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The article deals with the stochastic Barenblatt—Zheltov—Kochina model with the
Neumann condition. We prove trajectory-wise unique solvability of the multipoint initial-
final value problem for the considered model in the domain. The article, in addition to
the introduction and references, contains three parts. The first and second parts present
theoretical information about deterministic and stochastic equations of Sobolev type with
the multipoint initial-final value condition. The third part examines the solvability of the
Bareblatt—Zheltov—Kochina model with the Neumann condition and the initial-final value
condition.
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Introduction

Let G C R? be a bounded domain with the boundary dG of the class C™. In the
cylinder G' x R, consider the Barenblatt—Zheltov—Kochina equation

A=Ay = aAu+ f (1)
with the Neumann condition
g—Zu(x,t) =0, (z,t)€0G xR, (2)

which models the dynamics of fluid motion in a fractured-porous medium [1]. Here
n =n(z), x € 0G, is the unit normal outward to the domain G. The parameters a, \ are
real and characterize the environment; the parameter a € R, and the parameter A\ can
also take negative values in cases where there is no contradiction to the physical meaning
of the problem [2]. The function f = f(z,t) describes an external influence. Depending on
nature of the external influence, model (1), (2) is either stochastic or deterministic. In the
first case, an example of an external influence can be a change in the ambient temperature
due to natural phenomena, while in the second case, as a non-random external influence,
we can consider a physical process during various methods of oil production, for example,
during artificial pressure build-up in deep or hard-to-reach wells in oil fields. Great interest
of researchers to equation (1) is also caused by the fact that the equation also describes
other physical processes: the process of moisture transfer in soil [3], the process of heat
conduction with <two temperatures> [4], and, in addition, the dynamics of some non-
Newtonian fluids [5].
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This article is devoted to the study of stochastic model (1), (2), which is considered
together with the multipoint initial-final value condition [6]

Pj(u(rj) —u;) =0, j=0,m. (3)
Here 7; € R, j = 0,m are such that 7,11 > 7;, 70 > 0; P; are relatively spectral projectors,
which we construct below.

The article, in addition to the introduction and references, contains three parts. The
first and second parts present theoretical information about deterministic and stochastic
equations of Sobolev type with the multipoint initial-final value condition. The third
part examines the solvability of the Bareblatt—Zheltov—Kochina model with the Neumann
condition and the initial-final value condition.

1. Sobolev Type Deterministic Equation with Multipoint
Initial-Final Value Condition

Let 1 and § be Banach spaces, the operators L € L(; F) (i.e. linear and continuous)
and M € CI(4;§) (i.e. linear, closed, and densely defined). In addition, suppose that the
operator M is (L, p)-bounded [7], p € Ny (here and below Ny = {0} UN), then there exist
degenerate analytic groups of resolving operators

1

Ut = " RL(M)e“tdu and F'=
i

1
27?2

/ LE(M)e dp

defined on the spaces i and §, respectively, and U° = P, F* = () are projectors. Here 7 is
a contour bounding the domain D containing the L-spectrum ol (M) of the operator M;
RI(M) = (L — M)~'L is the right, and L, (M) = L(uL — M)~" is the left L-resolvents
of the operator M. For a degenerate analytic group, we define a kernel ker U® = ker P =
ker U (ker F'* = ker @ = ker F') for any t € R and an image imU® = im P = imU"
(im F'* = im Q = im F"*) for any ¢t € R. Denote 4° = ker U®, 4! = im U*®, and §° = ker F'*,
§' =1im F*, then 4° @ U = U and F° & F' = F. Also, denote by L;, (M}) the restriction
of the operator L (M) to 4* (domM NU*), k =0,1.

Consider the following condition:

= U ol (M), m € N, where oF'(M) # 0, there exists

a cloused contour 7; C C that bounds the domain D; D of(M),
and is such that D; Nof (M) =0, Dy N D; = 0 for all j,k,1 =1,m,k # L.

Then, the following theorem is true.

Theorem 1. [6] Let the operator M be (L,p)-bounded, p € Ny, and condition (4) be
satisfied. Then (1) there exist degenerate analytic groups

1 1

Ut =— [ RE(M)e*d Ft = LLM Mdu, i =1,m:

i =5 L(M)etdp,  F] 5 J(M)etdp, j =1, m;
Vi i

(it) U'Us = UsU" = U™, F'Fy = FSF' = F7 forall s, t € R, j =1,m;
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(1it) UU; = UpUL = O, FLFP = FfFL =0 for alls, t e R, k, l=1,m, k #1;
(iv) Ut =U'— S UL, Fi = F' — S° FY, fort € R.

k=1 k=1
Remark 1. By condition (4), construct the units P; = U?, Q; = F}, j = 0,m, of
degenerate analytic groups {U] : t € R}, {F} : t € R}, j = 0,m. Obviously, PP; = P;P =
pj> QQ] = Q]Q = Qj7 j = 07m7 and pkpl = plpk = ©7 Qk@l = Qle = ©7 ka [ = 07m7
k # 1. Therefore, P; € L(Y), Q; € L(F) are projectors, j = 0, m, which are called relatively
spectral projectors.

Let us introduce the subspaces 4% = im P;, §7 = im Q;, j = 0, m. By construction,

m m

4 =Puv and § = PH3Y.

J=0 J=0

Denote by Lj; the restriction of the operator L to 4, j = 0,m, and denote by Mj;
the restriction of the operator M to domM N YUY, j = 0, m. Since, as it is easy to show,

Pjp € dom M, if ¢ € dom M, then the domain dom M;; = dom M NUY is dense in U,

7 =0m.

Theorem 2. (Generalised spectral theorem) [6]. Suppose that the operators L € L(;F)
and M € CI(L; F), while the operator M is (L,p)-bounded, p € Ny, and condition (4) is
satisfied. Then

(i) the operators Lo € L(U°;F0), My € CI(U%;F°), Mt € L(F%U%);

(ii) the operators Ly € LU FY), L1; € L(UY; FY);

(iii) the operators My € L(U';F), My, € L(UY;FY), j =0,m;

(iv) there exist the operators L' € L(F';U'), Ll_jl € L(FY;41), 5 =0,m.

Let H =My 'Ly € L(U°), S=Ly' My € L(UY), S; = Ly} My; € L(UY), j =0,m.

So, let condition (4) be satisfied. Fix 7; € R, (7; < 7j41), the vectors u; € 4, j = 0,m,
the vector function f € C*(R;F) and consider the linear inhomogeneous equation of
Sobolev type

Li = Mu+ f. (5)

The vector-function u € C®(R;4) satisfying equation (5) is called a solution to
equation (5). Solution u = u(t) to equation (5), t € R, satisfying the conditions

Pi(u(ry) —u;) =0, j=0,m, (6)

is said to be a solution to the multipoint initial-final value problem for equation (5).
Based on Theorem 2, we reduce equation (5) to the system

Hil® = + My (I - Q)/,
(7)

M = St + LQ;f, j=0,m,

where u* = (I — P)u, v = Pju, j = 0,m, and each equation is defined on <its

owns subspace. From the first equation of (7), by differentiation of the equation and

26 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

multiplication from the left by H, due to the nilpotency of the operator H we obtain

p

u'(t) = =Y HSM; ' (1- Q) fM(t). (8)

k=0

For the remaining equations of (7), conditions (6) become the Cauchy conditions

ulj(Tj) = Pjuj, j=0,m. 9)

Solving these problems step by step, we obtain

t
ut(t) = U;_Tjuj +/ U;’SLl’lejf(s)ds, j=0,m. (10)

Therefore, we arrive at
Theorem 3. (6] Let the operator M be (L,p)-bounded, p € Ny, and condition (4) be

satisfied. Then for any f € C®(R;F), u; € U, j = 0,m, there exists a unique solution to
problem (5), (6) of the form

75

u(t) = — ZHqul(H —Q)f®(t) + Z (U;‘”uj + / ULy} Q; f(s)ds> . (11)
k=0 j=0 '

2. Sobolev-Type Stochastic Equation with Multipoint Initial-Final
Value Condition

Let Q = (9, A, P) be a complete probability space with the probability measure P
associated with the o-algebra A of subsets of the set 2. Consider a real separable Hilbert
space {4 = (4, (-, -)) with an orthonormal basis {¢;} endowed with a Borel o-algebra.

A measurable mapping £ : Q — 4l is said to be a (U-valued) random variable. Denote
by V = V(; ) the space of (U-valued) random variables. In the space V, we consider the
subspace [8]

Ly = Ly(0;4) = {s ev: [l dP) < +oo},

where [[£]]? = (£,€). The space Ly, in particular, contains all normally distributed (i.e.
Gaussian) random variables from V.

Take the set 3 C R that is some interval. Consider the mapping f : 7 — V, which
associates each t € J with a random variable £ € V. Also, consider the mapping g : VxQ —
i1, which associates each pair (£, w) with the point £(w) € 4. The mapping n: T x Q — U
of the form n = n(t,w) = g(f(t),w) is said to be a (U-valued) random process. Therefore,
for each fixed t € J, the random process n = 7n(t,-) is a random variable, i.e. n(t,-) € 4,
which we call a section of the random process at the point ¢t € J. For each fixed w € 2, the
function n = n(-,w) is called a (sample) trajectory of the random process corresponding
to the elementary outcome w € 2. Trajectories are also called implementations or sample
functions of a random process. Usually, when it does not lead to ambiguity, the dependence
of n(t,w) on w is not indicated and the random process is simply denoted by 7(¢). A random
process 7 is called continuous if its trajectories are a.s. (almost sure) continuous, i.e. for
a.a. (almost all) w € € the trajectory n(t,w) is continuous on J.
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Denote the space of random processes by P = P(IxQ; 4). In P, we consider a subspace
CL; of continuous random processes whose random variables belong to Ls, i.e. 7 € CLy
if n(t) € Ly for all ¢t € J. Note that the space CLy contains, in particular, random
processes such that all of their trajectories are a.s. continuous, and all (independent)
random variables are Gaussian.

Consider a monotonic sequence K = {\;} C Ry such that [9]

D> A < +oo, (12)
k=1

and also a sequence {&;} = {&k(w)} C Lg of random variables such that ||& ||, < C, for
some constant C' € R, and for all £ € N.

Then we can construct a U-valued random K -variable &(w Z Mg (w

Let us introduce the sequence {B;(t)}, t € Ry (here and below R, = {0} UR,) of
independent one-dimensional (standard) Wiener processes i (t) = Bi(t,w), B : R xQ —
R, which are also called Brownian motions. In the Einstein-Smoluchowski model, the
Wiener process describing Brownian motion

= . m(2k+1) (R,

is a continuous stochastic process. Here the coefficients {&, = & (w)} C Lo are pairwise

uncorrelated Gaussian random variables such that D& = [ (2k+1) } k € Np.

Definition 1. A random process

W(t) = W(t7w) = Z )‘kﬁk(t)(pkv te R-H (1?))

k=1

is called a (U-valued) Wiener K-process.

In Definition 1, the dependence of the Wiener K-process W = W (t) both on the
sequence K and on the set of the motion sequence {S(t)} is obvious. Next, we present a
number of properties of the Wiener K-process that hold for any sequences K (with the
properties described above) and {5;(t)}:

(W1) W(0) = 0 a.a. on 2, and trajectories are a.s. continuous on R,.

(W2) Trajectories of Wiener K-process are a.s. non-differentiable at any point ¢ € R,
and have unlimited variation on any interval J C R..

(W3) Wiener K-process is Gaussian.

However, these properties clearly imply

Theorem 4. [8] For any sequence K satisfying (12) and a sequence of Brownian motions
{Bk(t)}, the Wiener K-process W € CLg.

Suppose that 4l and § are real separable Hilbert spaces, K satisfies (12), the operators

L, M, N € L(8;F), and the operator M is (L,p)-bounded, p € Ny. Consider the linear
stochastic equation

Ldn = Mndt + NoW, (14)
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where, on the right side, 6W denotes the generalized differential of a ({-valued) Wiener
K-process. Let condition (4) be satisfied, then we construct the integrals

1
P=— | RYM)d
Vi 27_‘_7/ " /j,( ) ILL7 Q_]

5 LL(M)du, j=1,m. (15)
By virtue of Theorem 1 and Remark 1, in formula (15), the integrals P; and Q;, j = 1, m,
are projectors in the spaces 4 and §, respectively. As in Remark 1, we construct the
projectors

=P-> P and Qo=Q-> Q.
j=1 i=1

Next, on the half-interval R, we choose points 7; € R, j = 0,m, such that 7; < 7.1,
0 < 79, and (U-valued) pairwise independent random variables &; € Lq, j = 0, m. Similarly
to Section 1, we formulate the multipoint initial-final value problem as follows: find a
random process 1 € CLsy that satisfies equation (14) and the conditions

Pi(n(j) = &) =0, j=0,m (16)

If the condition
QN =N (17)

holds, then, by virtue of Theorem 3, it is easy to construct a unique "formal" solution
n = n(t) to problem (14), (16)

_ Z (U;—ijjgj + ijle(W(t) - W(TJ))> +
(19

+Z/ U8, LT QW (s)ds,

where, as well as above, UJ’?, Ly;, S, 3 = 0,m, are the same as in Section 1, see Theorem 2.
The "formality" of the obtained solution is that the integrands are, generally speaking,
non-integrable vector functions, therefore integration is "formal".

Theorem 5. Let the operator M be (L,p)-bounded, p € Ny, and let conditions (4), (17)
be satisfied. Let the random variables §; € La, j = 0,m, be pairwise independent. Then
the random process n defined by formula (18) belongs to CLa(R ).

Remark 2. The requirement for pairwise independence of the random variables §;, j =
0,m is redundant. It is sufficient to have pairwise independence of their projectors P;§;,
7 =0,m.

Definition 2. Let the operator M be (L, p)-bounded, p € Ny, conditions (4) and (17) be
satisfied. Let the random variables &; € La (or their projectors P;¢; € Ly), j = 0, m. Then
for any (4U-valued) Wiener K-process W € CLgy the random process 1 defined by formula
(18) is called a solution to problem (14), (16).

Remark 3. In modern mathematical literature, such a solution is often called "mild"
(mild solution). It is clear that if we restrict ourselves to the "classical" interpretation of
the derivative, then due to Property (W2) we cannot count on a smoother solution.
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3. Stochastic Barenblatt—Zheltov—Kochina Model with Neumann
Condition and Multipoint Initial-Final Value Condition

Let G C R? be a bounded domain with the boundary 0G of the class C*°. Let us
define the spaces [10]

oulz)
on

Define a monotonic sequence K = {\;} C R, satisfying condition (12) such that \? =
vy 24 By formula (13), we define the Wiener K-process, where {¢;} is the orthonormal
basis of 4. Note that the Laplace operator —A : {{ — § is a toplinear isomorphism. We
construct the space

U= {uec WG : =0,2€0G}, F=WLG), leN.

Ou(x)
on
Finally, the formulas L = A — A and M = «aA define the continuous linear operators L,
M € L(4;F), which are Fredholm, o € R\ {0}. A detailed discussion of this range of

questions can be found in Triebel’s fundamental reference book.
We look for a random process n = n(x, t) satisfying the stochastic equation

V= {uec Wt (-1 Alu(z) =0, =0,2€0G, |=0,d—1}

Ldu = udt + NoW, L =(A—A), M =aA (19)
and the Neumann condition
t
a“éfl’ ) _0, (5.1) € 0G x R. (20)

in the cylinder G' x R;.
Let {ur} be the eigenvalues of the spectral problem —Ay;, = pgpy in the domain G
with condition (20). Then we arrive at

Lemma 1. For any A € R, o € R\ {0} the operator M is (L,0)-bounded.

Proof. The statement is trivial if —\ ¢ {ug}. The kernel ker L = span{py : pur = —A}
if —\ € {ux}. Take the vector ¢ = Z appr € ker L. Then M1y = —aXy ¢ imL, ie.

A=y
the operator L has no M-adjoined vectors. Reference to Theorem 1.1.2 |7] completes the
proof.
Further note that
RL M) = <7(10k>90k? ’ LL M) = ['7 @k](pk ’
<) _; po+ (A 4 ) ! <) _AZ p+ (A + )~
Bk ik
where [, ] is the inner product in §. By the formulas
1 1
P=— [ R;(M)dpand Q= — [ L;(M)d
s | RO and @ = 5 [ L)

construct the projectors

P= Z ( or)on, Q= Z [ el

—AF g —AF g
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For the sake of simplicity, we set the operator N = P. Then, firstly, the operator N &€
L(Y;§) (moreover, N is compact!) due to the dense and continuous (moreover, compact!)
embedding 4 — §F (Sobolev — Kondrashev’s theorem). Secondly, condition (17) holds
automatically. Since, in this situation, o}, = —aug (X + )~ for —\ # uy represent points
of the L-spectrum o (M) of the operator M, which in turn satisfies condition (4), we can
construct the projectors

Pj - Z <790k>80k, Qj = Z [7()016]90167 J= Oam'

akGUjL (M) oRET; L(n)

Therefore, the reduction of Barenblatt — Zheltov — Kochina equation (19) with condition
(20) to equation (14) with additive white noise is completed.

Let us proceed to the construction of a "mild" solution (18) (see Remark 3). First
of all, note that, in Remark 2, the condition P;§; = &;, j = 1, m, on the initial random
variables ; from (16) is equivalent to the condition

Next, in this situation, the first term in (17) has the form
Ule; = 3 (oo™, j=0,m. (22)
Ukea (M)

The second term in (17) can also be easily calculated as follows:
-1 o ﬁk( )
Ly NW(t) = ZL m@ (23)
ooy (M)
Finally, the last term in (17) can be found as

O'k(t S)ds

Z /TUtssLlNW = Y 3 )\+u TP (24)

Ukea Jkea (M) —A#ug 0

Therefore, the following theorem is proved.

Theorem 6. For any —\ € {u}, a € R\ {0} and & € Ly such that (21) holds, there
exists a unique solution uw € CLgy to problem (16) for the stochastic Barenblatt — Zheltov —
Kochina equation with additive white noise and condition (20), and the solution has the
form (17), where the terms are represented by formulas (22) — (24).
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YAK 517.9 DOI: 10.14529/jcem?220103

CTOXACTUYHECKAA MOIEJIb
BAPEHBJIATTAKEJITOBA-KOUYIHOII C YCJIOBUEM
HEMIMAHA 1 MHOT'OTOUYEUYHLIM
HAYAJIBHO-KOHEYHBIM YCJIOBNEM

JI. A. Kosanesa, A. C. Konxuna, C. A. 3aepebuna

B crarbe paccmarpuBaercs croxactuueckasi Mojesib bapenbisarra — 2Kenrosa — Ko-
qnHOU ¢ ycimoBueMm Heiimana. J/loka3biBaeTcs MOTPAEKTOPHAS OJHO3HAYHAS PA3PEIIUMOCTD
MHOTOTOYEYHONU HAYAJIHHO-KOHEYHON 3a/Ja9l i PACCMATPUBAEMON MOJEIN B OOJIACTH.
Crarbsi, KpOMe BBEJIEHUS W CIIMCKA JINTEPATYPBI, COJAEPKUT TPHU YacTU. B mepBoit u BTO-
pPOIl JacCTSIX HPUBOJIATCS TEOPETUUECKNEe CBeJeHUs O JIETEPMUHUPOBAHHBIX M CTOXACTHIe-
CKUX YPaBHEHUSIX COOOJIEBCKOTO TUIIA U MHOIOTOYEYHBIM HAYaJIbHO-KOHEIHBIM yCI0BHEM. B
TPeTbell YaCTH UCCJIeyeTCsl pa3pemnMocTb Mojesan bapebiarra — 2Kenrosa — Kounnoii ¢
yeaoBueM HefiMana 1 Ha9aJIbHO-KOHEYHBIM YCJIOBUEM.

Karouesvie crosa: ypasHerus coboresckozo muna; adoumuenoiti 6eavits wym, oOmmocu-
MEABHO 02PANUMEHHBIT ONEPamop; cmoracmuveckas modeav Bapenbramma — 2Keamosa —

KO%UHO?Z,’ ycaosue H@ﬂM&HCL,’ MHO20MOUYEUYHAA HAYANDHO-KOHEYHOE YCAOBUE.
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