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Currently, one of the important problems of the megalopolis is traffic management,
and in connection with the problem of the formation of predatory and congestion situations
in settlements, respectively, these studies are relevant. There are several approaches to
mathematical modelling of the behaviour of vehicle traffic. The most common ones:
microscopic, macroscopic, based on the theory of cellular automata. The third approach
is macroscopic, with its help analog models are built, and the traffic flow is considered as a
hydrodynamic, or gas-dynamic flow. Using this approach, you can find the time or traffic
intensity, average speed, and the level of network load. One of the creators of this approach,
which simulates the traffic flow by the Navier-Stokes system, which describes the flow of
a viscous incompressible fluid, is A.B. Kurzhansky. A distinctive feature of this article is
that the traffic flow model is built on the basis of the Oskolkov system of equations, which
generalize the Navier-Stokes system. Here, in addition to the viscosity and incompressibility
of the flow, elasticity is taken into account, due to which the retardation effect inherent in
viscoelastic incompressible fluids appears.

Keywords: Oskolkov equation; geometric graph; traffic flows.

Introduction

Consider the crossroad at the initial moment of turning on the traffic light, when the
crossroad mode changes from unregulated (yellow flashing traffic light mode) to regulated
and denote this moment ¢ = 73. <Crossroad is a place of intersection, abutment or
branching of roads at the same level, bounded by imaginary lines connecting, respectively,
opposite, most distant from the center of the intersection, the beginning of the curvature
of the carriageway. Exits from adjacent territories are not considered as crossroadss'.

Imagine a crossroad with a changing mode of its passage (traffic light is switched on) in
the form of an eight-edge geometric graph G (fig. 1)[1], [4]. The length of the k-th edge [ is
measured in linear metric units (kilometers or miles), however, in the mathematical model
of traffic flow, the value of [ is dimensionless. The number of lanes on the carriageway in
one direction dj will be called the capacity; similarly, in the context of the mathematical
model, the value of dj is dimensionless. Suppose that all adjacent roads at the crossroad
under consideration are equivalent, so we will assume that the capacity of each direction
will be the same, i.e. dy =dy = ... =dg = d.

The traffic flow will be determined using the Oskolkov equations given on graph Gy

)\ulkt — Ulktee = VUiker T flka k= m (1)

Decree of the Government of the Russian Federation of 23.10.1993 N 1090 (as amended on 04.12.2018)
<On the Rules of the Roads(together with the «Basic Provisions for the Admission of Vehicles to
Operation and the Obligations of Officials to Ensure Road Safetys).
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Fig. 1. Road map

Here uy, = uy(x,t), o € [0,1], t € Ry (= {0} UR,), & = 1,8, characterizes the
average traffic speed on the set of edges Ej of graph Gy. Coefficients fi, = fix(z,1),
(z,t) € [0, 1] x Ry corresponds to the average force that causes the wheels of vehicles to
spin. Coefficient A is equal to one divided by the coefficient of retardation, which can take
negative values, therefore, we consider A € R. Coefficient v is responsible for the viscosity
of the transport flow, namely, i.e. for its ability to <dampens sharp speed differences,
withing the physical meaning v € R,.

Suppose that at moment of time ¢t = 7y on the first and fifth edges a red traffic light
is switched on, i.e. the boundary conditions for the Oskolkov equations (1) on graph Gq
will have the form

Ulg(o, t) = Ulg(lg, t) = U14(O, t) = U16(0, t) = U17(l7, t) = ulg(O, t), (2)

w1 (i, t) = wis(ls, t) = 0, (3)
—u122(0, ) + U135 (I3, 1) — w142(0, ) — u164(0, ) + w175 (l7, ) — u1s,(0, 1) = 0,

4
110 (0,1) = 1152(0, £) = trsa (0, £) = gm0, 1) = 0, )
U124 (l2, ) = w145 (la, 1) = Ut (16, t) = wi1ss(ls, t) = 0.

Condition (2) means that the speed of the vehicle entering the crossroad should be equal
to the exit speed, and it is a condition of <continuity>. Condition (3) is a traffic ban
condition, and conditions (4) require that the number of vehicles leaving the crossroad be
equal to the number of vehicles leaving, and they are called <flow balance> conditions.
We define the initial condition in the form of Showalter — Sidorov condition

Py (uy(x,79) — uio(z)) =0,

in this case, due to the change in terms fi1, fi5 conditions tlim u11(ly,t) =0, tlim us(ls, t) =
—T0 —T0

0, required to stop before the red signal traffic light is switched on.

When time ¢ = 7 is reached, the traffic signal will change, therefore, the direction of
traffic at the crossroad will change, therefore, instead of graph Gy (fig. 2) we will consider
a new graph Gg (fig. 3). On this graph, Oskolkov’s equations take the form

AUkt — Uktze = VUkea + for, B =1,8,
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Fig. 2. Crossroads before the traffic signal Fig. 3. Crossroads after changing the traffic
changes, in time period [, 7] signal, in time period |7y, 75]

and the conditions of <continuity>, <traffic ban> and <balance of flow> are
U21(l1, t) = U22(0, t) = U24(0:t) = U25(l5,t) = U26(O,t) = u28(07 t):

ug3(l3,t) = uar(l7,t) = 0
U1 (11, 1) — U222(0,8) — U242(0, 1) + Unse(ls, 1) — u262(0, 1) — u2s,(0,) = 0,

U215(0,1) = u234(0, ) = u25,(0,1) = w9, (0,¢) =0,
u22x(l2, t) = UQ4x(l4, t) = u26x(l67 t) = Uggx(lg, t) =0.

When the traffic signal changes at time t = 7 the average speed on the third and seventh
edges will tend to zero, i.e. tlim ugs(ls,t) = 0, tlim ugr(l7,t) = 0. In this case, on the
—T2 —T2

remaining edges, the speed will be ugg(x, 1) = wig(z, 1) = wik(x), £ =1,2,4,5,6,8, it is
reached on the corresponding edge by time 71, namely. In general terms, these conditions
take the form

PQ(UQ(I‘, 7'1) - Ugl(l')) =0.
Continuing the traffic light switching procedure at times ¢t = 75, j = 0, n, and for even

n consider the crossroad as a graph Gy, and for odd n consider the crossroad as a graph
Go. In general, the multipoint initial-final condition takes the form

P (um(z, 1) — umj(x)) =0, 7=0,n, m=1,2,

where 7; is the moment when the traffic light switches.

1. Abstract Model

In Banach spaces 4 and § consider operators L € L(U;F), M € CI(;F), and let
operator M be (L, p)-bounded, p € {0} UN.
For a linear inhomogeneous Sobolev-type equation

Li = Mu + f. (5)

we formulate a multipoint initial-final condition [2], [3]

Pi(u(r;) —u;) =0, j=0,n, (6)
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where 7; € 3=1[0,7], (1j-1 < 75), j=Lin;u; €8k, j=0,n, f € C(T;F).

A vector function u € C*°(J;4) is called a solution to equation (5), if it satisfies this
equation. A solution u = u(t), t € J, of equation is called (5) a solution of a multipoint
initial-final problem for equation (5), if it additionally satisfies conditions (6).

Theorem 1. If the operator M is (L, p)-bounded, p € {0}UN, then for any f € C*(3;F)),
u; € U, j =0,n, problem (5), (6) is uniquely solvable, and the solution has the form

» n . n t
u(t) = — kz HEM (T = Q) f W () + > U Puj+ Y / USLHQ,f(s)ds. (1)
=0 =0 j=0 7T
e Equation (5) is reduced to the system
Hi® = v’ + My (I-Q)f, 4 = Sju™ + L} Q;f, (8)
where v’ = (I — P)u, u = Pju, j = 0,n,

To find the first term, it is necessary to sequentially differentiate the first equation (8),
while multiplying it by Hon the left. Using the nilpotency of the operator H, we obtain

u(t) ==Y HM;' (I-Q)fP(t). (9)
k=0

Noticing that the projector P; is a unit operator on Ll}, by virtue of (6) we formulate
the Cauchy conditions at different times for the second equation (8)

= SjuM + LQ;f, uV(rj) = Py, j=0,n. (10)

Successively solving problems (10), we obtain

t
ut(t) = U]t'_Tj/U/j +/ U;_SLJ-_llef(s)ds, Jj=0,n. (11)

J

Adding (9) and (11), we obtain (7). The uniqueness of the solution to problem (5), (6) is
obvious due to the above proof. e

2. Modification of the Mathematical Model of Traffic Flow
at the Intersection

Consider a finite ordered set I' = {Gy, Gs,..., G, ...} of finite connected directed
graphs G; = G;(V;, &;). Each geometric graph G; corresponds to a time period [r;_1; 7).
Here V; = {Vj;} is the set of vertices of graph G, and & = {Ej;} is the set of edges of
G;. Each edge F;. of each graph G; corresponds to two numbers: the <length> of the
edgel;rx € Ry and its <width> d;;, € Ry.

It is necessary to find the solutions of the Oskolkov equations

Nilikt — Wiktgs = Villikaz + fik, (12)

given on each edge Ej of each graph G; on time interval [1;_1, 7;], where coefficients \; € R
and v; € R,
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Let us consider the first condition for the speed limit when driving through a
crossroad is the speed of a vehicle entering the crossroad must be equal to the exit speed,
otherwise traffic jams or road accidents are possible at the crossroad. This condition in
the mathematical model is the condition of <continuity>

VEix, By € E*(Vij), YEim, Ein € Eg,(Vij).
Here E“(V;;) denotes the set of edges of graph G;, emerging from vertex V;;, and by
Eg’p(l/;j) denotes the set of edges of graph G, that correspond to the entering the crossroad
into vertex Vj; at the permitting traffic signal.
The second condition for the speed limit when driving through a crossroad is that the
number of vehicles leaving the crossroad was equal to the number of those leaving. In the
mathematical model, it is formulated as a condition for the <balance of flows>

B e E*(Vij) Eim€ES,(Vij)

The third condition of the speed limit when driving through a crossroad is the condition
of a <ban on traffic>
ui(li, t) =0, VEy € Eg(Vij), (15)

where E%(V;;) is denoted as the set of edges of graph G, corresponding to the entering
to vertex V;; at the prohibiting traffic signal.
Consider Hilbert space

L2(G;) = {9 = (9i1: Gizs - - - Gik» - - -) = Gir € L2(0, 1) }

with inner product
lik
0

Er€&;

Moreover, consider space
il(GZ) = {Uz = (Uil, Uiy v v oy Ujky - - ) UK € WQI(O, lzk:)

and (13), (15) are satisfied in each vertex V;; € V;}

with inner product
lik
[u,v]; = Z dikz/ (WikaVike + wirvir) d.
0

We identify Ly (G;) with its dual and denote by §(G;) the space dual to $(G;) with respect
to the duality (-,-). Note the dense and continuous embeddings U(G;) — La(G;) —
§(G;)and note that, by virtue of the Sobolev embedding theorems W3 (0, ;) , functions
from a.e. on [0, ;] coincide with absolutely continuous functions, therefore, the spaces
U(G;) are well defined.
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Take \; € R, and by the formula
lik
<L¢Ui,vi>i = Z dik/ (Uimvilm + )\iuikvik)dxa Uy V; € ﬂ(Gi),
0

define an operator L, € L(U(G;); §(G;)). Consider space
Ql(GZ) = {UZ = (Uil, Uiy« v oy Ujkey « - ) UK € 02(0, lzk) N CI[O, lzk]
and (13), (15) are satisfied at each vertex V;; € V;}.

Dense and continuous embeddings 2A(G;) <  U(G;) are obvious, and
(Ni — Wige, v3)); = (Liug, v;); for all u;, v; € A(Gy). Thus, the flow balance conditions
((14) are <hidden> in the sense of O.A. Ladyzhenskaya in the definition of the operators
L;.

Take v; € Ry, and put M; = v;(\I; — Ly), where I; : U(G;) — F(G;) is the embedding
operator. Consider the equation

Liuy = Mu; + f;. (16)
Lemma 1. Operators L; : Y% — §i are linear and continuous, spectrum
o(L;) is real, discrete, finite, and condenses only to —oo. Operators

M, - U4, — §; are linear and continuous.
Corollary 1. Operators L; are Fredholm, and ker L; = {0}, ecau 0 ¢ o(L;).
Lemma 2. Let parameters v; € Ry, \; € Ry, then operator M; be (L;,0)-bounded.

Take 7; € R, j = 0,7, such that 7,y < 7; for j = 1,n, u; € 8, j = 0,n. A vector
function u; € C'((7;_1,7:); (Gy)), satisfying (16) for some f; € F(G;), is called a solution
of equation (16), satisfying the multipoint initial-final condition

Py(ui(1;) —uij) =0, j=0,n. (17)

where P; are relatively spectral projectors, and at moment of time 7; the velocity that was
the flow at this moment becomes the initial one.

Lemma 3. For any N\, v; € Ry, f; € F(G;) and uy; € MG;) there exists a unique
solution of problem (16), (17).

Now we use conditions t,11(7n) = Um(Tm), m = 1,2, ..., 4, ..., <to glue> the solutions
of problems (16), (17), the existence and uniqueness of which follows from lemma 3. On
the one hand, by definition, u,,(7,) € 4(G,,); on the other hand, lemma 3 requires that
U (Tin) € U(Gypg1). Therefore, by Lemma 3 the following theorem holds.

Theorem 2. For any \;, v; € Ry, f; € F(G;) and ug € U(Gy), such that u,,(71,) €
WGht1),m=1,2,...,4,..., there exists a unique solution of problem (12) — (15).
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MAKPOMO/IEJIb TPAHCIIOPTHOI'O ITOTOKA
HA IIEPEKPECTKE

A. C. Konxkuna, A. A. Myxamemuvsaposa

B macrosiiee Bpemst OHON M3 BaXKHBIX IIPOOJIEM METAIIOJINCA SBJISIETCS YIIPABJIEHUE
JIOPOKHBIM JIBUZKEHUEM, & B CBA3U C IpOoOIeMOil 00pa30BaHus MIPEI3aTOPHBIX U 3aTOPHBIX
CUTyalluii B HACEJICHHBIX IIYHKTaX, COOTBETCTBEHHO, 3TU HCCJIEJOBAHUS ABJIAIOTCS aKTYy-
ajbHbIMU. CyIIecTByeT HECKOJIBKO IOIXO0/I0B MaTEMaTUIeCKOI0 MOJETUPOBAHUSI TTOBEIEHS
JIBIKeHNs aBrToTpancropra. Hambosiee pacmpocTpaHeHHble U3 HUAX: MHKPOCKOIMUYIECKIU,
MaKPOCKOIIMIECKUI, HA OCHOBE TEOPUU KJIETOYHBIX ABTOMATOB. T PeTHil MOIX0/T — MAKPOCKO-
IIMYECKUil, C ero MOMOIIBIO CTPOATCA MOJIE/IN-aHaJIONd, ¥ TPAHCIOPTHBIN IIOTOK paccMaTpu-
BaeTCs KaK TUJIPOTUHAMUYECKUH, TN Fa30IMHAMIYIEeCKI TOTOK. [Ipu npuMenennn TaHHOTO
I10/1X0/1a MOKHO HalTH BpeMs WM NHTEHCUBHOCTD JIBUKEHUs, CPEJHIOI0 CKOPOCTh, yPOBEHD
3arpysku ceru. OHUM U3 co3aTesieii JanHoro noaxoa asisgercsa A.B. Kypxancknii, koro-
PBIil TPAHCHOPTHBIA TIOTOK Mojesmpyer cuctemoir HaBbe — CTOKCa, OMUCHIBAIOIIEIH TedeHne
BA3KON HecKuMaeMoit KujkocTu. OTimanresbHas 9epTa JAHHOW CTATHU 3aKJIIOYAETCS B
TOM, YTO MOJIEJIb TPAHCIIOPTHOI'O IOTOKA CTPOUTCS Ha OCHOBe cucTeMbl ypaBHeHuil OcKoJI-
KOBa, KOoTopble 06001matT cucremy Hasbe — Crokca. 31ech TOMUMO BSI3KOCTH U HECXKHAMar-
€MOCTH ITOTOKA, YyIUTHIBAETCSI YIIPYIOCTh, M3-3a KOTOPOU MosiBjisieTcs 3 deKT perap/Iaium,
CBOMCTBEHHBI! BA3ZKOYIIPYI'UM HECKUMAEMBbIM KUJIKOCTSIM.

Karoueswie caosa: ypasnenus Ockoakosa; eomempuseckuti epad; mpaHcnopmmbse no-
MoKU.
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