of the
cell

Total
flow

S E I S E I

j
i

1
. . .

ℓ

ℓ+ 1
. . .

ℓ+m

ℓ+m+ 1
. . .

n

1
. . .

ℓ

ℓ+ 1
. . .

ℓ+m

ℓ+m+ 1
. . .

n

1
. . .

ℓ

S xSS
ij xSE

ij xSI
ij zSSij zSEij zSIij fS

i XS
i

ℓ+ 1
. . .

ℓ+m

E xES
ij xEE

ij xEI
ij zES

ij zEE
ij zEI

ij fE
i XE

i

ℓ+m+ 1
. . .

n

I xIS
ij xIE

ij xII
ij zISij zIEij bIIij f I

i XI
i

In our model of the cell cycle the specific flows of a matter, an energy, an information
which are needed to maintain the functioning of the cell consist of nine blocks and form
the matrices:

XSS = ‖xij‖ , i = j = 1, ℓ is a consumption matrix of i-th matter flow by j-th flow of
matter;

XSE = ‖xij‖ , i = 1, ℓ, j = ℓ+ 1, ℓ+m is a consumption matrix of i-th matter flow
by j-th flow of an energy;

XSI = ‖xij‖ , i = 1, ℓ, j = ℓ+m+ 1, n is a consumption matrix of i-th matter flow
by j-th flow of an information;

XES = ‖xij‖ , i = ℓ+ 1, ℓ+m, j = 1, ℓ is a consumption matrix of i-th energy flow by
j-th flow of matter;

XEE = ‖xij‖ , i = j = ℓ + 1, ℓ+m is a consumption matrix of i-th energy flow by
j-th flow of an energy;

XEI = ‖xij‖ , i = ℓ+ 1, ℓ+m, j = ℓ+m+ 1, n is a consumption matrix of i-th
energy flow by j-th flow of an information;
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XIS = ‖xij‖ , i = ℓ +m+ 1, n j = 1, ℓ is a consumption matrix of i-th information
flow by j-th flow of matter;

XIE = ‖xij‖ , i = ℓ+m+ 1, n, j = ℓ+ 1, ℓ+m is a consumption matrix of i-th
information flow by j-th flow of an energy;

XII = ‖xij‖ , i = ℓ+m+ 1, n, j = ℓ+m+ 1, n is a consumption matrix of i-th
information flow by j-th flow of an information.

The increment of intracellular flows of a matter, an energy and an information can
also be divided into nine matrices:

ZSS = ‖zij‖ , i = j = 1, ℓ is a matrix increment of i-th flow of matter due to
consumption of j-th matter flow;

ZSE = ‖zij‖ , i = 1, ℓ ; j = ℓ+ 1, ℓ+m is a matrix increment of i-th flow of matter
due to consumption of j-th energy flow;

ZSI = ‖zij‖ , i = 1, ℓ, j = ℓ+m+ 1, n is a matrix increment of i-th flow of matter
due to consumption of j-th information flow;

ZES = ‖zij‖ , i = ℓ+ 1, ℓ+m, j = 1, ℓ is a matrix increment of i-th energy flow due
to consumption of j-th matter flow;

ZEE = ‖zij‖ , i = j = ℓ + 1, ℓ+m is a matrix increment of i-th energy flow due to
consumption of j-th energy flow;

ZEI = ‖zij‖ , i = ℓ+ 1, ℓ+m, j = ℓ+m+ 1, n is a matrix increment of i-th energy
flow due to consumption of j-th information flow;

ZIS = ‖zij‖ , i = ℓ+m+ 1, n j = 1, ℓ is a matrix increment of i-th information flow
due to consumption of j-th matter flow;

ZIE = ‖zij‖ , i = ℓ+m+ 1, n, j = ℓ+ 1, ℓ+m is a matrix increment of i-th
information flow due to consumption of j-th energy flow;

ZII = ‖zij‖ , i = j = ℓ+m+ 1, n is a matrix increment of i-th information flow due
to consumption of j-th information flow.

A vector fi can also be divided into blocks:
fS
i , i = 1, ℓ is a sum, which includes the exchange of flows of matter with the external

environment;
fE
i , i = ℓ+ 1, ℓ+m is a sum, which includes the exchange of flows of an energy with

the external environment;
f I
i , i = ℓ+m+ 1, n is a sum, which includes the exchange of flows of an information

with the external environment.

Based on these tables we calculate the matrix of specific direct costs A = (aij) =

(

xij

Xi

)

– the specific amount of a matter, an energy and an information which are needed to

maintain of the functioning of the cell and the matrix B = (bij) =

(

zij

Xi

)

the specific

amount of a matter, an energy and an information which are used for the increment of
intracellular flows.

2. An example of a dynamic balance model of the cell cycle

Consider the model example of constructing of a balance dynamic model of the cell
cycle. We present a degenerate dynamic balance model as a Table 2, based on the patterns
of distribution of flows of a matter, an energy and an information in the process of mitosis
of the cell [14–16]. Note that these data reflect the state of the cell at the moment t0.
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Table 2

An example of degenerate dynamic balance model of the cell cycle

Intra-
cellular
flows

Intracellular flow, which
is needed to maintain the
functioning of the cell

Increment of intracellular
flows

S E I S E I
j
i

1 2 3 4 5 6 1 2 3 4 5 6

S 1 0 0,25 0 0,35 0 0 0 0,3 0 0,2 0 0
2 0 0 0,2 0 0,05 0,05 0 0 0,4 0 0,1 0,1

E 3 0 0,3 0 0,05 0,05 0 0 0,4 0 0,05 0,05 0
4 0,3 0,1 0,1 0 0,05 0,05 0,4 0 0,1 0 0,05 0,05

I 5 0 0,1 0,1 0,1 0,1 0,1 0 0,1 0,1 0,1 0,1 0,1
6 0 0,1 0,1 0,1 0,2 0 0 0 0 0 0 0

All 0,3 0,85 0,5 0,6 0,45 0,2 0,4 0,8 0,6 0,35 0,3 0,25

System (1) is reduced to a system of Leontieff type

Lẋ(t) = Mx(t) + y(t), (2)

where M = I −A, L = B, and y(t) = −f(t). We construct the matrices of the system (2)
using the data of Table 2.

M = I −A =

















1 −0, 25 0 −0, 35 0 0
0 1 −0, 2 0 −0, 05 −0, 05
0 −0, 3 1 −0, 05 −0, 05 0

−0, 3 −0, 1 −0, 1 1 −0, 05 −0, 05
0 −0, 1 −0, 1 −0, 1 0, 9 −0, 1
0 −0, 1 −0, 1 −0, 1 −0, 2 1

















, (3)

L = B =

















0 0, 3 0 0, 2 0 0
0 0 0, 4 0 0, 1 0, 1
0 0, 4 0 0, 05 0, 05 0
0, 4 0 0, 1 0 0, 05 0, 05
0 0, 1 0, 1 0, 1 0, 1 0, 1
0 0 0 0 0 0

















. (4)

Suppose that a contacting of the cell with the external environment during the time
interval (t0, τ) is determined by vector-function

y(t) =

















0, 05 + 10t+ 10t2 + 10t3

0, 9t+ t+ 5t2 + 2t3 + 2t4

0, 2 + 65t+ 550t2 + 400t3 + 20t4 + 10t5

0, 1 + 755t+ 100t2 + 800t3 + 20t4 + 10t5 + t6

50t+ 200t2 + 50t3 + 50t4 + t5 + t6

−t− t2

















. (5)
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This representation of a contacting of the flows of matter, an energy and an information
with the external environment during the mitosis corresponds to meeting the needs of
the cell by the resources of the external environment and the outflow of the production
resources of the cell into the external environment during the time.

3. Algorithm of the numerical research of the dynamic balance

model of the cell cycle

We use the ideas of the numerical solution of problems for the systems of Leontieff
type [17]. The theorem about the existence of a unique solution of Showalter – Sidorov
problem

[RL
µ (M)]p+1(x(0)− x0) = 0 (6)

for the system of Leontieff type (2) is presented below without proof.

Theorem 1. [17] Let a matrix M be (L, p)-regular, p ∈ N0 and a matrix M−1exist. Then,
for any x0 ∈ Rn and C ∈ Cp+1 ((0, τ) ;Rn) ∩ Cp ([0, τ ] ;Rn) there exists a unique solution
of the problem (2), (6) of the form.

x(t) = lim
k→+∞

xk(t) = (7)

= lim
k→∞

[

−

p
∑

q=0

HqM−1
0 (I −Qk)y

(q)(t) +X t
kx0 +

∫ t

0

Rt−s
k Qky(s)ds

]

,

where

Qk =
(

kLL
k (M)

)p+1
, X t

k =

[

(

L−
t

k(p + 1)
M

)

−1

L

]k

,

Rt
k =

[

(

L−
t

k(p+ 1)
M

)

−1

L

]k−1
(

L−
t

k(p+ 1)
M

)

−1

.

Let us begin to construct the algorithm of the numerical solution of Showalter – Sidorov
problem for the dynamic balance model of the cell cycle. Note that an order of the square
matrix M may be large enough. Therefore if detM = 0 (up to ε = 10−30) it is necessary
to make the change x = eλtv and to consider an equation

Lv̇ = (M − λL)v + e−λty,

where det(M − λL) 6= 0.
The first step of the algorithm is to find p ∈ N0. Consider the polynomial

det(µL−M) = anµ
n + an−1µ

n−1 + ...+ a1µ+ a0.

The coefficients aq, q = 0, 1, ..., n are defined by the formula

aq = (−1)n−q

C
n−q

n
∑

r=1

∆r
n−q, q = 0, 1, ..., n,
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where ∆r
n−q are the determinants which are obtained from determinant of a matrix L by

replacing n−q columns by corresponding columns of matrix M , and r is the serial number
of the determinant.

So, for n = 3 we obtain

a3 = detL = det





l11 l12 l13
l21 l22 l23
l31 l32 l33



 ,

a2 = − det





m11 l12 l13
m21 l22 l23
m31 l32 l33



− det





l11 m12 l13
l21 m22 l23
l31m32 l33



− det





l11 l12 m13

l21 l22 m23

l31 l32 m33



 ,

a1 = det





m11 m12 l13
m21 m22 l23
m31 m32 l33



 + det





m11 l12 m13

m21 l22 m23

m31 l32 m33



 + det





l11 m12 m13

l21 m22 m23

l31m32 m33



 ,

a0 = − detM = − det





m11 m12 m13

m21 m22 m23

m31 m32 m33



 .

After that we determine a number of the older non-zero coefficient aq and denote this
number by q. Therefore q = deg det(µL−M). As a result, p = n− q.

The second step of the algorithm is to determine a number K such that we can begin
to calculate the approximate solution from K. Consider the polynomial

det(µL−M) = aqµ
q + aq−1µ

q−1 + ...+ a1µ+ a0,

we find

α = max

{

1, |aq|
−1

q
∑

i=0

|ai|

}

,

and then

k1 =
1

α

q
∑

i=0

|ai|+ 1.

Consider the polynomial

det (µ(p+ 1)L− tM) = aqt
n−qµq(p+ 1)q + aq−1t

n−q+1µq−1(p+ 1)q−1 + ...+

+a1t
n−1µ(p+ 1) + tna0,

where aq 6= 0, q ≤ rankL. Then for |t| < 1

k2 =
1

αpp

q
∑

i=0

|ai| (p+ 1)n−i + 1,

and K = max {k1, k2} . As a result, for k ≥ K we can not even be near the L−spectrum
of operator M .
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The third step of the algorithm is to calculate nodes sj and weights ωj for a given η

and an interval of integration [0; τ ].

∫ τ

0

f(x)dx ≈
τ

2

2η−1
∑

i=1

ωjf
(τ

2
+

τ

2
sj

)

, j = 1, 2η − 1,

where sj are the zeros of Legendre polynomial

Pn(t) =
1

2nn!
·
dn

dtn
[(t2 − 1)n], n = 0, 1,

and weights are determined by the formula

ωj =
2

[P ′

n(sj)]
2(1− sj)2

.

Next step of the algorithm is to determine a time τ , at which the doubling of resources is
achieved.

The last step of the algorithm is to calculate xk(t) for a given t ∈ [t0, τ ]. We do it
componentwise using the formula (7).

Fig. 1. Block diagram of the algorithm of the numerical solution of the cell cycle model
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4. Results of a computational experiment

Consider the numerical research of the model example of a degenerate balance dynamic
model of the cell cycle for the matrices (3), (4), where the interaction of the cell with the
external environment is defined by a vector - function (5).

In Fig. 2 a cell actively grows in size, stores the matter which are necessary for a
division: proteins, nucleic acids, lipids. Two types of the flows of matter are considered: 1
type – lipids, proteins, nucleic acids and fats, which are involved in the cleavage; 2 type –
lipids, proteins, nucleic acids and fats, which are obtained by synthesis. The flow of matter
of the first type is bigger, because a cell accumulate matter for a further division.

Fig. 2. Matter flows of two types

A certain amount of an energy is required to prepare the cell to divide and to maintain
its functioning. This energy is reserved by a cleavage of high-molecular organic compounds
(energy of 2 type). Also an energy is absorbed in the synthesis of of matter (energy of 1
type), see Fig. 3. A fission and fusion energy increases with a growth and a following
division of the cell. The energy of type 2 is bigger, because an energy is used not only for
the synthesis of matter, but also for other processes, e.g., for a transport of matter.

During a cell division the flows of two types are necessary. They provide the transfer
of genetic information (type 2) and the regulation of all kinds of cellular activity (type 1)
(Fig. 4). DNA accumulates, therefore the flow of genetic information (type 2) continues to
grow. During a preparation for a cell division the synthesis of RNA and proteins increases.
By the beginning of the process of cell division the flow of information about a regulation
of all kinds of cellular activity (type 1) is decreases.

In Fig. 5 the reserve of matter of type 1 (lipids, proteins, nucleic acids, fats, which
are involved in a cleavage) is bigger. They are redistributed and are the basis of a new
cell. Also a reserve of matter of type 2 (lipids, proteins, nucleic acids, fats, obtained by
synthesis) doubles.

Fig. 6 shows the predominance of energy which is reserved by the cleavage of high-
molecular organic compounds (energy of type 2). This is due to the fact that the formation
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Fig. 3. Energy flows of two types

Fig. 4. Information flows of two types

of new structures requires substantial energy consumption. The energy reserve of synthesis
of matter (energy of type 1) is more prolonged in time.

DNA is not synthesized and an information of type 2 is not accumulated during
mitosis (Fig. 7). The nucleus and all its structures are formed on the basis of the
synthesized material. It requires a considerable reserve of the flow of an information,
which is responsible for the regulation of all kinds of cellular activity (type 1).

The numerical research of a model example provides an opportunity to establish the
relationship between the intracellular flows of matter, energy and information and also
to understand how the cell functions during mitosis and how the cell interacts with the
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Fig. 5. Reserve matter of two types

Fig. 6. Reserve information of two types

environment.
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