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The article is devoted to the question of the uniqueness or multiplicity of solutions of the
Showalter—Sidorov—Dirichlet problem for the Hoff equation on a segment. The Hoff equation
simulates the dynamics of deformation of an I-beam under constant load. To investigate
the non-uniqueness of solutions to the Showalter—Sidorov problem, the phase space method
will be used, which was developed by G.A. Sviridyuk to study the solvability of Sobolev-
type equations. It was also previously shown that the phase space of the model under
study contains features of type 2-Whitney assembly. The article presents the conditions of
uniqueness or multiplicity of solutions to the Showalter—Sidorov problem depending on the
system parameters. An algorithm for the numerical solution of the problem based on the
Galerkin method. The results of computational experiments are presented.
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Introduction

The approach proposed in the work of Hoff [1] for the study of deformation under
compression of the rod (buckling) extends to the case of creep of initial irregularities. Creep
should be understood as the deformation of a solid body that takes place over a long time,
under the influence of a constant load. In the process of creep, deformations increase —
both on the concave and convex sides of the curved rod, which leads to a rapid increase in
deflections or to the phenomenon of buckling of the rod. In his work, N.J. Hoff applied his
approach to an <idealized> [-beam section consisting of two identical shelves connected
by a thin wall of a certain height, which led to the creation of a model of buckling of an
[-beam.

Generalized Hoff equation

2k+1

(=X — A)uy + apu + ayu® + aou® + ...+ a1+ apu =y, te Ry, z€Q (1)

models the dynamics of deformation of an I-beam. The function u = u(z,t), x € Q, t € R,
shows the deviation of the beam from the equilibrium position. The parameter A € R,
characterizes the longitudinal load on the beam, and the parameters o; € R,7 = 0,k
characterize the properties of the beam material, y = y(z,t) is external load (lateral load
forn =1).
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Various approaches were used in the study of the Hoff model [2-4]. For example, in
the work of S.A. Zagrebina a multipoint initial-final problem was studied for a linear Hoff
model [5]. The work of N.A. Manakova is devoted to the study of optimal control of the
deformation process [6]. And in the article by S.A. Zagrebina and P.O. Pivovarova was
investigated the stability of the linear Hoff equations on the graph [7].

The review article [8] contains the results of many years of research on the non-
uniqueness of the Showalter—Sidorov problem:

L (u(z,0) — ug(z)) =0 (2)
for semilinear Sobolev type equations
Li = Mu+ N(u) (3)

and models are given in which the existence of several solutions to the Showalter—Sidorov
problem is possible. The following works were devoted to the issues of non-uniqueness of
solutions of equations and systems of equations that reduce to semilinear equations of the
form (3) and the connection of non-uniqueness of solutions with the existence of assemblies
and Whitney folds in the phase space of equations (3). A.F. Gilmutdinova find the
conditions for the existence of non-uniqueness of the solution of the problem were identified
for Plotnikov’s mathematical model [9]. The work of T.A. Bokareva shows the existence of
a 2-Whitney assembly and a 1-Whitney assembly for a model of nerve impulse propagation
in a membrane and for a model of autocatalytic reaction with diffusion, respectively [10]. In
the article by N.A. Manakova and O.V. Gavrilova reveals the conditions for the existence
of a non-uniqueness of the solution of the problem for the model of propagation of a nerve
impulse in a membrane [11].
In this paper we will consider the Showalter—Sidorov problem

A (u(z,0) — up(x)) + (uge(z,0) — ug(z)) =0, z € (0,1) (4)
for the Hoff equation (1) in the one - dimensional case for k = 1
Nty + Ugyy = u + Bu’, t € (0,T) (5)
with the Dirichlet condition
u(z,t) =0, x € 0Q,t € (0,7) (6)

In the work [12] by G.A. Sviridyuk and V.O. Kazak it was shown that the phase space
of the equation (5) is a simple Banach C*°—manifold in the case a8 > 0. In the case a5 < 0
the phase space of the equation (5) it will no longer be a simple manifold, it lies on the
2-Whitney assembly as shown in the article [13].

In this paper, the Galerkin method is used to implement the numerical solution of
the problem. The Galerkin method is most suitable in the case of degenerate semilinear
equations, since it allows taking into account the degeneracy of equations for certain
parameters. Approximate solutions of a model which coefficients satisfy a system of
algebra-differential equations with corresponding initial conditions are constructed using
the Galerkin method. For the first time for semilinear Sobolev type equations, this method
was considered by G.A. Sviridyuk and T.G. Sukacheva [15]. In the case of degenerate
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semilinear equations for finding approximate solutions, the Galerkin method was used
in the works of N.A. Manakova, A.A. Zamyshlyaeva, K.V. Perevozchikova and many
others [16-19].

In this study, we will consider the non-uniqueness of solutions of the Showalter—Sidorov
problem for the Hoff equation (5) in the case of a8 < 0. In this case, we restrict ourselves
to the condition dimker(A + A) = 1, which is obviously executed at n = 1.

1. Features of the Phase Space

Reducing the problem (4), (5) to the problem (2), (3). For that take Y = L,(),
b :I/i)/é Operators L, M, N are defined by formulas

(Lu,v) =

o

(Auv — uzvg)de, Vu,v € b,
I

(Mu,v) = a [uv dz, (7)
0

I
(N(u),v) =B [uv dz, Vu,v €,
0

where (-,-) is an inner product in Ly(€2). Let §,U* be the conjugate of h, Ll spaces
with respect to duality (-,-). By n = 1 according to Sobolev’s embedding theorem, all
embeddings

h— U Ly(Q) = U —F

are dense and continuous. Note that the operator L € CI(,§), dom L :I/f/é, operators
N e C>®(UF) and M € L(L,F).

Lemma 1. For any A € R, a € R\{0} the operator M(L,0) is bounded.

Let A\ € o(—A) then ker L = span{p, : A, = A}, im L = (ker L)*, where ¢, is
an orthonormal (in sensel,((2)) family of eigenfunctions of the homogeneous Dirichlet
problem for the Laplace operator —A in the domain €2 which correspond to the eigenvalues
Ag = 0(—A) indexed in the in the nonincreasing order, taking into account the multiplicity
(orthogonality in the sense of Ly(€2)). Since L is a Fredholm operator, we can take ¢ €
ker L\{0}, i.e.

0 =apy,Ag =\, la| >0,

at the same time ¢4, Ay by n = 1 will take the form

2
gog:\/;sin gz, )\g:g2, g=12 ...

Let’s build a projector I — @ = (-, ¢), where ¢ € ker L, ||¢||1,(0) = 1. Then the set B
can be represented in the following form:

B ={uell: (Mu+ N(u),p) =0}

Next we will assume that A = \;, where \; is the first eigenvalue of the homogeneous
Dirichlet problem of the Laplace operator —A in the domain €2 accordingly. Note that the
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considered eigenfunctions ¢, correspond to single eigenvalues ),, satisfying the condition
dim(1 4+ AA) = 1.

Considering that a8 < 0 and A = \; we represent vector u as u = sy + ui, where
up € U = {uy € U: (uy, 1) = 0} note that the set B C> is diffeomorphic to the set

!
B = {(s1,u) € R x U: s¥|pr]l§ + 352 [ plui do+
0

(8)

l

[
+ 51 (3 [ pi(ui)? de + B~ + [ 1(uf)? do =0}
0 0

In the [13] set B named 2-assemblies Whitney, in [12] it is shown that in the case of af > 0
for any vector ui € Ui there exists unique value s; € R such that s;p; +ui € B.
The equation defining the set B are cubic equation of general form

as} +bs; +cs; +d=0 9)

According to Cardano’s formulas, any cubic equation of general form with the help of
replacement s; = y — % can be reduced to canonical form y* + py + ¢ = 0 with coefficients

l
a:mm@b:B/wﬁfM,

0
l

l
c:;/ﬁwb2m+aﬁﬂd=/wmﬁﬂm
0 9 0
po dae— b (10)

9a?
12 _be +d
1= 35 27a3  3a? a)’

Q1(s1,u) =p° + ¢,

l

z
Ry(s1,u) = 357||p1]|§ + 651 /gazfull dx + 3/@?(uf)2 dx +af!.
0 0

For convenience of further consideration, introduce the following sets:

(ﬂl)é' = {U € ﬂf‘ : Rl(sl,u) = O},
()t ={u ety Qi(s1,u) > 0}, (11)
(ﬂ1)£ = {U S Llll : Ql(Sl,U) < 0}

Lemma 2. Let af <0 and A = A\;.Then

(i) for any u € Ui N (U5 there exists a unique solution of the equation (9);

(ii) for any u € £ N ()5 N (Uy)g there exists two solutions of the equation (9);
(iii) for any u € 4 N ()L there exists three solutions of the equation (9).

Theorem 1. [14] Let n =1,a8 < 0 and A = \;. Then

(i) for any ug € (L) N (L)L there exists three solutions of the problem (4)—(6);

(i) for any uy € ($h)*= N (L) N (Lh)g there exists two solutions of the problem (4)—(6);
(ii1) for any ug € (Lh)*+ N (L) there exists a unique solution of the problem (4)—(6).
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2. Algorithm for a Numerical Method for Finding a Solution
to the Showalter—Sidorov Problem

Let us describe an algorithm for the numerical solution of the problem (4)—(6) on the
interval (0, 7). The algorithm allows you to find approximate solutions to the problem using
the Galerkin method. Denote by ), the set of eigenvalues, numbered by non-increment,
taking into account multiplicity and ¢, is orthonormal (in the sense of Lo(2)) family
eigenfunctions of the homogeneous Dirichlet problem in the domain 2 of the Laplace
operator —A.

Following the Galerkin method, we search for approximate solution for an approximate
solution of the problem under consideration as sums

m

ulz,t) =) us(t)p;(). (12)

j=1

Substitute Galerkin sums in (4). Then multiply the resulting equation scalar in Ly (£2) on
eigenfunctions ¢;(x),j = 1, m, and get a system of equations with respect to the unknowns
u;(t). At the same time, depending on the parameter A, the equations in this system can
be differential or algebraic. Consider these cases in more detailes:

(i) If A < Ay, then in this case all the equations of the system will be ordinary differential
equations of the first order. To solve this system relatively u;(t),j = 1,m, from
the conditions (6), multiplying them scalar in Ly(Q2) on eigenfunctions ¢;(z),j =
1,m, we find m initial conditions. Next, the resulting system of nonlinear first-
order differential equations with initial conditions is solved numerically, and unknown
functional coefficients are found v;(¢), j = 1,m in an approximate solution u(z,t).

(ii) If A = Ay, then the first equation is algebraic, and the rest ones are differential.
Consider separately a system composed of first-order differential equations and an
algebraic equation. To solve a system of first-order ordinary differential equations
with respect to u;(t),j = 2,m from the conditions (6), multiplying them scalar in
Ly(€) on eigenfunctions ¢;(z),j = 2,m, we find (m — 1) initial conditions. Let us
proceed to the numerical solution of a system of algebra-differential equations with
initial conditions (m — 1).

Check the uniqueness or multiplicity of the solution of the Showalter—Sidorov problem for
given initial functions u:

(i) In the case when @ < 0, the required problem has three solutions
ul(x,t),u*(z,t), ud(z,t), consequently, the system of algebra-differential equations
have three solutions and three sets w;(t) for each of the solutions, respectively. In
this case, all subsequent steps must be done three times for each of the sets u;(t).

(ii) In the case when R = 0, the required problem has two solutions u'(x,t),u?(x,t),
consequently, the system of algebra-differential equations have two solutions and two
sets u;(t) for each of the solutions, respectively. In this case, all subsequent steps
must be done twice for each of the sets u;(t).

(iii) In the case when @ > 0, the required problem has one solution u'(z,t), therefore,
the system of algebra-differential equations have one solution and one set w;(t).
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The algorithm for finding an approximate solution to the Showalter—Sidorov problem
is reduced to 5 stages:

Stage 1. Input of the parameters of the Hoff equation, initial and boundary conditions,
as well as the number of Galerkin approximations. Based on these data, an approximate
solution is formed in the form of a Galerkin sum.

Stage 2. Checking the parameter \.

Stage 3. Checking the uniqueness or multiplicity of solutions of systems of algebra-
differential equations.

Stage 4. Calculation of an approximate solution with an initial condition using the
Galerkin method (depending on the cases (i), (ii), (iii)).

Stage 5. Plotting an approximate solution.

3. Description of the Operation of Computer Program

The described algorithm was implemented in the Maple 2017 computer mathematics
system for Windows 7, 8.1, 10 as a set of programs. The program is intended for numerical
investigation of the non-uniqueness of solutions of the Showalter—Sidorov problem for the
Hoff equation (at £ = 1) on a segment. The program implements the Galerkin method.

The following data is submitted to the program input. The parameters of the domain 2
(segment boundaries [y,l5), eigenvalue ), coefficients of the equation «, §. At the output,
the program gives approximate solutions u(x,t) and build their graphs. The block diagram
of the program is shown in Figure 1. The following steps are performed while the program
is running.

Step 1. Enter parameters of the domain €2, equation parameters, eigenfunctions and
eigenvalues of the homogeneous Dirichlet problem for the operator —A, as well as the
number of Galerkin approximations.

Step 2. An approximate solution is formed: multiplication of eigenvalue A, on basic
functions ¢,. Then the approximate solution is substituted into the original differential
equation and integrated in the loop in the domain under consideration €2 using the
procedure int. A system of algebra-differential equations is being compiled.

Step 3. Next, a check is made for the degeneracy of the equations, that is, whether
A is the eigenvalue of the operator —A. If the verification condition is met, we solve
the resulting algebraic equation with respect to the unknowns w;,j = 1,m using built-
in procedures subs, solve. Otherwise, we find a solution to the system of differential
equations using the built-in procedure dsolve. Also at this step, you should check for the
presence of several solutions.

If @ < 0, then the algebraic equation has three different solutions. For ) > 0, then
the equation has one solution, and in the case of R = 0 this equation has two solutions.

Step 4. In the case when the equation has one solution, we get one set ;. In the case
when the equation has two solutions there are two sets u; for each solution and, accordingly,
for three solutions there are three sets w;. To realize the possibility of finding different
solutions in other modules using the built-in procedure save: the initial conditions are
saved to a file usl.mw, every solution found uy(s) saved to files reshl.mw or resh2.mw
or resh3.mw depending on the number of solutions received.

Step 5. Using the built-in procedure read the initial conditions and one of the
solutions are read ug(s). In the loop for j to 1 do m end do the right part of the solution
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uo(s) multiplied by eigenfunctions ¢; and is integrated in the domain under consideration
) using the procedure int. The resulting system is solved using the built-in procedure
dsolve.

Step 6. A table of values of Galerkin approximations u; is compiled and a graph of
the solution u(z,t) is plotted by the built-in procedure plot3d.

4. Numerical Experiment

Let us consider examples of numerical investigation of the non-uniqueness of solutions
to the Showalter—Sidorov problem for the I-beam deformation model based on the
implementation of the algorithm and program described above.

Example 1. [t is required to find a numerical solution to the Showalter—Sidorov problem
(u(z,0) —up(x)) + (tge(x,0) —up(z)) =0, x € Q (13)

for the equation
Up + Uggy = —u +u®, t € (0,7) (14)

with Dirichlet boundary condition

u(z,t) =0, z€0Q, t € (0,T) (15)

if Q= (0,7), T =1, up(w) = \/2sin(20).

Approximate solutions of the problem (13)—(15) on the interval (0,7) can be
represented in the form of u(z,t) = u1(t)p1(x) + uz(t)pa(x), where ¢4(z) = \/gsin gz,
g = 1, 2. Since under the conditions of this experiment, A coincides with the first eigenvalue
A1 = 1 homogeneous Dirichlet problem for (—A), we obtain a system of algebra-differential
equations:

{ul(t)(—suf(t) — 6u3(t) + 27) = 0, (16)
—6u? (t)ug(t) — 3ui(t) + 6mug(t)dt + 2mus(t) = 0.

Using formulas (7), we find @ = —0.0000311696 < 0, from which it follows that this system
of equations has three solutions. Having solved the algebraic equation of the system at the
initial moment of time, we obtain three initial conditions wug1, g2, ugz. Solving the resulting
system by the Runge-Kutta method, we obtain three numerical solutions. Numerical
solution corresponding to the initial condition wug; presented in Table 1 and Fig. 2, the
numerical solution corresponding to the initial condition wgy is shown in Fig. 3 and in
Table 2, the numerical solution corresponding to the initial condition w3 is shown in Fig.

4 and in Table 3.

Example 2. [t is required to find a numerical solution to the Showalter—Sidorov problem
— (u(z,0) —up(x)) + (uge(z,0) —up(x)) =0, z € (17)

for the equation
_ut+uxxt :u_u37 te (OaT) (18>

with Dirichlet boundary condition

u(z,t) =0, x € 0t e (0,T) (19)
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=

Introduce of domain parameters,
equation parameters, eigenfunctions and
elgenvalues, the number of Galerkin approximations

Generate of an approximate solution

Substitute an approximate solution
into the original equation

Compilation of a system
of algebra-differential equations

no

Solve an algebraic equation,
find an approximate solution Analytical solve an equations,
find an approximate solution

Save initial conditions
and solutions to files usl, resh#0.

Is It the only solution?

Findu_j,j=1..m
Does the equglionqhava Save Initial conditions
two solutions? and solutions to files usl, resh#. Plat an approximate solution
Findu_j,j=1..m
‘ | no
Plot an approximate solution
Save initial conditions Save initial conditions
and solutions to files and solutions to files
usl, resh#1, reshi#2. usl, resh#1, resh#2.
[ |
Findu_j,J=1.m Find u_j, J=1...m
Plot an approximate solution Plot an approximate solution Save Initial conditions Save Inltial conditions Save Inltial conditions
and solutions to files and solutions to files and solutions to files

‘ | usl, resh#1, resh#2, resh#3. usl, reshi1, resh#t2, resh#3. usl, resh#1, resh#2, resh#3.
[ 1 I

Findu j,j=1.m Findu j,j=1.m Findu j,j=1..m
[ I I
Plot an approximate solution Plot an approximate solution Plot an approximate solution
End

Fig. 1. Diagram of the algorithm
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Table 1
Numerical solution of the problem (13)—(15)

with the initial condition wug;

t Ul(t) UQ(t)
0 1
0.1 0 1.0172881386
0.2 0 1.0343005989
0.3 0 1.0510140109
0.4 0 1.0674061411
0.5 0 1.0834564817
0.6 0 1.0991463464
0.7 0 1.1144588705
Fig. 2. Numerical solution of the 0.8 0 1.1293790109
problem (13) — (15) with the initial 09] 0 1.1438935842
condition ug; 1.0 0 1.1579913920

Table 2
Numerical solution of the problem (13)—(15)

with the initial condition g

t ul(t) Ug(t)
0 | —0,3072378596 1
0.01 | —0.2976471122 1.0014492745
0.02 | —0.2876099716 1.0029146245
0.03 | —0.2770761929 1.0043962938
0.04 | —0.2659840256 1.0058945301
0.05 | —0.2542576421 1.0074095774
0.06 | —0.2418024366 1.0089416947
0.07 | —0.2284957567 1.0104911417
Fig. 3. Numerical solution of the 0.08 | —0.2141764598 1.0120581865
problem (13)-(15) with the initial [ 0.09 | —0.1986212588 1.0136431008
condition wugy 0.1 | —0.1815091065 1.0152461601

if Q=(0,7),T =1,up(z) = \/gsin(Qx).

Approximate solutions of the problem (17)—(19) on the interval (0,7) can be
represented in the form of u(z,t) = ui(t)g1(x) + us(t)pa(z), Tae py(z) = 1/2sin g,
g = 1,2. Since under the conditions of this experiment A = —1 does not coincide with
the first eigenvalue A; = 1 of the homogeneous Dirichlet problem for (—A), we obtain a

system of ordinary differential equations:

{3u§>(t) + Guy (D)u2(t) — duy (H)dt — 2muy () = 0, 20)

6u? (t)ug(t) + 3ud(t) — 10uy(t)dt — 2muy(t) = 0.

This system has one numerical solution, represented in Table 4 and Fig. 5.
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Table 3
Numerical solution of the problem (13)—(15)
1 with the initial condition g3
" | 0 [0.3072378596 1
M ) 0.01 | 0.2976471122 1.0014492745
0.100.08 006 S-S e 0.02 | 0.2876099716 1.0029146245
: 0 0.03 | 0.2770761929 1.0043962938
: 0.04 | 0.2659840256 1.0058945301
0.05 | 0.2542576421 1.0074095774
0.06 | 0.2418024366 1.0089416948
0.07 | 0.2284957567 1.0104911418
Fig. 4. Numerical solution of the 0.08 | 0.2141764598 1.0120581865
problem (13)-(15) with the initial [ 0.09 | 0.1986212588 1.0136431008
condition ug; 0.1 | 0.1815091065 1.0152461601

Table 4
Numerical solution of the problem (17)—(19)

with the initial condition ug;

t Ul(t) Ug(t)
1 —0,7397280254
0.1 ] 1.0001103494 —0.7365518125
0.2 | 1.0004323044 —0.7334156809
0.3 | 1.0009529363 —0.7303130835
0.4 | 1.0016602646 —0.7272379018
0.5 | 1.0025432573 —0.7241844462
’ 0.6 | 1.0035918297 —0.7211474554
0.7 | 1.0047968348 —0.7181221005
Fig. 5. Numerical solution of the 0.8 | 1.0061499869 —0.7151039536
problem (17)-(19) with the initial 0.9 | 1.0076436087 —0.7120888734
condition ugy 1.0 | 1.0092705871 —0.7090729879
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YNCJEHHOE NCCJEIOBAHNE BOIIPOCA
HEEJAMHCTBEHHOCTU PEIIEHUS 3AIAYN
IIIOYOJITEPA — CJIOPOBA JIJII MATEMATUYECKOTI
MOJIEJIN TE®@OPMAIIIN IBYTABPOBOI BAJIKU

O. B. Iaspuaosa, H. I Huxoaaesa

CraTbsi TOCBAIIEHA BOIPOCY O €IMHCTBEHHOCTH WJIM MHOXKECTBEHHOCTHU PeIleHuil 3a-
nmauu [Hoyonrepa — Cumoposa — Jupuxie st ypaBHenusi Xodda Ha orpeske. Y paBHe-
nre Xodda MomeaupyeT AMHAMUKY 1eDOPMAIIN IBYTaBPOBOM OAJIKU, HAXOMAIIEHCS MO
TOCTOSTHHOM HArpys3koit. J[1s mccaeaoBaHus BOMPOCca HECIWHCTBEHHOCTH PEITEHU 3a1ax 1
[MToyosrepa — CugopoBa 6y1eT HCHOIBL30BaH MeTO/ (DA30BOr0 IIPOCTPAHCTBA, KOTOPDIH ObLI
paspaboran [ A. CBUPHIIOKOM J1JIsT UCCJIEIOBAHNUSI PA3PENINMOCTH YPaBHEHU CODOJIEBCKOTO
tuna. Tak:ke paHee OBLIO TOKAa3aHO, YTO (a30BOE MPOCTPAHCTBO UCCIIELYEMOI MOJIEH CO-
JepkuT ocobeHHocTH Tuiia 2-cO6opku Yurau. B craTbe mpencTaBieHbl YCIOBHUS €IMHCTBEH-
HOCTH WJIM MHOXKeCTBeHHOCTHU pernenuii 3aga4au [lloyonrepa — CumopoBa B 3aBUCHMOCTH OT
apaMeTpoB cucTeMbl. [l0CTpOeH aJrOpUTM YUCIEHHOTO PEIeHNsT 33191 Ha OCHOBE METO/Ia
lajiepkrHa 1 TIpeCTaB/IEHbl BBIYUCIUTE/IbHBIE SKCIIEPUMEHTHI.

Karoueswie crosa: ypasHenus coboaesckozo muna; 3adawa Iloyoamepa — Cudoposa;
ypasrerue Xodpa; needuncmeenrocms peuweHuts; memod gazos020 npocmparcmea; memod
Tasrepruna.
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