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For a biharmonic equation, we consider a mixed problem with the main boundary

conditions. We continue the original problem along the boundary with the Dirichlet

conditions into a rectangular domain. The continued problem is given as an operator

equation. The method of iterative extensions is written out in the operator form when

solving the continued problem. The operator continued problem is given on a finite-

dimensional subspace. The method of iterative extensions is given for solving the operator

continued problem on a finite-dimensional subspace. After discretization, the continued

problem is written in the matrix form. The continued problem in the matrix form is solved

by the method of iterative extensions in the matrix form. It is established that in the

cases under consideration the method of iterative extensions has relative errors converging

as a geometric progression in a norm stronger than the energy norm of the extended

problem. In the applied iterative processes, the iterative parameters are selected on the

basis of minimizing the residuals. We give conditions that guarantee the convergence of

the iterative processes used. Also, we present an algorithm that implements the method of

iterative extensions in the matrix form. The algorithm performs an independent selection

of iterative parameters and provides a criterion for stopping if an estimate of the required

accuracy is achieved. A computational example of using the method of iterative extensions

on a computer is given.
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Introduction

Let us consider a boundary problem under the obligatory presence of homogeneous
main boundary conditions for a biharmonic equation in a bounded flat domain. The main
problems in solving the problem under consideration are due to the complexity of the
geometry of the domain, the order of the equation, and the Dirichlet boundary conditions
[1–5]. We assume that the proposed methods must be computationally stable with respect
to rounding errors, be asymptotically optimal in terms of computational complexity, be
quite universal and have a simple implementation in computer calculations. To fulfill
these conditions in solving the original problem, we propose the method of iterative
extensions as a development of the fictitious component method [4–7]. Note that to solve
problems in a rectangular domain, which we obtain when solving the original problems,
we can, for example, use the well-known marching methods, which are optimal in terms
of computational complexity [8–10].

1. Boundary Problem

Suppose that there exists a first bounded domain. Select a second bounded domain.

ω ∈ {1, II} , Ωω ⊂ R2.

The intersection of the first and second domains is empty, and the union of the closures
of these domains is the closure of the rectangular domain.

Ω1 ∩ ΩII = ∅, Ω̄1 ∪ Ω̄II = Π̄.
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For all domains, the boundary is the closure of the union of four non-intersecting open
parts.

∂Π = s̄, s = Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3, Γi ∩ Γj = ∅, i 6= j, i, j = 0, 1, 2, 3,

∂Ωω = s̄ω, sω = Γω,0 ∪ Γω,1 ∪ Γω,2 ∪ Γω,3, Γω,i ∩ Γω,j = ∅, i 6= j, i, j = 0, 1, 2, 3.

We assume that a non-empty intersection of the boundary of the first domain and the
boundary of the second domain is a closure of the intersection of the corresponding parts
of the boundaries of these domains.

∂Ω1 ∩ ∂ΩII = S̄, S = Γ1,0 ∩ ΓII,3 6= ∅.

All parts of the boundaries of the domains are obtained as the union of a finite number of
open non-intersecting arcs of smooth curves. The boundaries of the domains do not have
self-contacts and self-intersections. In the first domain, we consider a mixed problem for
the Sophie Germain equation. In the second domain, we present a mixed problem for the
screened homogeneous Sophie Germain equation. The original problem is set on the first
domain. On the second domain, a fictitious problem with a zero solution is given. Let us
present the problem to be solved and an additional fictitious problem.

∆2ŭω + aωŭω = f̆ω, a1 = 0, aII ≥ 0, f̆II = 0,
ŭω

∣

∣

Γω,0
= ∂ŭω

∂n

∣

∣

Γω,0
= 0, ŭω

∣

∣

Γω,1
= l1ŭω

∣

∣

Γω,1
= 0,

∂ŭω

∂n

∣

∣

Γω,2
== l2ŭω

∣

∣

Γω,2
0, l1ŭω

∣

∣

Γω,3
= l2ŭω

∣

∣

Γω,3
= 0,

(1)

where we use differential operators with derivatives with respect to normals and tangents
on the corresponding parts of the boundaries.

l1ŭω = ∆ŭω + (1− σω)n1n2ŭωxy − n2
2ŭωxx − n2

1ŭωyy,

l2ŭω =
∂∆ŭω
∂n

∆ŭω + (1− σω)
∂

∂s
(n1n2(ŭωyy − ŭωxx) + (n2

1 − n2
2)ŭωxy),

n1 = − cos(n, x), n2 = − cos(n, y), σω ∈ (0; 1).

Let us rewrite the above problems in the variational form. This is a representation for
linear functionals as inner products on function spaces.

ŭω ∈ H̆ω : Λω(ŭω, v̆ω) = Fω(v̆ω), ∀v̆ω ∈ H̆ω. (2)

The solutions to such problems belong to the Sobolev space.

H̆ω = H̆ω(Ωω) =

{

v̆ω ∈ W 2
2 (Ωω) : v̆|Γω,0∪Γω,1

= 0,
∂v̆ω
∂n

∣

∣

∣

∣

Γω,0∪Γω,2

= 0

}

.

The right parts of these problems are linear functionals.

Fω(v̆ω) = (f̆ω, v̆ω), (f̆ω, v̆ω) =

∫

Ωω

f̆ω v̆ωdΩω.

The left parts of these problems contain bilinear forms.

Λω(ŭω, v̆ω) =

∫

Ωω

(σω∆ŭω∆v̆ω + (1− σω)(ŭωxxv̆ωyy + 2ŭωxyv̆ωxy + ŭωyyv̆ωyy) + aωŭωv̆ω)dΩω.
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We assume that bilinear forms define a norm equivalent to the norm of Sobolev spaces.

∃c1, c2 > 0 : c1 ‖v̆ω‖2W 2

2
(Ωω)

≤ Λω(v̆ω, v̆ω) ≤ c2 ‖v̆ω‖2W 2

2
(Ωω)

, ∀v̆ω ∈ H̆ω.

These assumptions ensure the existence and uniqueness of solutions to each of these two
problems [1]. The solution to the fictitious problem will be zero.

2. Continued Problem

We present the formulation of the problem to be solved together with the fictitious
problem in the variational and operator form. We call this problem the continued problem.

ŭ ∈ V̆ : Λ1(ŭ, I1v̆) + ΛII(ŭ, v̆) = F1(I1v̆), ∀v̆ ∈ V̆ ,

ŭ ∈ V̆ : B̆ŭ = f̆ ,
(3)

if we specify the right side and the operator in the continued problem in this way.

(B̆ŭ, v̆) = Λ1(ŭ, I1v̆) + ΛII(ŭ, v̆), ∀ŭ, v̆ ∈ Ṽ , (f̆ , v̆) = F1(I1v̆), ∀v̆ ∈ Ṽ .

F (v̆) = (f̆ , v̆), (f̆ , v̆) =

∫

Π

f̆ v̆dΠ.

The solution to the continued problem belongs to the following extended space of solutions.

V̆ = V̆ (Π) =

{

v̆ ∈ W 2
2 (Π) : v̆|Γ0∪Γ1

= 0,
∂v̆

∂n

∣

∣

∣

∣

Γ0∪Γ2

= 0

}

.

In the extended space of solutions, there exists a subspace that is the space of solutions to
the continued problem. This is the space of solutions to the original problem on the first
domain that is continued by zero on the second domain.

V̆1 = V̆1(Π) =
{

v̆1 ∈ V̆ : v̆1|Π\Ω1
= 0

}

.

In the continued problem, we use an operator that projects the extended space of solutions
to the continued problem onto the space of solutions to the continued problem.

I1 : V̆ 7→ V̆1, V̆1 = im I1, I1 = I21 .

The extended space of solutions consists of the following subspaces.

V̆3 = V̆3(Π) =
{

v̆3 ∈ V̆ : v̆3|Π\ΩII
= 0

}

,

V̆2 = V̆2(Π) =
{

v̆2 ∈ V̆ : Λ(v̆2, v̆1) = 0, ∀v̆1 ∈ V̆1, Λ(v̆2, v̆3) = 0, ∀v̆3 ∈ V̆3

}

,

V̆ = V̆1 ⊕ V̆II, V̆II = V̆2 ⊕ V̆3.

We use the bilinear form as a sum of bilinear forms.

Λ(ŭ, v̆) = Λ1(ŭ, v̆) + ΛII(ŭ, v̆), ∀ŭ, v̆ ∈ V̆ .
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We assume that the bilinear form defines an equivalent normalization of the Sobolev space
on the extended space.

∃c1, c2 > 0 : c1 ‖v̆‖2W 2

2
(Π) ≤ Λ(v̆, v̆) ≤ c2 ‖v̆‖2W 2

2
(Π) , ∀v̆ ∈ V̆ .

Also, we assume that for the Sobolev spaces used, the continuation of functions takes place
under the same norm. Let us use this statement in the usual way.

∃β̆1 ∈ (0, 1], β̆2 ∈ [β̆1, 1] : β̆1Λ(v̆2, v̆2) ≤ ΛII(v̆2, v̆2) ≤ β̆2Λ(v̆2, v̆2), ∀v̆2 ∈ V̆2,

∃β̆1 ∈ (0, 1], β̆2 ∈ [β̆1, 1] : β̆1(Λ̆v̆2, v̆2) ≤ (Λ̆IIv̆2, v̆2) ≤ β̆2(Λ̆v̆2, v̆2), ∀v̆2 ∈ V̆2,

where the considered operators are defined as follows:

Λ̆ = Λ̆I + Λ̆II, (Λ̆ŭ, v̆) = Λ(ŭ, v̆), (Λ̆Iŭ, v̆) = Λ1(ŭ, v̆), (Λ̆IIŭ, v̆) = ΛII(ŭ, v̆), ∀ŭ, v̆ ∈ V̆ .

Then the continued problem has a unique solution. For the continued problem, the solution
to the original problem on the first domain is extended by zero to the second domain, i.e.
to the rest of the rectangular domain. Note that the solution to the original problem and
the solution to the original problem under extension by zero are denoted in the same way
as the initial function and the continued function, respectively.

3. Operator Form of Method of Iterative Extensions

Consider the modified method of fictitious components as an iterative process, where
at each step an extended problem arises with a bilinear form of the continued problem
without a projection operator. The solution to such a problem belongs to the extending
of the solution space for the continued problem, i.e. to the solution space for the extended
problem.

ŭk ∈ V̆ : Λ(ŭk − ŭk−1, v̆) = −τk−1(Λ1(ŭ
k−1, I1v̆) + ΛII(ŭ

k−1, v̆)−
− F1(I1v̆)), ∀v̆ ∈ V̆ , k ∈ N,

ŭk ∈ V̆ : Λ̆(ŭk − ŭk−1) = −τk−1(B̆ŭ
k−1 − f̆), k ∈ N,

∀ŭ0 ∈ V̆ , τ0 = 1, τk−1 = 2/(β̆1 + β̆2), k ∈ N \ {1} .

(4)

Let us formulate the method of iterative extensions as a development of the modified
method of fictitious components. We describe an iterative method, when at each step we
solve an extended problem with the following bilinear form, with an operator generated
by such a bilinear form.

C(ŭ, v̆) = Λ1(ŭ, v̆) + γ̆ΛII(ŭ, v̆), ∀ŭ, v̆ ∈ V̆ , γ̆ ∈ (0; +∞),

(C̆ŭ, v̆) = C(ŭ, v̆), ∀ŭ, v̆ ∈ V̆ .

The solution to such a problem belongs to the space of solutions to the extended problem,
to the extended space of solutions to the continued problem.

ŭk ∈ V̆ : C(ŭk − ŭk−1, v̆) = −τk−1(Λ1(ŭ
k−1, I1v̆) + ΛII(ŭ

k−1, v̆)−
− F1(I1v̆)), ∀v̆ ∈ V̆ , k ∈ N,

ŭk ∈ V̆ : C̆(ŭk − ŭk−1) = −τk−1(B̆ŭ
k−1 − f̆), k ∈ N,

∀ŭ0 ∈ V̆1, γ̆ > ᾰ, τ0 = 1, τk−1 = (r̆k−1, η̆k−1)/(η̆k−1, η̆k−1), k ∈ N \ {1} .

(5)
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To determine the iterative parameters, we calculate residuals, corrections, and
equivalent residuals.

r̆k−1 = B̆ŭk−1 − f̆ , w̆k−1 = C̆−1r̆k−1, η̆k−1 = B̆w̆k−1, k ∈ N.

We suppose that the assumptions for the continuation of functions, which we write in the
following form, take place.

∃δ̆1 ∈ (0,+∞), δ̆2 ∈ [δ̆1,+∞) : δ̆21(C̆v̆2, C̆v̆2) ≤ (Λ̆IIv̆2, Λ̆IIv̆2) ≤ δ̆22(C̆v̆2, C̆v̆2), ∀v̆2 ∈ V̆2,

∃ᾰ ∈ (0,+∞) : (Λ̆Iv̆2, Λ̆Iv̆2) ≤ ᾰ2(Λ̆IIv̆2, Λ̆IIv̆2), ∀v̆2 ∈ V̆2,

if the introduced operators are defined in the following way.

C̆ = Λ̆I + γΛ̆II, (C̆ŭ, v̆) = C(ŭ, v̆), (Λ̆Iŭ, v̆) = Λ1(ŭ, v̆), (Λ̆IIŭ, v̆) = ΛII(ŭ, v̆), ∀ŭ, v̆ ∈ V̆ .

4. Operator Form of Continued Problem on Finite-Dimensional

Subspace

Consider discretization of the continued problem with a specific type of boundary
conditions. Consider the introduced rectangular domain with parts of its boundary in the
rectangular coordinates

Π = (0, b1)× (0, b2),Γ0 = ∅,
Γ1 = {b1} × (0, b2) ∪ (0, b1)× {b2} ,
Γ2 = {0} × (0, b2) ∪ (0, b1)× {0} ,
Γ3 = ∅, b1, b2 ∈ (0,+∞).

Let us define a grid in a rectangular domain.

(xi, yj) = ((i− 0.5)h1, (j − 0.5)h2) ,

where h1 = b1/(m + 0.5), h2 = b2/(n + 0.5), i = 1, m, j = 1, n, m, n ∈ N. Introduce grid
functions on the set of nodes of the considered grid

vi,j = v(xi, yj) ∈ R, i = 1, m, j = 1, n, m, n ∈ N.

Complete the grid functions using the parabolic basis functions.

Φi,j(x, y) = Ψ1,i(x)Ψ2,j(y), i = 1, m, j = 1, n, m, n ∈ N,
Ψ1,i(x) = [1/i]Ψ(x/h1 − i+ 3) + Ψ(x/h1 − i+ 2)− [i/m]Ψ(x/h1 − i),
Ψ2,j(y) = [1/j]Ψ(y/h2 − j + 3) + Ψ(y/h2 − j + 2)− [j/n]Ψ(y/h2 − j),

Ψ(z) =















0.5z2, z ∈ [0, 1],
−z2 + 3z − 1.5, z ∈ [1, 2],
0.5z2 − 3z + 4.5, z ∈ [2, 3],
0, z /∈ (0, 3).

The basis functions are assumed to be equal to zero outside the considered rectangular
domain

Φi,j(x, y) = 0, (x, y) /∈ Π, i = 1, m, j = 1, n, m, n ∈ N.
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In the solution space for the extended problem, linear combinations of basis functions form
a finite-dimensional subspace.

Ṽ =

{

m
∑

i=1

n
∑

j=1

vi,jΦ
i,j(x; y)

}

⊂ V̆ .

We present the continued problem on the introduced finite-dimensional subspace in
the variational and operator form

ũ ∈ Ṽ : Λ1(ũ, I1ṽ) + ΛII(ũ, ṽ) = F1(I1ṽ), ∀ṽ ∈ Ṽ ,

ũ ∈ Ṽ : B̃ũ = f̃ ,
(6)

if we define the right side and the operator in the continued problem in the following form.

(B̃ũ, ṽ) = Λ1(ũ, I1ṽ) + ΛII(ũ, ṽ), ∀ũ, ṽ ∈ Ṽ , (f̃ , ṽ) = F1(I1ṽ), ∀ṽ ∈ Ṽ .

A finite-dimensional space contains a finite-dimensional subspace for solutions to the
continued problem. This is a finite-dimensional subspace of solutions to the original
problem on the first domain, which is continued by zero on the complement to the
rectangular domain.

Ṽ1 = Ṽ1(Π) =
{

ṽ1 ∈ Ṽ : ṽ1|Π\Ω1
= 0

}

.

We assume that the projection operator acts on the corresponding finite-dimensional
subspaces in the same way as before. In conclusion, we assume that, on the space of
solutions to the continued problem, the projection operator sets to zero the coefficients of
the basis functions whose carriers do not completely belong to the first domain.

I1 : Ṽ 7→ Ṽ1, Ṽ1 = im I1, I1 = I21 .

We also define finite-dimensional subspaces corresponding to the previously introduced
subspaces.

Ṽ3 = Ṽ3(Π) =
{

ṽ3 ∈ Ṽ : ṽ3|Π\ΩII
= 0

}

,

Ṽ2 = Ṽ2(Π) =
{

ṽ2 ∈ Ṽ : A(ṽ2, ṽ1) = 0, ∀ṽ1 ∈ Ṽ1,A(ṽ2, ṽ3) = 0, ∀ṽ3 ∈ Ṽ3

}

, Ṽ = Ṽ1⊕Ṽ2⊕Ṽ3.

We suppose that for finite-dimensional subspaces, the assumptions for the continuation
of functions in the same form are satisfied.

∃β̃1 ∈ (0, 1], β̃2 ∈ [β̃1, 1] : β̃1Λ(ṽ2, ṽ2) ≤ ΛII(ṽ2, ṽ2) ≤ β̃2Λ(ṽ2, ṽ2) ∀ṽ2 ∈ Ṽ2,

∃β̃1 ∈ (0, 1], β̃2 ∈ [β̃1, 1] : β̃1(Λ̃ṽ2, ṽ2) ≤ (Λ̃IIṽ2, ṽ2) ≤ β̃2(Λ̃ṽ2, ṽ2) ∀ṽ2 ∈ Ṽ2,

where the considered operators are defined in the following way.

Λ̃ = Λ̃I + Λ̃II, (Λ̃ũ, ṽ) = Λ(ũ, ṽ), (Λ̃Iũ, ṽ) = Λ1(ũ, ṽ), (Λ̃IIṽ, ṽ) = ΛII(ũ, ṽ) ∀ũ, ṽ ∈ Ṽ .
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5. Operator Form of Method of Iterative Extensions

on Finite-Dimensional Subspace

On a finite-dimensional subspace, we formulate the modified method of fictitious
components both in the variational form and in the operator form.

ũk ∈ Ṽ : Λ(ũk − ũk−1, ṽ) = −τk−1(Λ1(ũ
k−1, I1ṽ) + ΛII(ũ

k−1, ṽ)−
− F1(I1ṽ)), ∀ṽ ∈ Ṽ , k ∈ N,

ũk ∈ Ṽ : Λ̃(ũk − ũk−1) = −τk−1(B̃ũ
k−1 − f̃), k ∈ N,

∀ũ0 ∈ Ṽ1, τ0 = 1, τk−1 = 2/(β̃1 + β̃2), k ∈ N \ {1} .

(7)

We consider the method of iterative extensions on a finite-dimensional subspace as a
development of the method of fictitious components. We consider an iterative process at
each step, for which we solve an extended problem with the introduced bilinear form, with
the operator generated by this bilinear form on a finite-dimensional and approximating
subspace.

C(ũ, ṽ) = Λ1(ũ, ṽ) + γΛII(ũ, ṽ), ∀ũ, ṽ ∈ V̆ , γ ∈ (0; +∞),

(C̃ũ, ṽ) = C(ũ, ṽ), ∀ũ, ṽ ∈ Ṽ .

The solution to such a problem belongs to the space of solutions to the extended
problem, to the extended space of solutions to the continued problem, as well as in the
finite-dimensional version.

ũk ∈ Ṽ : C(ũk − ũk−1, ṽ) = −τk−1(Λ1(ũ
k−1, I1ṽ) + ΛII(ũ

k−1, ṽ)−
− F1(I1ṽ)), ∀ṽ ∈ Ṽ , k ∈ N,

ũk ∈ Ṽ : C̃(ũk − ũk−1) = −τk−1(B̃ŭ
k−1 − f̃), k ∈ N,

ũ0 ∈ Ṽ1, γ > α, τ0 = 1, τk−1 = (r̃k−1, η̃k−1)/(η̃k−1, η̃k−1), k ∈ N \ {1} .

(8)

When calculating iteration parameters, we need to calculate the residuals, corrections,
and equivalent residuals, respectively.

r̃k−1 = B̃ũk−1 − f̃ , w̃k−1 = C̃−1r̃k−1, η̃k−1 = B̃w̃k−1, k ∈ N.

Now, we write the fulfilled assumptions about the continuation of functions in the
appropriate form.

∃δ̃1 ∈ (0,+∞), δ̃2 ∈ [δ̃1,+∞) : δ̃21(C̃ṽ2, C̃ṽ2) ≤ (Λ̃IIṽ2, Λ̃IIṽ2) ≤ δ̃22(C̃ṽ2, C̃ṽ2), ∀ṽ2 ∈ Ṽ2,

∃α̃ ∈ (0,+∞) : (Λ̃Iṽ2, Λ̃Iṽ2) ≤ α̃2(Λ̃IIṽ2, Λ̃IIṽ2) ∀ṽ2 ∈ Ṽ2,

where the considered operators are defined in the following way

C̃ = Λ̃I + γΛ̃II, (C̃ũ, ṽ) = C(ũ, ṽ), (Λ̃Iũ, ṽ) = Λ1(ũ, ṽ), (Λ̃IIũ, ṽ) = ΛII(ũ, ṽ), ∀ũ, ṽ ∈ Ṽ .

6. Matrix Form of Method of Iterative Extensions

Consider the matrix form of the continued problem. This system of equations is
obtained after approximating the continued problem on a finite-dimensional subspace.

ū ∈ RN : Bū = f̄ , f̄ ∈ RN . (9)
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We also assume that the operator of projection onto the solution space of the continued
problem sets to zero the coefficients of the basis functions, whose carriers do not completely
belong to the first domain. We obtain the matrix form of the continued problem by defining
the continued right-hand side of the system and the continued matrix of the system.

〈Bū, v̄〉 = Λ1(ũ, I1ṽ) + ΛII(ũ, ṽ), ∀ũ, ṽ ∈ Ṽ
〈

f̄ , v̄
〉

= F1(I1ṽ), ∀ṽ ∈ Ṽ ,
〈

f̄ , v̄
〉

= (f̄ , v̄)h1h2 = f̄ v̄h1h2, v̄ = (v1, v2, ..., vN) ∈ RN , N = mn.

For example, let us present the numbering of the grid nodes, the basis functions at
these nodes, the coefficients at these basis functions.

vn(i−1)+j = vi,j,Φn(i−1)+j = Φi,j(xi, yj), i = 1, m, j = 1, n,

ṽ =
m
∑

i=1

n
∑

j=1

vi,jΦ
i,j(x, y) =

N
∑

l=1

vlΦl.

First, we enumerate the basis functions, whose carriers belong completely to the first
domain. Then, we enumerate the basis functions, whose carriers cross the boundary of the
first and the second domains, together. We finish the numbering by the basis functions,
whose carriers belong completely to the second domain. With this numbering, the resulting
vectors have the following structure.

v̄ = (v̄
′

1, v̄
′

2, v̄
′

3)
′, ū = (ū

′

1, 0̄
′

, 0̄
′

)′, f̄ = (f̄
′

1, 0̄
′

, 0̄
′

)′.

We calculate the components of the vector from the right side, the elements of the
matrix for the previously specified system.

bij = h−1
1 h−1

2 (Λ1(Φi, I1Φj) + ΛII(Φi,Φj)), fi = h−1
1 h−1

2 F1(I1Φi), i, j = 1, N.

Now, consider the modified method of fictitious components in the matrix form.
The well-known method of fictitious components in the matrix form is obtained by
approximating the modified method of fictitious components in the variational form on a
finite-dimensional subspace with the previously indicated projection operator.

ūk ∈ RN : Λ(ūk − ūk−1) = −τk−1(Bū
k−1 − f̄), k ∈ N,

∀ū0 ∈ V̄1, τ0 = 1, τk−1 = 2/(β̃1 + β̃2), k ∈ N \ {1} . (10)

At each step of this iterative process, an extended problem is obtained in the matrix form
and with an extended matrix.

〈Λū, v̄〉 = Λ(ũ, ṽ), ∀ũ, ṽ ∈ Ṽ .

Find the elements of this matrix.

lij = h−1
1 h−1

2 Λ(Φi,Φj), i, j = 1, N.

The resulting matrices have the well-known structure, namely,
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Λ =





Λ11 Λ12 0
Λ21 Λ22 Λ23

0 Λ32 Λ33



 , B =





Λ11 Λ12 0
0 Λ12 Λ23

0 Λ32 Λ33



 .

We introduce a subspace of vectors.

V̄1 =
{

v̄ = (v̄
′

1, v̄
′

2, v̄
′

3)
′ ∈ RN : v̄2 = 0̄, v̄3 = 0̄

}

.

In addition, we define subspaces of vectors, as we previously introduced the
corresponding finite-dimensional subspaces.

V̄3 =
{

v̄ = (v̄
′

1, v̄
′

2, v̄
′

3)
′ ∈ RN : v̄1 = 0̄, v̄2 = 0̄

}

,

V̄2 =
{

v̄ = (v̄
′

1, v̄
′

2, v̄
′

3)
′ ∈ RN : A11v̄1 +A12v̄2 = 0̄,A23v̄2 +A33v̄3 = 0̄

}

,RN = V̄1 ⊕ V̄2 ⊕ V̄3.

In the method of fictitious components, the continued problem is usually solved in the
matrix form.

Bū = f̄ ,





Λ11 Λ12 0
0 Λ02 Λ23

0 Λ32 Λ33









ū1
0̄
0̄



 =





f̄1
0̄
0̄



 .

The solution to the continued problem in the matrix form contains the solution to the
original problem in the matrix form and the zero solution to the fictitious problem in the
matrix form.

Λ11ū1 = f̄1,

[

Λ02 Λ23

Λ32 Λ33

] [

ū2
ū3

]

=

[

0̄
0̄

]

,

[

ū2
ū3

]

=

[

0̄
0̄

]

.

We introduce norms without a matrix, with an extended matrix, and with a squared
extended matrix.

‖v̄‖ =
√

〈v̄, v̄〉, ‖v̄‖Λ =
√

〈Λv̄, v̄〉, ‖v̄‖Λ2 =
√

〈Λ2v̄, v̄〉, ∀v̄ ∈ RN .

Lemma 1. In method of fictitious components (10), the following estimate takes place:
∥

∥ū1 − ū
∥

∥

Λ2
≤ 2

∥

∥ū0 − ū
∥

∥

Λ2
.

Lemma 2. In method of fictitious components (10), the following inequality with a positive
value is satisfied:

∥

∥ū1 − ū
∥

∥

Λ
≤ d

∥

∥ū1 − ū
∥

∥

Λ2
,

where
d ≈ (λ21,1 + aII)

1/2λ−2
1,1, h1, h2 → 0, λ1,1 = π2(b−2

1 + b−2
2 )/4.

Theorem 1. In method of fictitious components (10), the absolute error is estimated as
follows:

∥

∥ūk − ū
∥

∥

Λ
≤ ε ‖ū0 − ū‖Λ2 = ε

∥

∥f̄ 0 − f̄
∥

∥ ,
ε = cqk−1, c = 2d ∈ (0,+∞), k ∈ N, f̄ 0 = Aū0, 0 ≤ q = (β2 − β1)/(β1 + β2) < 1,

d ≈ (λ21,1 + aII)
1/2λ−2

1,1, h1, h2 → 0, λ1,1 = π2(b−2
1 + b−2

2 )/4.
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The absolute error of the method of fictitious components has a rate of convergence in the
energy norm no worse than the rate of convergence of a geometric progression.

In the matrix form, the method of iterative extensions is a development of the method
of fictitious components in the matrix form. To solve problem (9), we use a new method.
Let us define the matrices used in what follows.

〈ΛIū, v̄〉 = Λ1(ũ, ṽ), 〈ΛIIū, v̄〉 = ΛII(ũ, ṽ), ∀ũ, ṽ ∈ Ṽ .

These matrices have the following structure:

ΛI =





Λ11 Λ12 0
Λ21 Λ20 0
0 0 0



 , ΛII =





0 0 0
0 Λ02 Λ23

0 Λ32 Λ33



 .

We apply the new definition of the extended matrix, using an additional positive
parameter.

C = ΛI+γΛII,





C11 C12 0
C21 C22 C23

0 C32 C33



 =





Λ11 Λ12 0
Λ21 Λ20 0
0 0 0



+γ





0 0 0
0 Λ02 Λ23

0 Λ32 Λ33



 , γ ∈ (0,+∞).

Let us write the assumptions for finite-dimensional subspaces on the continuation of
functions in the matrix form.

∃δ1 ∈ (0,+∞), δ2 ∈ [δ1,+∞) : δ21 〈Cv̄2, Cv̄2〉 ≤ 〈ΛIIv̄2,ΛIIv̄2〉 ≤ δ22 〈Cv̄2, Cv̄2〉 , ∀v̄2 ∈ V̄2,

∃α ∈ (0,+∞) : 〈ΛIv̄2,ΛIv̄2〉 ≤ α2 〈ΛIIv̄2,ΛIIv̄2〉 , ∀v̄2 ∈ V̄2.

Next, we use the last inequality.

〈Cv̄2, Cv̄2〉 = 〈ΛIv̄2,ΛIv̄2〉+ 2γ 〈ΛIv̄2,ΛIIv̄2〉+ γ2 〈ΛIIv̄2,ΛIIv̄2〉 ≤
≤ 2 〈ΛIv̄2,ΛIv̄2〉+ 2γ2 〈ΛIIv̄2,ΛIIv̄2〉 ≤ 2(α2 + γ2) 〈ΛIIv̄2,ΛIIv̄2〉 .

We obtain an estimate for the constant of the first inequality.

0, 5(α2 + γ2)−1 ≤ δ21 .

We assume the existence of an asymptotic equality.

〈Cv̄2, Cv̄2〉 ≈ 〈ΛIv̄2,ΛIv̄2〉+ γ2 〈ΛIIv̄2,ΛIIv̄2〉 , h1, h2 → 0.

We obtain asymptotic estimates of the constants of the first and second inequalities.

δ21 ≈ (α2 + γ2)−1, δ22 ≈ γ−2, h1, h2 → 0.

Now, to solve problem (9), we consider the method of iterative extensions as a
generalization of the method of fictitious components by introducing an additional
parameter for the extended matrix. The method of fictitious components is obtained with
a single value of this parameter from the method of iterative extensions, if the choice of
iterative parameters is not taken into account.

ūk ∈ RN : C(ūk − ūk−1) = −τk−1(Bū
k−1 − f̄), k ∈ N,

∀ū0 ∈ V̄1, γ > α, τ0 = 1, τk−1 =
〈

r̄k−1, η̄k−1
〉

/
〈

η̄k−1, η̄k−1
〉

, k ∈ N \ {1} . (11)
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When calculating iterative parameters, we need to calculate residuals, corrections,
equivalent residuals.

r̄k−1 = Būk−1 − f̄ , w̄k−1 = C−1r̄k−1, ηk−1 = Bw̄k−1, k ∈ N.

Lemma 3. In method of iterative extensions (11), the following estimate takes place.

∥

∥ū1 − ū
∥

∥

C2
≤ 2

∥

∥ū0 − ū
∥

∥

C2
.

Theorem 2. For method of iterative extensions (5), the following estimate takes place.

∥

∥ŭk − ŭ
∥

∥

C̆2
≤ ε

∥

∥ŭ0 − ŭ
∥

∥

C̆2
, ε = 2(δ̆2/δ̆1)(ᾰ/γ̆)

k−1, k ∈ N,

where the relative errors are estimated by an infinitely decreasing geometric progression in
the norm generated by the square of the operator of the extended problem

‖v̆‖C̆2 =

√

(C̆v̆, C̆v̆), ∀v̆ ∈ V̆ .

Proof. In the iterative process, errors and residuals satisfy equalities.

ψ̆k = ψ̆k−1 − τkC̆
−1Λ̆IIψ̆

k−1, r̆k = r̆k−1 − τkΛ̆IIC̆
−1r̆k−1, k ∈ N \ {1}.

Let us minimize residuals.

0 ≤
(

r̆k, r̆k
)

= τ 2k

(

ĂIIC̆
−1r̆k−1, ĂIIC̆

−1r̆k−1
)

− 2τk

(

ĂIIC̆
−1r̆k−1, r̆k−1

)

+
(

r̆k−1, r̆k−1
)

.

We determine the iterative parameters under the condition of minimizing the residuals.

τk−1 =

(

Λ̆IIC̆
−1r̆k−1, r̆k−1

)

(

Λ̆IIC̆−1r̆k−1, Λ̆IIC̆−1r̆k−1
) =

(

r̆k−1, η̆k−1
)

(η̆k−1, η̆k−1)
.

We get the equality

τk−1 =

(

Λ̆IIC̆
−1r̆k−1, r̆k−1

)

(

Λ̆IIC̆−1r̆k−1, Λ̆IIC̆−1r̆k−1
) =

(

Λ̆IIw̆
k−1, C̆w̆k−1

)

(

Λ̆IIw̆k−1, Λ̆IIw̆k−1
) .

Let us introduce the notation.

Λ̆Iw̆
k−1 = ă, Λ̆IIw̆

k−1 = b̆.

Note that the iteration parameters are positive.

τk =

(

b̆, ă+ γ̆b̆
)

(

b̆, b̆
) = γ̆ −

(

ă, b̆
)

(

b̆, b̆
) ≥ γ̆ −

(ă, ă)1/2
(

b̆, b̆
)1/2

(

b̆, b̆
) ≥ γ̆ − (ă, ă)1/2

(

b̆, b̆
)1/2

≥ γ̆ − ᾰ > 0.

We write out the inner products for the residuals with the obtained iterative parameters.
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(

r̆k, r̆k
)

=
(

r̆k−1, r̆k−1
)

−

(

Λ̆IIC̆
−1r̆k−1, r̆k−1

)2

(

Λ̆IIC̆−1r̆k−1, Λ̆IIC̆−1r̆k−1
) .

We determine the ratio of inner products of residuals during iterations.

q2k =

(

r̆k, r̆k
)

(r̆k−1, r̆k−1)
= 1−

(

Λ̆IIC̆
−1r̆k−1, r̆k−1

)2

(

Λ̆IIC̆−1r̆k−1, Λ̆IIC̆−1r̆k−1
)

(r̆k−1, r̆k−1)
=

=

(

Λ̆IIw̆
k−1, Λ̆IIw̆

k−1
)(

C̆w̆k−1, C̆w̆k−1
)

−
(

Λ̆IIw̆
k−1, C̆w̆k−1

)2

(

Λ̆IIw̆k−1, Λ̆IIw̆k−1
)(

C̆w̆k−1, C̆w̆k−1
) =

=

(

b̆, b̆
)(

ă + γ̆b̆, ă+ γ̆b̆
)

−
(

b̆, ă+ γ̆b̆
)2

(

b̆, b̆
)(

ă+ γ̆b̆, ă+ γ̆b̆
) .

We introduce the notation

(ă, ă) = a,
(

b̆, b̆
)

= b,
(

ă, b̆
)

= z,

then

q2k =
ab− z2

b(a + γ̆2b+ 2γ̆z)
≤ max

|z|≤
√
ab
q2k(z) = q2k

(−a
γ̆

)

=
a

γ̆2b
≤ ᾰ2

γ̆2
= q2.

Taken into account

q2k ≥ 0,
(

q2k(z)
)′

z
=

−2γ̆(z + a/γ̆)(z + γ̆b)

b(a+ γ̆2b+ 2γ̆z)2
, −γ̆b < a + γ̆2b

2γ̆
< −

√
ab < −a

γ̆
<

√
ab,

we get the inequalities.

(

Λ̆IIψ̆
k, Λ̆IIψ̆

k
)

≤ q2
(

Λ̆IIψ̆
k−1, Λ̆IIψ̆

k−1
)

, k ∈ N \ {1} ,
(

Λ̆IIψ̆
k, Λ̆IIψ̆

k
)

≤ q2(k−1)
(

Λ̆IIψ̆
1, Λ̆IIψ̆

1
)

, k ∈ N \ {1} .

Since
〈

C̆ψ̆k, C̆ψ̆k
〉

≤ δ̆−2
1

(

Λ̆IIψ̆
k, Λ̆IIψ̆

k
)

,
(

Λ̆IIψ̆
1, Λ̆IIψ̆

1
)

≤ δ̆22

(

C̆ψ̆1, C̆ψ̆1
)

≤ 4δ̆22

(

C̆ψ̆0, C̆ψ̆0
)

,

δ̆22

(

C̆ψ̆1, C̆ψ̆1
)

≤ 4δ̆22

(

C̆ψ̆0, C̆ψ̆0
)

.

We have an inequality that gives an estimate of convergence in the iterative process of the
method of iterative extensions. Additionally, we take into account the passage to the limit
in the following inequality.

(

C̆ψ̆1, C̆ψ̆1
)

≈
〈

Cψ̄1, Cψ̄1
〉

≤ 4
〈

Cψ̄0, Cψ̄0
〉

≈ 4
(

C̆ψ̆0, C̆ψ̆0
)

, h1, h2 → 0.
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Theorem 3. For method of iterative extensions considered in the case of a finite-
dimensional subspace (8), the following estimate of convergence holds:

∥

∥ũk − ũ
∥

∥

C̃2
≤ ε

∥

∥ũ0 − ũ
∥

∥

C̃2
, ε = 2(δ̃2/δ̃1)(α̃/γ̃)

k−1, k ∈ N,

where the relative errors are estimated by an infinitely decreasing geometric progression
in the norm generated by the square of the operator of the extended problem on a finite-
dimensional and approximating subspace

‖ṽ‖C̃2 =

√

(C̃ṽ, C̃ṽ), ∀ṽ ∈ Ṽ .

We assume that the properties are satisfied during the approximation.

(Λ̃Iṽ, Λ̃Iṽ) ≈ (Λ̆IIv̆, Λ̆IIv̆), (Λ̃IIṽ, Λ̃IIṽ) ≈ (Λ̆IIv̆, Λ̆IIv̆), h1, h2 → 0.

In this version, the previous theorem follows from the last theorem after passing to
the limit.

Theorem 4. There exists an estimate for the method of iterative extensions in matrix
form (11)

∥

∥ūk − ū
∥

∥

C2
≤ ε

∥

∥ū0 − ū
∥

∥

C2
, ε = 2(δ2/δ1)(α/γ)

k−1, k ∈ N,

where the relative errors are estimated by an infinitely decreasing geometric progression in
the norm generated by the square of the operator of the extended problem in the matrix
form

‖v̄‖C2 =
√

(Cv̄, Cv), ∀v̄ ∈ RN .

Remark 1. If we use the passage to the limit, then Theorem 2 follows from Theorems 3
and 4. We can say that Theorem 3 and Theorem 4 coincide practically up to their notation.
The proof of Theorem 4 is practically similar to the proof of Theorem 2 and does not use
the passage to the limit in the inequality, which is obtained at the first iteration.

7. Algorithmic Implementation of Method of Iterative Extensions

in Matrix Form

We choose a zero initial approximation and apply the method of minimum residuals
to select the iterative parameters.
I. Calculate square of the norm of the initial absolute error.

E0 =
〈

f̄ , f̄
〉

.

II. Find the first approximation
ū1 = C−1f̄ .

III. Calculate the residual

r̄k−1 = Būk−1 − f̄ = ΛIIū
k−1, k ∈ N \ {1} .

IV. Calculate square of the norm of the absolute error

Ek−1 =
〈

r̄k−1, r̄k−1
〉

, k ∈ N \ {1} .
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V. Find the correction
w̄k−1 = C−1r̄k−1, k ∈ N \ {1} .

VI. Calculate the equivalent residual

η̄k−1 = Bw̄k−1 = ΛIIw̄
k−1, k ∈ N \ {1} .

VII. Calculate the iterative parameter

τk−1 =
〈

r̄k−1, η̄k−1
〉

/
〈

η̄k−1, η̄k−1
〉

, k ∈ N \ {1} .
VIII. Calculate the next approximation

ūk = ūk−1 − τk−1w̄
k−1, k ∈ N \ {1} .

IX. Check the condition for stopping the iterations

Ek−1 ≤ E0E, k ∈ N \ {1} , E ∈ (0, 1).

If the condition for stopping iterations is not satisfied, all calculations are repeated from
Step III.

8. Example of Using Method of Iterative Extensions in Matrix

Form

Consider the problem for the following domains:

Π = (0, 8)× (0, b), Ω1 = (0, 8)× (0, 4), ΩII = (0, 8)× (4, b).

We assume that the domains have the boundaries

Γ0 = ∅, Γ1 = (0, 8)× {b} , Γ2 = (0, 8)× {0} ∪ {0, 8} × (0, b), Γ3 = ∅,
Γ1,0 = (0, 8)× {4} , Γ1,1 = ∅,Γ1,2 = (0, 8)× {0} ∪ {0, 8} × (0, 4), Γ1,3 = ∅,
ΓII,0 = ∅, ΓII,1 = (0, 8)× {b} , ΓII,2 = {0, 8} × (4, b), ΓII,3 = (0, 8)× {4} .

We take the right side with the coefficient of the equation.

f̆1(x, y) = 6, (x, y) ∈ (0, 8)× (0, 4), aII(x, y) = 1, (x, y) ∈ (0, 8)× (4, b).

We present a solution to the problem.

ŭ1(x, y) = (y + 4)2(y − 4)2/4, (x, y) ∈ (0, 8)× (0, 4).

When discretizing, we choose

h1 = h2 = 8/(n+ 2), b = 4(2n+ 1)/(n+ 2), n = 36, 42, . . . , 102.

When calculating, under the zero initial approximation by the method of iterative
extensions, under a single relative error, the iterative process stops at the sixth iteration,
if the estimate for the relative error is considered to be one ten thousandth.

n = 102, E = 0, 0001, u1i,j ≥ u2i,j ≈ u3i,j ≈ u4i,j ≈ u5i,j ≈ u6i,j ≈ ui,j ≥ u0i,j = 0, k = 6.

On the smallest of the grids used, at the last iteration, there exist estimates that
demonstrate the accuracy of the approximate solution for solving the original problem.

n = 102, E = 0, 0001, max
(xi,yj)∈Ω1

∣

∣uki,j − ui,j
∣

∣

|ui,j|
≤ 0, 004,

max
(xi,yj)∈Ω1

∣

∣uki,j − ui,j
∣

∣

max
(xi,yj)∈Ω1

|ui,j|
≤ 0, 00004, k = 6.
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АНАЛИЗ ЗАДАЧИ ДЛЯ БИГАРМОНИЧЕСКОГО

УРАВНЕНИЯ

А. Л. Ушаков

Для бигармонического уравнения рассматривается смешанная задача с главными

краевыми условиями. Делается продолжение исходной задачи по границе с условиями

Дирихле в прямоугольную область. Продолженная задача приводится как оператор-

ное уравнение. Метод итерационных расширений выписывается в операторной фор-

ме при решении продолженной задачи. Операторная продолженная задача приводит-

ся на конечномерном подпространстве. Метод итерационных расширений приводится

для решения операторной продолженной задачи на конечномерном подпространстве.

Продолженная задача после дискретизации записывается в матричной форме. Про-

долженная задача в матричной форме решается методом итерационных расширений

в матричной форме. Устанавливается, что в рассматриваемых случаях метод итера-

ционных расширений имеет относительные ошибки, сходящиеся как геометрическая

прогрессия в более сильной норме, чем энергетическая норма у расширенной задачи.

Итерационные параметры в применяемых итерационных процессах выбираются на ос-

нове минимизации невязок. Приводятся условия гарантирующие сходимости исполь-

зуемых итерационных процессов. Приводится алгоритм, реализующий в матричной

форме метод итерационных расширений. В алгоритме выполняется самостоятельный

выбор итерационных параметров и приводится критерий для остановки, если достиг-

нута оценка необходимой точности. Приводится вычислительный пример использова-

ния метода итерационных расширений на ЭВМ.

Ключевые слова: бигармоническое уравнение; метод итерационных расширений.
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