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PREDICTION OF MULTIDIMENSIONAL TIME SERIES
BY METHOD OF INVERSE SPECTRAL PROBLEM

A. I. Sedov, South Ural State University, Chelyabinsk, Russia, sedov-ai@yandex.ru

The paper develops a new method for predicting time series by the inverse spectral
problem. We show that it is possible to construct a differential operator such that its
eigenvalues coincide with a given numerical sequence. The paper gives a theoretical
justification of the proposed method. The algorithm for finding a solution and an example
of constructing a differential operator with partial derivatives are given. In this paper, we
present a generalization in the case of multidimensional time series.
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Introduction

The problem of constructing time series models has different forms and represents
different stochastic processes. We consider the following statement of the problem. Let a
k-dimensional time series {t1,ta, ..., tn}, t; = (ti1, ..., ti), i = 1,n be known. This series is
represented in the form of an observation matrix (¢;;). The problem is to construct a model
that allows to predict the values of several terms of the time series based on several terms
that precede the considered ones. The stated problem is widely known. Many different
models were constructed to solve the problem with varying degrees of accuracy.

In the present work, we develop a method of constructing a differential operator such
that the sequence of its eigenvalues allows to restore the time series. As a model operator,
we choose the Laplace operator.

Previously, a similar problem was successfully solved in [?] for a one-dimensional time
series. In this work, a generalization is presented in the case of a multidimensional time
series. The author understands that the proposed method is much more complicated
than those widely known in computational terms and is unlikely to find any practical
application, however, an example from the work [?], as well as an example presented in
the present paper, show that the method is quite justified and has the right to exist.

1. Problem Statement
2

a

Let II be a rectangle with the sides a and b, where 2 is irrational. In the space
H = Ly(II), consider a self-adjoint non-negative operator Tj generated by the Dirichlet
problem:

—Av = \v, vlon =0,
where A is the Laplacian.

Introduce the operator T' = / MdE(N), where E()) is a spectral decomposition of
’ a2k2 2 l2)ﬂ

the operator unit 7y, § > 3/2, M > 0at A > 0. The eigenvalues \y = ( 5 T+ NCE
a
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of the operator T' correspond to the eigenfunctions

2 rkx mly
. . 1
vz, y) = —\/_b sin (—a ) sin (—b ) , k=100,

which are orthonormal in Lo (IT). Since a?/b? is an irrational number, the spectrum o (7)
of the operator 7' is single. For convenience, we enumerate the ascending natural numbers
A, and the associated spectral objects with one natural index.

Let P be a bounded operator of multiplication by the function p € H acting in H.
We look for the perturbed operator T' + P, the eigenvalues of which allow to restore the
time series. Therefore, the formulated problem of predicting the terms of the time series
is solved as the inverse problem of spectral analysis.

2. Main Result

Denote by Ro(A) = (T'— AE)™!, R(\) = (T + P — AE)™! the resolvents of the
operators 1" and T + P, respectively. It is known that if P is a bounded operator, then
T + P is discrete. Moreover, if Ry is a kernel operator, then R(\) is a kernel operator as
well. This allows to denote by py; the eigenvalues of the operator T+ P and enumerate
them in ascending order of the real parts taking into account algebraic multiplicity, and
denote by wug; the corresponding eigenfunctions orthonormal in H. Introduce an auxiliary
rectangle Iy = {(z,y)] 0 < 2z < %, 0 <y < %} and a total system of functions

2rkx cos 2mly

{(pn}%o:h ()On(xu y) = (pkl(‘rv y) = hk:l COs orthonormal in L2(H4)7 where /\n =

2k w22 A 21/ (1+810) (143, S
( ),hkl:—”jai;”“’ k1 =10,00.

a? 2
Introduce the following notations: r,, = %min{)\nﬂ e T e N
ANl =rb To={A: A=A} Qu={: A=A =7} Qv =) L, || - |l1, || - |l2 which
n=N

are the kernel norm and the Hilbert-Schmidt norm, respectively. Since the series /\i
n

converges, the following statement is obvious.

Lemma 1. There exists N € N such that
1) the same number of eigenvalues A, and p, take place within the contour T'y;
2) exactly one A\, and one p, take place inside the contours ~y, for alln > N.

Lemma 2. |?,?| Forn> 1, § > 3/2, there exists an estimate:

2 2 ' CVB

n

1 C 1
IR < [ Ro(W)12 + (2+5—+ ) AE

)\E'Yn

4
Corollary 1. [?] For 8 > 3/2, the series Zri (max HRO()\)HQ) converges.

Consider the identity operator
R(A) = Ro(A) — Ro(A\)PRo(A) + R(A)(PRo(N))?, A € Q.

Multiply the operator by % and integrate along the contour =,. Therefore, we find
the following:
,U/n:)\n_}_(PUmUn)_}_O‘n(p)a n>N7
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where
an(p) = ~ L ASp [R(A)(PRy(N))?] dA.

211 T

Similarly, multiplying by % and integrating along 'y, we get

N N N
D out=>"X 4 qA T (Pog,va) +ag(p), g <N, (1)
n=1 n=1 n=1

where )

aq(p) = o AISp [R(A)(PRo(N))?] dA.
i Jry

It can be shown that for the operator R(\), the decomposition into a converging series
is valid:

R(N) =Y (=1*Ro(\)(PRy(N)¥, A € Q. (2)

o (p) = —(_1)k/r X1Sp [Ro(\)(PRy(\)F] d\, ¢ < N,

1)k

o) =~ [ asp [RO)(PRA A, > .
Tn

By integrating in parts, it is easy to obtain the following formula:

Sp / 9O R(A)(PRo(A)"dA = —*Sp / ¢ (N(PRo(N) N

From here we get

_1\k
) = S [ aisp [(PRAODH dh g <,
a®(p) = %/ Sp [(PRo(N)*]d\, n> N.

Write (??7) in the matrix form W'V = M, where

1 1 Ce 1 (P’Ul, ’Ul) mq
W — )\1 /\2 AN 7 V = (pv27v2) 7 _ mo 7
BT oo i
1N
my = g[Z(u% — A1) — oz?\,(p)]. The Vandermond determinant |W| # 0, therefore the

n=1
matrix W is invertible and V' = W~'M. Denote by w,,, the elements of the inverse matrix

N
W=, Therefore, we get (Pup,vn) = > w,,mg, n < N.
q=1
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Let 7 = min{|| P, ||, || || }. We estimate the difference |ay,(p1) — an(p2)| for n > N.

|O%(f) (pl) - Oéff) (p2)\ =

[ s Kfaf%<A»k-—<faf%<A»k]dA'g

ok
< EI@XH (PLRo(N)* = (PaRo(N)"|, <
k—
< _n k—s—1 —
r@i{ Z:: (PyRy(\ — P)Ry(\)(PiRo(N)) 1
r k—1
- ?n fax <Z 1Py = Pof|r* [ Ro(M)13 ||Ro(A)H’“‘2> =
" s=0

=r,||Py — Po|r*! Inax (1IR3 [Ro(A)[IF72) .

Next, we estimate the absolute value of the difference:
|an(p1) — an(p2)| < rorl| P — P g%%f“Ro )13 ZTk Inax HRO ) <

Ty

< 1Py = Pl o | Ro V37

Similarly, for ¢ < N we get

QTTN

log(p1) — ag(p2)| < [P — P fax | Ro(A )||21 Y

Lemma 3. |?] If the function p satisfies the following conditions:
(1) p(z,b—y) = p(x,y) = pla — z,y), for almost all (x,y) € I1;
(ZZ) (p7 ()0016>L2(H4) = (p7 SOkO)LQ(IL;) = O; k= 07 oo, then

1
(Pvnyvn)Lg(H) = \/ﬁ(p’ SOn)Lz(lh)-

Theorem 1. If there exist N € N and r > 0 for the sequence {£,} such that the following
imequalities hold:

o=l Lot = ] S [ s+

n=1

Ly max | Ro (V32— /rnf}a,

n=N+1

- N 0
wnq ( 2 2 2
- 52 - )‘Z) + ‘gn - )\n’ S TNwW &b,
3 >

n=N-+1

WE

>

n=1

q 5=

then there exists the operator P such that the spectrum o(T+ P) coincides with the sequence

{&n}-
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Proof. In the space Hy = Ls(Ily), consider the equation with respect to p:

p=ap—a(p),
where
N N - N 0o
=) > I (=Mt Y (&= M)en,
n=1 g=1 q s=1 n=N+1
N _ o)
ap) =YY ap)en+ Y an(D)pn
n=1 g=1 n=N+1

Introduce the operator A : Hy — Hi:

Ap = ap — @(p).

Let us find

N

rrd 2
HO((pl) — pQ HH1 Z |:Z ’wnq’HPl P2H ma'X HRO( )H21 7,.];7,. :| +

5 Ty 2
+ Z [le P2Hmax||R0( )HQl—ir/rn] =

n=N+1

7"2HP1 p2H {[max HRO( )H21 7"/7" ] i[i‘wnq‘r%}Q‘i‘

n=1 q=1

2 Tn 2 . 2 2
+ Z IA%%XHRO(/\HEW] }—||p1—p2“H1w

Therefore, « is the contraction operator.

Put R = min{r, 7xyVab(1 — w)}. Since the operator ay is completely continuous, then,
according to the combination principle, there exists a solution to the equation in the ball
U(ag, R) C Hy. Note that the combination principle does not guarantee the uniqueness of
the solution.

Let p be a solution to the equation, P be the operator of multiplication by the function

o(T 4+ P) = {un} be the spectrum of the founded operator. From the construction of
the equation, it is obvious that the sequences {u,} and {,} are the same.

m
3. Algorithm

Let us give the algorithm arising from the Banach principle.

1. Specify the accuracy 9.

2. Choose m. The number m is chosen arbitrarily, the larger m is, the more accurate
approximate solution is found. If the amount of &, is finite, then m is determined naturally.

3. Put pg = 0.
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4.p1 =y — Oé(po) = Qy,

- 4 ok 27l
ozo:Z(fn—)\n)@m or(x) = \/a_bCOS W&xcos 7;3:

n=1

5. Calculate pj11 = o — a(pj), j =1,2,... by the formulas:

a(p) = Xy (02(0) + ad(0) + al(0)) ou.

V2
an(p) == 3" Where Vi = (Puy,v),
i#n ¢
Vi Vii Vi V2V,
ai(p) — Z niVijVin nn
=M= A) S (=)
Vo Vi VieVi Vo ViniVii Vi
4 _ niVijgVijkVkn nnVniVijVin
an(p) B Z (/\Z - )‘n)()‘j - /\n)(/\k: - )‘n) * Z ()‘z - /\n)(/\] - )\n)Q
i,5,k#n 1,jF#n
vmvmmmn Vn%an ViV

6. Calculate p,, n =1, m:
fn = An + Van + a3 (p) + () + 0, (p).

7. Compare u, obtained at Step 5 with &,, according to any criterion, for example, the
least squares:

m
MNE = |6, — > < 6%,
n=1
7. If the value of the criterion decreases compared to the previous one, then we proceed
to the next iteration, i.e. to Step 4. If the value increases and the required accuracy was
achieved at the previous iteration, then the approximate solution p = p;;, is found. If the
value increases, but the required accuracy was not achieved at the previous iteration, then
go to Step 1, increasing m.

4. Example

As an example, consider the two-dimensional time series dollar/ruble and euro/ruble
rates from 06.08.2019 to 10.08.2019 on MOEX. For shortness, we consider the series
containing only five terms:

(t }5 _{ 65.0546 65.2030 65.0932 65.1299 65.2543 }
nfn=1 "

72.3732 73.0730 72.8914 73.0432 73.0196
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Select the parameters f = 2, a = m, b = 20, then the first eigenvalues of the Dirichlet
problem discussed above are as follows:

() = 1.0500 1.2071 1.4934 1.9454 2.1420
9 16.1980 16.7993 17.8258 19.3141 21.3153 |-

Construct a two-dimensional series {&;;}, &; = 0.0001¢;; + \;;. Arrange in increasing order
the numbers {&;;}, the eigenvalues \;;, as well as the eigenfunction v;; corresponding to
these eigenvalues, enumerating each obtained sequence with the same index. We look for
the function p in the form of a series on the system of functions orthonormed in Ly(IT).
Select ;; = \/% cos(ZE2) cos(2EY) as the basis functions, also numbered by the same index
accordingly. According to the above algorithm, as a result of two iterations, we find the
function

p = 0.0260218423 cos(2z) cos(0.3141y) + 0.0260812002 cos(2x) cos(0.6283y )+

0.0260372764 cos(2z) cos(0.9425y) + 0.0260519598 cos(2x) cos(1.2566y)+

0.0261017189 cos(2x) cos(1, 5707y) + 0.0289492922 cos(4x) cos(0.3141y)+
0.0292292000 cos(4z) cos(0.6283y) + 0.0201565600 cos(4x) cos(0.9425y)+
0.0292172800 cos(4x) cos(1.2566y) + 0.0292078400 cos(4x) cos(1.5707y).

Let us assume that the following terms of the decomposition have the same Fourier
coefficients as the found higher coefficients, and add to this function the term

0.0261017189 cos(2x) cos(1.8849y) + 0.0292078400 cos(4x) cos(1.8849y).

Find the eigenvalues for the obtained function p by the formula of Step 5 of the
algorithm:

i, = {1.0564; 1.2136; 1.4999; 1.9519; 2.6207; 35720;

16.2052; 16.8066; 17.8331; 19.3214; 21.3226; 23.9024 }

We enumerate p, with two indexes j,;; according to the numbering of the numbers A,, and

o . . . _)\ .
Aij. Then return to the original variables 7;; = & S0t =

65.0546000 65.2029999 65.0931955 65.1298973 65.2542987 65.2543001
72.3732000 73.0729893 72.8914172 73.0432015 73.0196135 73.0196091)

The least squares criterion of the sets {n,}>_, and {¢,}>_, equals 6 - 1071°.
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IPOTHO3UPOBAHUE MHOTOMEPHOT'O BPEMEHHOTO
PS/IA METOJ/IOM OBPATHO 3ATAYN
CIIEKTPAJILHOTO AHAJIN3A

A. . Cedos

B pabore pasBuBaeTcsi HOBBIN MeTOJ, IIPOrHO3UPOBAHUS BPEMEHHBIX PsIJIOB METOIOM
00paTHOI 3a/1a9K CIIEKTPAJbHOrO aHajn3a. [lokazaHo, 9TO MOXKHO IOCTPOUTH TaKO# aud-
depeHnmaabHbIi omepaTop, YTO ero COOCTBEHHBIE UNC/Ia COBIAIYT C JTAHHON YUCIOBOI MO~
CJIeTIOBATEILHOCTRHIO. B paboTe maHo TeopeTndeckoe 0OOCHOBAHNE MPEITOXKEHHOIO METOIA.
[TpuBoauTCST AJIrOPUTM HAXOXKIEHUSI PENIEHUs] U IPUMED IIOCTPOeHMs UM PEPEHITUATHLHOTO
orepaTopa ¢ YaCTHBIMU IIPOU3BOIHBIME. B mpejcrapieHHol paboTe caeiaHo 0bobIIeHne Ha
MHOT'OMEDHBIE BDEMEHHbBIE PSIJIbI.

Karoueswie caosa: onepamop Jlanaaca; obpammas 3a0a4a cnekmpaivbho20 GHaiu3a; cob-

CMBEHHDBLE YUCAA; BPEMEHHOT PAD.
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