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NUMERICAL SOLUTION OF THE CAUCHY-WENTZELL
PROBLEM FOR THE DZEKZER MODEL IN A BOUNDED
DOMAIN
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In terms of the theory of the p-sectorial operator, the Cauchy problem for the Dzekzer
equation describing the evolution of the free surface of a filtered liquid with pure Wentzell
boundary conditions are investigated. In particular, we consider the relative spectrum in the
Dzekzer equation and construct a resolving holomorphic semigroup of the operator in the
Cauchy—Wentzell problem. In the article, these problems are solved under the assumption
that the initial space in which the Laplace operator operates on the bounded domain is a
Lebesgue space L?(2). The purpose of this work is to show new approach for resolvability
of this problem with pure Wentzell boundary conditions. Namely, according to the modified
Galerkin method, describe the solution of the Cauchy—Wentzell problem.
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Introduction

Let Q C R™, n € N\ {1} be a bounded connected domain with the boundary 02 of the
class C*°. Let us consider the Cauchy problem with pure Wentzell boundary conditions

u(z,0) = ug(x),z € Q,
Au(z,y,z) =0, (x,t) € 02 xR (1)
u(z,y,z,t) =0, (x,t) € 00 x R
for the Dzekzer equation
(A — A)uy(z,t) = alu(z, t) — BA*u(z,t) + f(x,t), (2,t) € QX R, (2)

which simulates the evolution of the free surface of the filtered liquid. Here o and g € R,
A € R are real parameters characterizing the medium; the function f(z,t) corresponds to
liquid sources.

The purpose of this work is to show new approach for resolvability of problem (1)-
(2) with pure Wentzell boundary conditions. Namely, according to the modified Galerkin
method, describe the solution of the Cauchy—Wentzell problem.The article contains four
sections except introduction, conclusion, and the list of references. Analytical research of
the Dzekzer model is given in the first section. The algorithm for the numerical solution of
the this model contains in the second section. The ideas of computational implementation
describe in the third section. The result of a computational experiment on resolvability of
the Cauchy—Wentzell problem in the Dzekzer model are given in the fourth section.

1. Analytical Research of the Dzekzer Model

In this section we recall the main results necessary for further numerical solution of
problem (1)—(2). Let us consider the differential operator

Au(z) = Au(z), x€Q (3)
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with Dirichlet boundary condition
u(z) = 0. (4)

By formulas (3)-(4) we define the linear operator A : dom A C § — §. Here
dom A = {u € WZ(Q) : conditions (4) is fulfilled} is the linear manifold as the domain
of the operator A, § is a Lebesque space Lo(£2). Next, in the space § let us consider the
bilaplacian A%u(x) := A?(x),z € Q with the following domain dom A? = {u € W}(Q) :
Au(z) = 0} Ndom A. It is well known that the embedding dom A — § is densely and
compact and the embedding dom A% < § is densely and the compact too. Moreover, both
spectrum sets are o(A) and o(A?) are discrete, finite-fold, and have only limit point to co.

Let us move on to the Cauchy—Wentzell (1)-(2) problem for the Dzekzer equation.
Note that the boundary conditions are chosen in such a way that the bilaplacian A2 is
also essentially a self-adjoint operator in the space § with respect to the norm. In order
to solve the problem (1)—(2), we find the L-spectrum of the operator M. Since L is the
resolvent of the operator M takes the form

(WL — M) = (u(A— A) — @A+ A = {u+a—BAZ£0} =

-1

_ UA
=(p+a—BA | ————nuo —A]
(o= B4 e
where 1+ o — BA # 0, then y lies in the relative spectrum of o*(M) if
/3)% —
=A :
2 k Mo — A

Thus, according the spectrum theorem o(A), where A, are eigenvalues of the Laplace
operator A, u + o — A # 0, we have a discrete, finite multiplicity L-spectrum of the
operator M with the unique limit point at —oo. Let us consider the case of p+a—pFA # 0.
For A = 0 we have (M) = o(A). For A # 0 we have oc“(M) = {@} if a # 0, and
ol(M) = {0} if @« = 0 and 8 = 0. We have described the L-spectrum of the operator M,
giving the following lemma.

Lemma 1. L spectrum of the operator M in the Dzekzer equation with the Wentzell
boundary condition is a real, discrete, finite multiplicity with the unique limit point at
—00.

Hence, the following theorem holds.

Theorem 1. Suppose that the linear operator A satisfies satisfies the defined above
conditions, and f € § is a fived vector. Then

(i) if X & o(A), then for any f € C*((0,7);3°) N C°([0,7]; §) and uy € dom A there
exists the unique solution u € C((0,7);dom A) N C([0,7];dom A) to Cauchy-Wentzell
problem (1)—(2), which has the following form

SN WTESS - Mt B\ < f o >
u(z,t) = Ze FOERE < ug, o >3 k() + Z (1 — e N )ﬁ@k(@;
k=1 k=1 k

(ii)) A € o(A) and condition

the coefficients « € R and § € Ry are such that
no eigenvalue N\, € o(A) is the root of the equation B&* — a& = 0.
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be satisfied for any f € C'((0,7);3°) N C°([0,7]; F") and uy € dom A such that

< f(0), o >
DO R, s (O e L3

_ B2
A=) A=A ak—fA

there emists the unique solution u € C'((0,7);dom A) N C°([0,7];dom A) to Cauchy-
Wentzell problem (1)—(2), which has the following form

oo !/

_ ti <f(t)7§0k >5 Pk
u(t) = 3 e <o pn 5t )~ S
k=1 A=A
/
1 — t plt=s) < >
4+ ()\_Ak:) 1 ds € f(S),ng %gpkdl/,/’
27le:1 0 r K= M

where the dash at the sign of the sum means that there are no summands with numbers k
such that A = \.

2. The Algorithm for the Numerical Solution of the Dzekzer Model

We would like to find an approximate solution using the modify Galerkin method,
since the Dzekzer model may be degenerate. Let us construct Galerkin approximations
solution of the Cauchy—Wentzell problem in the following form

WE

ﬂ(x,t) = uN(xu t) = uk(t)(pk(x>a (5>

k=1

where {¢y : k € N} are eigenfunctions of the Laplace operator A and correspond to its
eigenvalues, orthonormal by the norm < -,- >z which are numbered in non-increasing
order taking into account the multiplicity.

Substitute approximate solution (5) in the equation (2) and multiply by a scalar it to
eigenfunctions ¢ (x) by the norm < -, - >5 . We obtain the following system

(A = A (t) = (A — BADu(t) + f1(1),

(A= XoJuj(t) = (@ = BAD)ua(t) + folt), (6)

(A = An)uiy (1) = (@An = BAR)un () + fn (8).

Depending on the parameters A , we have algebraic or first-order differential equations
in the system (6). Let us consider these conditions in more details.

(i) A ¢ o(A). Due to this fact, the mathematical model is non-degenerate, and all
the equations in the resulting system are ordinary differential equations of the first order.
For the solvability this system with respect to ug(t), we multiply by a scalar the initial
conditions (1) to eigenfunctions g (x) by the norm < -,- >5 . Then, we solve the system
(6) with appropriate initial conditions and find the coefficients u(t) in the approximate
solution u(z,t).
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(ii)) A € o(A). Let without loss of generality A = \,,, = --- = \,,., where r is the
multiplicity of the root. Then, the part of equations will be algebraic, the other part will
be ordinary differential equations of the first order. Let us consider separately systems
composed of algebraic equations and differential equations of the first order. Note that the
solution of the original problem exists, according to the Theorem 1, if the initial function
vo(x) belongs to the phase space

‘Bf:{uedomA:u:uo—i-ul, <ul,pp >5=0,u’ = Z

< f, o6 >3 @k(ﬂf)}
A=\

aX — BN

3. The Computational Implementation for the Numerical Solution
of the Dzekzer Model

Since the Galerkin method is not of most interest, we describe the main ideas, in
the author’ view, associated with implementing a numerical solution.The full algorithm is
shown in the Figure 1.

{ Beginning program ‘ @

The solution of the . 2
Input of parameters A, a. N, differential equations with %hodking Ihe oandiion
B, f(x.t) and initial data u0 appropriate initial data
¥
4‘ The solution
homogeneous
Constructing the solve in the differential equations

form of Galerkin sum

v

The solution of
algebraic equations

v

Substitution of approximate
solution in the equation

v

k=1 W

v

Substitution of found
coefficients

v

The output of the
solution and its graph

End of pragram

Fig. 1. The block diagram of algorithm

Scalar multiplication of equation
and initial data to eigenfunctions

Remark 1. Let’s consider an approach that allows us to find the eigenvalues of the
Laplace operator in a cube [0, 7] x [0, 7] x [0, 7] a. The implementation is present below.
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import math

from math import cos, sin
from mpmath import =x
from sympy import =x

N=n
for k in range(N):
for m in range (N:
for n in range (N:
print (math. sin (k*1)+*math.sin (m*1)*math.sin (n*1))
print(k,m,n)
print(’lambda’, k#*24mx*24n**2)

print (v)

Remark 2. Let’s consider an approach that allows us to find the eigenfunctions of the
Laplace operator in a cube [0, 7] x [0, 7] x [0, 7] a. The implementation is present below.

from scipy import integrate
import numpy as np

f = lambda x, y, z : 2%math.sin(x)*math.sin (3%y)*math.sin (z)+math.exp(math.sin (x))
g = lambda x : 0

h = lambda x : math. pi

q = lambda x, y : 0

r = lambda x, y : math. pi

v, err = integrate.tplquad(f, 0, math.pi, g, h, q, r)

4. The Result of a Computational Experiment of the Cauchy—
Wentzell Problem in the Dzekzer Model

Example. Let us consider the Cauchy—Wentzell problem

u(z,0) = 2e5m@),
Au(z,y,2) =0, (z,y,2,t) € 02 x R
u(z,y,z,t) =0, (z,y,2,t) € 02 x R.

for the equation
A=D)uy(x,y, 2,t) = alu(x, y, 2, t) = BA%u(x, y, 2, 1)+ (2,9, 2, 1), (2,t) € AxRy, (7)
where A = 1, a =1, =1, Q = {(.ﬁE,y,Z) : [0771—] X [0771—] X [0777-]}7 f(x,y,z,t) =

sin(x) + cos(x)
Let N =7, then the approximate solution have the following form

B

u(z,t) = u'(z,t) =

uk(t)pn (). (8)

k=1

The eigenfunctions @g,, of the homogeneous Dirichlet problem for the Laplace
operator in the cube [0,7] x [0, 7] x [0, 7] are sin(kx)sin(my)sin(nz). Find and write
down the eigenvalues and the eigenfunctions of the Laplace operator.

We have eigenvalues A3 = —11, A\j11 = =3, A\311 = —11, A\j13 = —11, A513 = —35,
A153 = —35, )\531 = —35.
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Substitute approximate solution (8) in the equation (7) and multiply by a scalar it to
eigenfunctions ¢y (x) by the norm < -, - >5 . We obtain the following system

(120 () + 132uy (t) + 2.094395 = 0,
Auly(t) + 12uy(t) + 39.478417 = 0,
12uf(t) + 132us(t) =0,

12u,(£) + 132uy(t) + 2.09439 = 0, (9)

36wl (t) + 1260us(t) =

36us(t) + 1260ug(t) + 0. 118879 — 0,

| 361 (1) + 1260uq(t) =

Due to the fact that A ¢ o(A), the mathematical model is non-degenerate, and,
according to the algorithm, all the equations in the resulting system are ordinary
differential equations of the first order. Let us solve the system (9) with initial conditions

uy(0) = 3.4594415,
u5(0) = 5.9919285,
u3(0) = 1.884511856,
u4(0) = 3.4594415,
us(0) = 1.01085648,
ug(0) = 1.54710,
u7(0) = 1.0120856.

and find Galerkin coefficients

uq(t) = 3.44357 - e M 4+ 0.0158666,
us(t) = 2.702060 - e~ + 3.299868,
us(t) = 1.884511856 - e 1Y,

t

1.0120856 - e3¢,
1.5468 - 3% + 0.00033244,

)=
)=
)=
) = 3.4436 - e~ 4 0.015871,
)=
)=
) = 1.0120856 - e,

Substituting them in the representation we obtain an approximate solution to the
original problem. The graph of the solution is shown in the Figure 2.

Conclusion

We constructed an algorithm and implementation for the numerical solution of the
Cauchy—Wentzell problem in the cube [0, 7] x [0, 7] x [0, 7] for Dzekzer model. To this
end, we used the numerical methods theory. Further, we plan to continue the results of
the paper by applying the Wentzell boundary conditions in directions related to [5].
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Fig. 2. The solution to problem in Example
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YNCJEHHOE PEIIIEHUE 3AJIAYN KOIIIN-BEHTIIEJISI
TIJISTI MOJIEJIN N3EKIIEPA B OTPAHUYEHHO OBJIACTU

H. C. I'onuapos'
1 TOzxm0-Ypanabekuit rocyiapeTBennblil yuusepeuter, . Jenabunck, Poccuiickast
Deneparnnsa

B TepmumHax Teopum p-CEKTOPUAIBLHOTO ONEpaTOpa HUCCIeIyeTcd 3ajada Kormm s
ypaBHeHus /[3eKiepa, OnuchbIBaOIEro SBOJIIOIUI0 CBOOOIHON MIOBEPXHOCTH (DUIBTPYIOIIEH-
CsI KUIKOCTH C YUCTBIMU TPAHUIHBIMU ycaoBusaMu BenTienrs. B wacTHOCTH, paccMaTpuBaeT-
CsI OTHOCHUTEJILHBIH CIIEKTP B ypaBHeHN J[3eKiiepa u CTPOUTCS pa3pernaonias ToaoMopdHast
[OJIyTpyIa orneparopos B 3ajade Komu-Bentiens. B crarbe 3T mpobjieMbl pernaroTcs: B
IIPEJIIIOJIOKEHUH, ITO HaYaJILHOE ITPOCTPAHCTBO, B KOTOPOM oreparop Jlamiaca mefictByeT
B OIpaHUYIEHHOI 06JIaCTH, sIBJIsIeTCs IpocTpaHcTBoM JleGera, L2 (Q). Henbio gannoii paboTh
ABJISIETCS OMMCAHNE HOBOTO TOAXO0/A K Pa3PEeIIuMOCTH ITON 331a9i ¢ TPAHUIHBIMEA YCJIO-
BuaAMU BeHTIe s, a UMEHHO, B COOTBETCTBHUHU ¢ MOIUMPUITIPOBAHHBIM METOIOM [ ajepkuHa,
ONHUCHIBAETCS pernerne 3aaa4u Komm-Bentiess.

Karouesvie crosa: ypasnenue /zexuepa; sadaua Kowu—Benmueas; memod Lanrepruna;
YUCAEHHOE MOOEAUPOBAHUE.
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