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The article deals with the stochastic Barenblatt–Zheltov–Kochina model with the

Neumann condition. We prove trajectory-wise unique solvability of the multipoint initial-

final value problem for the considered model in the domain. The article, in addition to

the introduction and references, contains three parts. The first and second parts present

theoretical information about deterministic and stochastic equations of Sobolev type with

the multipoint initial-final value condition. The third part examines the solvability of the

Bareblatt–Zheltov–Kochina model with the Neumann condition and the initial-final value
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Introduction

Let G ⊂ Rd be a bounded domain with the boundary ∂G of the class C∞. In the
cylinder G× R, consider the Barenblatt–Zheltov–Kochina equation

(λ−∆)ut = α∆u+ f (1)

with the Neumann condition

∂u

∂n
u(x, t) = 0, (x, t) ∈ ∂G× R, (2)

which models the dynamics of fluid motion in a fractured-porous medium [1]. Here
n = n(x), x ∈ ∂G, is the unit normal outward to the domain G. The parameters α, λ are
real and characterize the environment; the parameter α ∈ R+, and the parameter λ can
also take negative values in cases where there is no contradiction to the physical meaning
of the problem [2]. The function f = f(x, t) describes an external influence. Depending on
nature of the external influence, model (1), (2) is either stochastic or deterministic. In the
first case, an example of an external influence can be a change in the ambient temperature
due to natural phenomena, while in the second case, as a non-random external influence,
we can consider a physical process during various methods of oil production, for example,
during artificial pressure build-up in deep or hard-to-reach wells in oil fields. Great interest
of researchers to equation (1) is also caused by the fact that the equation also describes
other physical processes: the process of moisture transfer in soil [3], the process of heat
conduction with ≪two temperatures≫ [4], and, in addition, the dynamics of some non-
Newtonian fluids [5].
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This article is devoted to the study of stochastic model (1), (2), which is considered
together with the multipoint initial-final value condition [6]

Pj(u(τj)− uj) = 0, j = 0, m. (3)

Here τj ∈ R, j = 0, m are such that τj+1 > τj , τ0 ≥ 0; Pj are relatively spectral projectors,
which we construct below.

The article, in addition to the introduction and references, contains three parts. The
first and second parts present theoretical information about deterministic and stochastic
equations of Sobolev type with the multipoint initial-final value condition. The third
part examines the solvability of the Bareblatt–Zheltov–Kochina model with the Neumann
condition and the initial-final value condition.

1. Sobolev Type Deterministic Equation with Multipoint
Initial-Final Value Condition

Let U and F be Banach spaces, the operators L ∈ L(U;F) (i.e. linear and continuous)
and M ∈ Cl(U;F) (i.e. linear, closed, and densely defined). In addition, suppose that the
operator M is (L, p)-bounded [7], p ∈ N0 (here and below N0 ≡ {0} ∪N), then there exist
degenerate analytic groups of resolving operators

U t =
1

2πi

∫

γ

RL
µ(M)eµtdµ and F t =

1

2πi

∫

γ

LL
µ(M)eµtdµ

defined on the spaces U and F, respectively, and U0 ≡ P , F 0 ≡ Q are projectors. Here γ is
a contour bounding the domain D containing the L-spectrum σL(M) of the operator M ;
RL

µ(M) = (µL−M)−1L is the right, and LL
µ(M) = L(µL −M)−1 is the left L-resolvents

of the operator M . For a degenerate analytic group, we define a kernel kerU• = kerP =
kerU t (kerF • = kerQ = kerF t) for any t ∈ R and an image imU• = imP = imU t

(imF • = imQ = imF t) for any t ∈ R. Denote U0 = kerU•, U1 = imU•, and F0 = kerF •,
F1 = imF •, then U0 ⊕ U1 = U and F0 ⊕ F1 = F. Also, denote by Lk (Mk) the restriction
of the operator L (M) to Uk (domM ∩ Uk), k = 0, 1.

Consider the following condition:

σL(M) =

m
⋃

j=0

σL
j (M), m ∈ N, where σL

j (M) 6= ∅, there exists

a cloused contour γj ⊂ C that bounds the domain Dj ⊃ σL
j (M),

and is such that Dj ∩ σ
L
0 (M) = ∅, Dk ∩Dl = ∅ for all j, k, l = 1, m, k 6= l.



















(4)

Then, the following theorem is true.

Theorem 1. [6] Let the operator M be (L, p)-bounded, p ∈ N0, and condition (4) be
satisfied. Then (i) there exist degenerate analytic groups

U t
j =

1

2πi

∫

γj

RL
µ(M)eµtdµ, F t

j =
1

2πi

∫

γj

LL
µ(M)eµtdµ, j = 1, m;

(ii) U tUs
j = Us

jU
t = Us+t

j , F tF s
j = F s

j F
t = F s+t

j for all s, t ∈ R, j = 1, m;
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(iii) U t
kU

s
l = Us

l U
t
k = O, F t

kF
s
l = F s

l F
t
k = O for all s, t ∈ R, k, l = 1, m, k 6= l;

(iv) U t
0 = U t −

m
∑

k=1

U t
k, F

t
0 = F t −

m
∑

k=1

F t
k, for t ∈ R.

Remark 1. By condition (4), construct the units Pj ≡ U0
j , Qj ≡ F 0

j , j = 0, m, of

degenerate analytic groups {U t
j : t ∈ R}, {F t

j : t ∈ R}, j = 0, m. Obviously, PPj = PjP =

Pj , QQj = QjQ = Qj , j = 0, m, and PkPl = PlPk = O, QkQl = QlQk = O, k, l = 0, m,
k 6= l. Therefore, Pj ∈ L(U), Qj ∈ L(F) are projectors, j = 0, m, which are called relatively
spectral projectors.

Let us introduce the subspaces U1j = imPj , F
1j = imQj , j = 0, m. By construction,

U1 =

m
⊕

j=0

U1j and F1 =

m
⊕

j=0

F1j .

Denote by L1j the restriction of the operator L to U1j , j = 0, m, and denote by M1j

the restriction of the operator M to domM ∩ U1j , j = 0, m. Since, as it is easy to show,
Pjϕ ∈ dom M , if ϕ ∈ dom M , then the domain dom M1j = dom M ∩ U1j is dense in U1j ,
j = 0, m.

Theorem 2. (Generalised spectral theorem) [6]. Suppose that the operators L ∈ L(U;F)
and M ∈ Cl(U;F), while the operator M is (L, p)-bounded, p ∈ N0, and condition (4) is
satisfied. Then
(i) the operators L0 ∈ L(U0;F0), M0 ∈ Cl(U0;F0), M−1

0 ∈ L(F0;U0);
(ii) the operators L1 ∈ L(U1;F1), L1j ∈ L(U1j ;F1j);
(iii) the operators M1 ∈ L(U1;F1), M1j ∈ L(U1j ;F1j), j = 0, m;
(iv) there exist the operators L−1

1 ∈ L(F1;U1), L−1
1j ∈ L(F1j ;U1j), j = 0, m.

Let H =M−1
0 L0 ∈ L(U0), S = L−1

1 M1 ∈ L(U1), Sj = L−1
1j M1j ∈ L(U1j), j = 0, m.

So, let condition (4) be satisfied. Fix τj ∈ R, (τj < τj+1), the vectors uj ∈ U, j = 0, m,
the vector function f ∈ C∞(R;F) and consider the linear inhomogeneous equation of
Sobolev type

Lu̇ =Mu+ f. (5)

The vector-function u ∈ C∞(R;U) satisfying equation (5) is called a solution to
equation (5). Solution u = u(t) to equation (5), t ∈ R, satisfying the conditions

Pj(u(τj)− uj) = 0, j = 0, m, (6)

is said to be a solution to the multipoint initial-final value problem for equation (5).
Based on Theorem 2, we reduce equation (5) to the system







Hu̇0 = u0 +M−1
0 (I−Q)f,

u̇1j = Sju
1j + L−1

1j Qjf, j = 0, m,
(7)

where u0 = (I − P )u, u1j = Pju, j = 0, m, and each equation is defined on ≪its
own≫ subspace. From the first equation of (7), by differentiation of the equation and
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multiplication from the left by H , due to the nilpotency of the operator H we obtain

u0(t) = −

p
∑

k=0

HKM−1
0 (I−Q)f (k)(t). (8)

For the remaining equations of (7), conditions (6) become the Cauchy conditions

u1j(τj) = Pjuj, j = 0, m. (9)

Solving these problems step by step, we obtain

u1j(t) = U
t−τj
j uj +

∫ t

τj

U t−s
j L−1

1j Qjf(s)ds, j = 0, m. (10)

Therefore, we arrive at

Theorem 3. [6] Let the operator M be (L, p)-bounded, p ∈ N0, and condition (4) be
satisfied. Then for any f ∈ C∞(R;F), uj ∈ U, j = 0, m, there exists a unique solution to
problem (5), (6) of the form

u(t) = −

p
∑

k=0

HqM−1
0 (I−Q)f (k)(t) +

m
∑

j=0

(

U
t−τj
j uj +

∫ t

τj

U t−s
j L−1

1j Qjf(s)ds

)

. (11)

2. Sobolev-Type Stochastic Equation with Multipoint Initial-Final
Value Condition

Let Ω ≡ (Ω,A,P) be a complete probability space with the probability measure P

associated with the σ-algebra A of subsets of the set Ω. Consider a real separable Hilbert
space U ≡ (U, 〈·, ·〉) with an orthonormal basis {ϕk} endowed with a Borel σ-algebra.

A measurable mapping ξ : Ω → U is said to be a (U-valued) random variable. Denote
by V ≡ V(Ω;U) the space of (U-valued) random variables. In the space V, we consider the
subspace [8]

L2 ≡ L2(Ω;U) =

{

ξ ∈ V :

∫

Ω

||ξ(ω)||2 dP(ω) < +∞

}

,

where ||ξ||2 = 〈ξ, ξ〉. The space L2, in particular, contains all normally distributed (i.e.
Gaussian) random variables from V.

Take the set I ⊂ R that is some interval. Consider the mapping f : I → V, which
associates each t ∈ I with a random variable ξ ∈ V. Also, consider the mapping g : V×Ω →
U, which associates each pair (ξ, ω) with the point ξ(ω) ∈ U. The mapping η : I×Ω → U

of the form η = η(t, ω) = g(f(t), ω) is said to be a (U-valued) random process. Therefore,
for each fixed t ∈ I, the random process η = η(t, ·) is a random variable, i.e. η(t, ·) ∈ U,
which we call a section of the random process at the point t ∈ I. For each fixed ω ∈ Ω, the
function η = η(·, ω) is called a (sample) trajectory of the random process corresponding
to the elementary outcome ω ∈ Ω. Trajectories are also called implementations or sample
functions of a random process. Usually, when it does not lead to ambiguity, the dependence
of η(t, ω) on ω is not indicated and the random process is simply denoted by η(t). A random
process η is called continuous if its trajectories are a.s. (almost sure) continuous, i.e. for
a.a. (almost all) ω ∈ Ω the trajectory η(t, ω) is continuous on I.
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Denote the space of random processes by P ≡ P(I×Ω;U). In P, we consider a subspace
CL2 of continuous random processes whose random variables belong to L2, i.e. η ∈ CL2

if η(t) ∈ L2 for all t ∈ I. Note that the space CL2 contains, in particular, random
processes such that all of their trajectories are a.s. continuous, and all (independent)
random variables are Gaussian.

Consider a monotonic sequence K = {λk} ⊂ R+ such that [9]

∞
∑

k=1

λ2k < +∞, (12)

and also a sequence {ξk} = {ξk(ω)} ⊂ L2 of random variables such that ‖ξk‖L2
≤ C, for

some constant C ∈ R+ and for all k ∈ N.

Then we can construct a U-valued random K-variable ξ(ω) =

∞
∑

k=1

λkξk(ω)ϕk.

Let us introduce the sequence {βk(t)}, t ∈ R+ (here and below R+ ≡ {0} ∪ R+) of
independent one-dimensional (standard) Wiener processes βk(t) ≡ βk(t, ω), βk : R+×Ω →
R, which are also called Brownian motions. In the Einstein-Smoluchowski model, the
Wiener process describing Brownian motion

β(t, ω) =
∞
∑

k=0

ξk(ω) sin
π(2k + 1)

2
t, t ∈ R+,

is a continuous stochastic process. Here the coefficients {ξk = ξk(ω)} ⊂ L2 are pairwise

uncorrelated Gaussian random variables such that Dξ2k =
[π

2
(2k + 1)

]−2

, k ∈ N0.

Definition 1. A random process

W (t) ≡W (t, ω) =
∞
∑

k=1

λkβk(t)ϕk, t ∈ R+, (13)

is called a (U-valued) Wiener K-process.

In Definition 1, the dependence of the Wiener K-process W = W (t) both on the
sequence K and on the set of the motion sequence {βk(t)} is obvious. Next, we present a
number of properties of the Wiener K-process that hold for any sequences K (with the
properties described above) and {βk(t)}:

(W1) W (0) = 0 a.a. on Ω, and trajectories are a.s. continuous on R+.
(W2) Trajectories of Wiener K-process are a.s. non-differentiable at any point t ∈ R+

and have unlimited variation on any interval I ⊂ R+.
(W3) Wiener K-process is Gaussian.

However, these properties clearly imply

Theorem 4. [8] For any sequence K satisfying (12) and a sequence of Brownian motions
{βk(t)}, the Wiener K-process W ∈ CL2.

Suppose that U and F are real separable Hilbert spaces, K satisfies (12), the operators
L, M , N ∈ L(U;F), and the operator M is (L, p)-bounded, p ∈ N0. Consider the linear
stochastic equation

Ldη =Mηdt+NδW, (14)
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where, on the right side, δW denotes the generalized differential of a (U-valued) Wiener
K-process. Let condition (4) be satisfied, then we construct the integrals

Pj =
1

2πi

∫

γj

RL
µ (M)dµ, Qj =

1

2πi

∫

γj

LL
µ(M)dµ, j = 1, m. (15)

By virtue of Theorem 1 and Remark 1, in formula (15), the integrals Pj and Qj , j = 1, m,
are projectors in the spaces U and F, respectively. As in Remark 1, we construct the
projectors

P0 = P −
m
∑

j=1

Pj and Q0 = Q−
m
∑

j=1

Qj.

Next, on the half-interval R+, we choose points τj ∈ R, j = 0, m, such that τj < τj+1,
0 ≤ τ0, and (U-valued) pairwise independent random variables ξj ∈ L2, j = 0, m. Similarly
to Section 1, we formulate the multipoint initial-final value problem as follows: find a
random process η ∈ CL2 that satisfies equation (14) and the conditions

Pj(η(τj)− ξj) = 0, j = 0, m. (16)

If the condition
QN = N (17)

holds, then, by virtue of Theorem 3, it is easy to construct a unique "formal" solution
η = η(t) to problem (14), (16)

η(t) =

m
∑

j=0

(

U
t−τj
j Pjξj + L−1

1j Qj(W (t)−W (τj))
)

+

+
m
∑

j=0

∫ t

τj

U t−s
j SjL

−1
1j QjW (s)ds,

(18)

where, as well as above, U t
j , L1j , Sj, j = 0, m, are the same as in Section 1, see Theorem 2.

The "formality" of the obtained solution is that the integrands are, generally speaking,
non-integrable vector functions, therefore integration is "formal".

Theorem 5. Let the operator M be (L, p)-bounded, p ∈ N0, and let conditions (4), (17)
be satisfied. Let the random variables ξj ∈ L2, j = 0, m, be pairwise independent. Then
the random process η defined by formula (18) belongs to CL2(R+).

Remark 2. The requirement for pairwise independence of the random variables ξj, j =
0, m is redundant. It is sufficient to have pairwise independence of their projectors Pjξj,
j = 0, m.

Definition 2. Let the operator M be (L, p)-bounded, p ∈ N0, conditions (4) and (17) be
satisfied. Let the random variables ξj ∈ L2 (or their projectors Pjξj ∈ L2), j = 0, m. Then
for any (U-valued) Wiener K-process W ∈ CL2 the random process η defined by formula
(18) is called a solution to problem (14), (16).

Remark 3. In modern mathematical literature, such a solution is often called "mild"
(mild solution). It is clear that if we restrict ourselves to the "classical" interpretation of
the derivative, then due to Property (W2) we cannot count on a smoother solution.

2022, vol. 9, no. 1 29



L. A. Kovaleva, A. S. Konkina, S. A. Zagrebina

3. Stochastic Barenblatt–Zheltov–Kochina Model with Neumann
Condition and Multipoint Initial-Final Value Condition

Let G ⊂ Rd be a bounded domain with the boundary ∂G of the class C∞. Let us
define the spaces [10]

U = {u ∈ W l+2
2 (G) :

∂u(x)

∂n
= 0, x ∈ ∂G}, F =W l

2(G), l ∈ N.

Define a monotonic sequence K = {λk} ⊂ R+ satisfying condition (12) such that λ2k =
ν−2d
k . By formula (13), we define the Wiener K-process, where {ϕk} is the orthonormal

basis of U. Note that the Laplace operator −∆ : U → F is a toplinear isomorphism. We
construct the space

V = {u ∈ W l+2d
2 : (−1)l∆lu(x) = 0,

∂u(x)

∂n
= 0, x ∈ ∂G, l = 0, d− 1.}

Finally, the formulas L = λ − ∆ and M = α∆ define the continuous linear operators L,
M ∈ L(U;F), which are Fredholm, α ∈ R \ {0}. A detailed discussion of this range of
questions can be found in Triebel’s fundamental reference book.

We look for a random process η = η(x, t) satisfying the stochastic equation

Ldu = udt+NδW, L = (λ−∆), M = α∆ (19)

and the Neumann condition

∂u(x, t)

∂n
= 0, (x, t) ∈ ∂G× R+ (20)

in the cylinder G× R+.
Let {µk} be the eigenvalues of the spectral problem −∆ϕk = µkϕk in the domain G

with condition (20). Then we arrive at

Lemma 1. For any λ ∈ R, α ∈ R \ {0} the operator M is (L, 0)-bounded.

Proof. The statement is trivial if −λ /∈ {µk}. The kernel kerL = span{ϕk : µk = −λ}

if −λ ∈ {µk}. Take the vector ψ =
∑

−λ=νk

akϕk ∈ kerL. Then Mψ = −αλψ /∈ imL, i.e.

the operator L has no M-adjoined vectors. Reference to Theorem 1.1.2 [7] completes the
proof.

Further note that

RL
µ(M) =

∑

−λ6=µk

〈·, ϕk〉ϕk

µ+ αµk(λ+ µk)−1
, LL

µ(M) =
∑

−λ6=µk

[·, ϕk]ϕk

µ+ αµk(λ+ µk)−1
,

where [·, ·] is the inner product in F. By the formulas

P =
1

2πi

∫

γ

RL
µ(M)dµ and Q =

1

2πi

∫

γ

LL
µ(M)dµ,

construct the projectors

P =
∑

−λ6=µk

〈·, ϕk〉ϕk, Q =
∑

−λ6=µk

[·, ϕk]ϕk.
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For the sake of simplicity, we set the operator N = P . Then, firstly, the operator N ∈
L(U;F) (moreover, N is compact!) due to the dense and continuous (moreover, compact!)
embedding U →֒ F (Sobolev – Kondrashev’s theorem). Secondly, condition (17) holds
automatically. Since, in this situation, σk = −αµk(λ+µk)

−1 for −λ 6= µk represent points
of the L-spectrum σL(M) of the operator M , which in turn satisfies condition (4), we can
construct the projectors

Pj =
∑

σk∈σ
L
j (M)

〈·, ϕk〉ϕk, Qj =
∑

σk∈σ
L
j (M)

[·, ϕk]ϕk, j = 0, m.

Therefore, the reduction of Barenblatt – Zheltov – Kochina equation (19) with condition
(20) to equation (14) with additive white noise is completed.

Let us proceed to the construction of a "mild" solution (18) (see Remark 3). First
of all, note that, in Remark 2, the condition Pjξj = ξj, j = 1, m, on the initial random
variables ξj from (16) is equivalent to the condition

〈ξj, ϕk〉 = 0, −λ = µk. (21)

Next, in this situation, the first term in (17) has the form

U t
jξj =

∑

σk∈σ
L
j (M)

〈ξj, ϕk〉e
σktϕk, j = 0, m. (22)

The second term in (17) can also be easily calculated as follows:

L−1
1j NW (t) =

∑

σk∈σ
L
j (M)

βk(t)

(λ+ µk)ν2dk
ϕk. (23)

Finally, the last term in (17) can be found as

∑

σk∈σ
L
j (M)

∫ t

τj

U t−s
j SjL

−1
1 NW (s)ds =

∑

σk∈σ
L
j (M)

∑

−λ6=µk

∫ t

0

βk(s)e
σk(t−s)ds

(λ+ µk)ν
2m−1
k

ϕk. (24)

Therefore, the following theorem is proved.

Theorem 6. For any −λ ∈ {µk}, α ∈ R \ {0} and ξj ∈ L2 such that (21) holds, there
exists a unique solution u ∈ CL2 to problem (16) for the stochastic Barenblatt – Zheltov –
Kochina equation with additive white noise and condition (20), and the solution has the
form (17), where the terms are represented by formulas (22) – (24).
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СТОХАСТИЧЕСКАЯ МОДЕЛЬ
БАРЕНБЛАТТА–ЖЕЛТОВА–КОЧИНОЙ С УСЛОВИЕМ
НЕЙМАНА И МНОГОТОЧЕЧНЫМ
НАЧАЛЬНО-КОНЕЧНЫМ УСЛОВИЕМ

Л. А. Ковалева, А. С. Конкина, С. А. Загребина

В статье рассматривается стохастическая модель Баренблатта – Желтова – Ко-

чиной с условием Неймана. Доказывается потраекторная однозначная разрешимость

многоточечной начально-конечной задачи для рассматриваемой модели в области.

Статья, кроме введения и списка литературы, содержит три части. В первой и вто-

рой частях приводятся теоретические сведения о детерминированных и стохастиче-

ских уравнениях соболевского типа и многоточечным начально-конечным условием. В

третьей части исследуется разрешимость модели Бареблатта – Желтова – Кочиной с

условием Неймана и начально-конечным условием.

Ключевые слова: уравнения соболевского типа; аддитивный белый шум, относи-

тельно ограниченный оператор; стохастическая модель Баренблатта – Желтова –

Кочиной; условие Неймана; многоточечная начально-конечное условие.
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