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ANALYSIS OF THE PROBLEM FOR THE BIHARMONIC
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For a biharmonic equation, we consider a mixed problem with the main boundary
conditions. We continue the original problem along the boundary with the Dirichlet
conditions into a rectangular domain. The continued problem is given as an operator
equation. The method of iterative extensions is written out in the operator form when
solving the continued problem. The operator continued problem is given on a finite-
dimensional subspace. The method of iterative extensions is given for solving the operator
continued problem on a finite-dimensional subspace. After discretization, the continued
problem is written in the matrix form. The continued problem in the matrix form is solved
by the method of iterative extensions in the matrix form. It is established that in the
cases under consideration the method of iterative extensions has relative errors converging
as a geometric progression in a norm stronger than the energy norm of the extended
problem. In the applied iterative processes, the iterative parameters are selected on the
basis of minimizing the residuals. We give conditions that guarantee the convergence of
the iterative processes used. Also, we present an algorithm that implements the method of
iterative extensions in the matrix form. The algorithm performs an independent selection
of iterative parameters and provides a criterion for stopping if an estimate of the required
accuracy is achieved. A computational example of using the method of iterative extensions
on a computer is given.
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Introduction

Let us consider a boundary problem under the obligatory presence of homogeneous
main boundary conditions for a biharmonic equation in a bounded flat domain. The main
problems in solving the problem under consideration are due to the complexity of the
geometry of the domain, the order of the equation, and the Dirichlet boundary conditions
[1-5]. We assume that the proposed methods must be computationally stable with respect
to rounding errors, be asymptotically optimal in terms of computational complexity, be
quite universal and have a simple implementation in computer calculations. To fulfill
these conditions in solving the original problem, we propose the method of iterative
extensions as a development of the fictitious component method [4-7]. Note that to solve
problems in a rectangular domain, which we obtain when solving the original problems,
we can, for example, use the well-known marching methods, which are optimal in terms
of computational complexity [8-10].

1. Boundary Problem

Suppose that there exists a first bounded domain. Select a second bounded domain.
we {1, 11}, Q, c R%

The intersection of the first and second domains is empty, and the union of the closures
of these domains is the closure of the rectangular domain.

QlﬂQH:@, QlLJQH:l:I.
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For all domains, the boundary is the closure of the union of four non-intersecting open
parts.
GHZE, S:F(]UFlUFQUFg, FZﬂF] :Q), Z#], i,j:O,1,2,3,

aQw = Swy Sw = Fw,O U Fw,l U Fw,? U Fw,37 Fw,i N Fw,j = ®7 i 7é Js 1,7 =0,1,2,3.

We assume that a non-empty intersection of the boundary of the first domain and the
boundary of the second domain is a closure of the intersection of the corresponding parts
of the boundaries of these domains.

aﬂlmaﬂnzg, S:Fmﬂfmg#(]).

All parts of the boundaries of the domains are obtained as the union of a finite number of
open non-intersecting arcs of smooth curves. The boundaries of the domains do not have
self-contacts and self-intersections. In the first domain, we consider a mixed problem for
the Sophie Germain equation. In the second domain, we present a mixed problem for the
screened homogeneous Sophie Germain equation. The original problem is set on the first
domain. On the second domain, a fictitious problem with a zero solution is given. Let us
present the problem to be solved and an additional fictitious problem.

AQizw +awaw - fwv a; = 07 arp Z 07 fII - 07

% __ ou _ 5 _ - _

g%} Two — 3_: TFwo — 07 U }FWJ - lluw ’Fw,l - 07 (1)
i, - o o o o o

37‘; ’Fw’g - l2uw Tw,2 07 lluw ’Fw,g - l2uw ’Fw,g - 07

where we use differential operators with derivatives with respect to normals and tangents
on the corresponding parts of the boundaries.

o o o 20 20
L, = Aty 4+ (1 — 04)n1N2 gy — N50wer — N7 Uy,

0A,,
lot, = a: Aty + (1 — Uw)%(nan(awyy — Upg) + (n% - n@awxy)a
ny = —cos(n,x), ng = —cos(n,y), o, € (0;1).

Let us rewrite the above problems in the variational form. This is a representation for
linear functionals as inner products on function spaces.

Uy € Hy o Ay(fty, 0) = Fu(8,), Vo, € H,. (2)

=0,.
Fw,OUFw,Q

(i) = (for80)s (Fonit) = / fbd,.

The solutions to such problems belong to the Sobolev space.

00,

H, = H,(Q) = {bw € Wy () : Olp, gur,, =05 5~

The right parts of these problems are linear functionals.

The left parts of these problems contain bilinear forms.

Aoy (i, B) = / (00Nl Aty + (1 — 0,,) (lpatiuyy + 2wy Tusy + Uoyyoyy) + GulinT)dD.

Qo
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We assume that bilinear forms define a norm equivalent to the norm of Sobolev spaces.
o2 U o2 y 5
der,e0 >0: ¢ vaHWZQ(Qw) < Ay(0,,0,) < e vaHWQQ(Qw) , Vo, € H,,.

These assumptions ensure the existence and uniqueness of solutions to each of these two
problems [1]. The solution to the fictitious problem will be zero.

2. Continued Problem

We present the formulation of the problem to be solved together with the fictitious
problem in the variational and operator form. We call this problem the continued problem.

@ eV At L0)+ Au(i,8) = Fi (L), Yo eV,

. . 3
i eV: Bi={, )

if we specify the right side and the operator in the continued problem in this way.

The solution to the continued problem belongs to the following extended space of solutions.

=0,.
ToUl'y

In the extended space of solutions, there exists a subspace that is the space of solutions to
the continued problem. This is the space of solutions to the original problem on the first
domain that is continued by zero on the second domain.

0v

v v, ~ 2 ¥ _
V=V = {v € Wy(I) : 9|, p, =0, o

‘71 = ‘U/l(H) = {bl S ‘72 171‘1—[\91 = O} .

In the continued problem, we use an operator that projects the extended space of solutions
to the continued problem onto the space of solutions to the continued problem.

L:VeWV, Vi=iml, I, =12
The extended space of solutions consists of the following subspaces.
‘73 = ‘u/g(H) = {173 € ‘7 : 173‘1—[\911 = O} s

% %

UV = Vh(IT) = {52 eV Aty 01) = 0, Wi € Vi, A(ths, 1) =0, Vs € vg,}

‘7:‘\71@‘\7117 XZI:‘\J/Q@‘U/B

We use the bilinear form as a sum of bilinear forms.

A(t, 0) = Ay (@, ) + Ay (i2, 0), Vi, v e V.
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We assume that the bilinear form defines an equivalent normalization of the Sobolev space
on the extended space.

er, e > 00 e |03z < AW,9) < e |85z YO € V.

Also, we assume that for the Sobolev spaces used, the continuation of functions takes place
under the same norm. Let us use this statement in the usual way.

351 e (0, 1], BQ € [Bla 1] : BlA(T)Qa?U)Q) < A (09, 02) < 32/\(?727?72)7 Vg € ‘72,
351 e (0, 1], BQ € [Bla 1] : Bl(]\b%@) < (I\II?U)QJV)Q) < 32(]\?727?72)7 Vg € ‘72,

where the considered operators are defined as follows:
A=Ay + Ay, (A, 0) = A, 8), (A, 0) = Ay (i, 0), (Apit, ) = An(i, ©), Vi, o e V.

Then the continued problem has a unique solution. For the continued problem, the solution
to the original problem on the first domain is extended by zero to the second domain, i.e.
to the rest of the rectangular domain. Note that the solution to the original problem and
the solution to the original problem under extension by zero are denoted in the same way
as the initial function and the continued function, respectively.

3. Operator Form of Method of Iterative Extensions

Consider the modified method of fictitious components as an iterative process, where
at each step an extended problem arises with a bilinear form of the continued problem
without a projection operator. The solution to such a problem belongs to the extending
of the solution space for the continued problem, i.e. to the solution space for the extended
problem.

eV A®F — 51 0) = —m_y (A (@1, 0) + A (a1, 0)—
— F(I1v)), V6 eV, keN,
“k ~ 1 - A(k _ yk—1 2y k—1 3 (4)
eV ANu" —a" )= —n_(Bu" - f), keN,
Vil eV, ro=1,7_1 = 2/(51 +Bz), ke N\{1}.

Let us formulate the method of iterative extensions as a development of the modified
method of fictitious components. We describe an iterative method, when at each step we
solve an extended problem with the following bilinear form, with an operator generated
by such a bilinear form.

O, B) = Ay (i, ) + Ay (i, 0), Yi,0 € V, 5 € (0;+00),
(Cit,0) = C(u,0), Vi, e V.

The solution to such a problem belongs to the space of solutions to the extended problem,
to the extended space of solutions to the continued problem.

<c

Ok — a1 0) = — g (A (@R L9) + Ap(aFt o) —
— Fi(L0)), Vo e V, k€N, )
ik eV Ok — bt = —m_ (BaF 1 - f), k€N,

vue‘/l,/\}‘/>067'0—17'k;1 (klvnk 1)/(7]k1Vk1) kGN\{l}

uk e
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To determine the iterative parameters, we calculate residuals, corrections, and
equivalent residuals.

fkfl — B,&k*l - f7 wkfl — Cily\ikilj 77]{71 — B,uv]kfl’ k c N.

We suppose that the assumptions for the continuation of functions, which we write in the
following form, take place.

351 c (O, +OO),52 c [51,+OO) . Sf(ébg,éfjg) S (/V\H?jg,/u\[ﬂ\jg) S 55(6%2,6%2), V?jg c %,

Jo c (O, +OO) : (/\/\11\}2,/\/\[1\}2) S 562(/\/\111\}2,/\/\[11\‘)2), V?jg c “‘/2,

if the introduced operators are defined in the following way.

4. Operator Form of Continued Problem on Finite-Dimensional
Subspace
Consider discretization of the continued problem with a specific type of boundary

conditions. Consider the introduced rectangular domain with parts of its boundary in the
rectangular coordinates

II = (O,bl) X (0, bg),ro = @,

Iy ={b1} x(0,b2) U(0,b1) x {ba},
Ty = {0} x (0,b2) U (0,b;) x {0},
Fg = @, bl,bg € (O, +OO)

Let us define a grid in a rectangular domain.

where hy = by/(m +0.5), ha = by/(n+0.5), i =1,m,j = 1,n, m,n € N. Introduce grid
functions on the set of nodes of the considered grid

/Ui,j = /U(x/“y]> E R’ 7, = 1’m’ j e 1’7’1/’ m’n e N
Complete the grid functions using the parabolic basis functions.

‘ Qb (z,y) = OHi(x)U>(y), i=1,m,j=1,n, m,n € N,
\If“(x) =[1/i]%(x/h1 —i+3)+ V(x/hy —i+2) — [i/m]¥(x/hy — 1),
W23(y) = [1/518(y/ha — j +3) + Wl s —  +2) — [i/n] (/s — 5).
0.52%, z € [0, 1],

—22+32—-15,2€1,2],
0.522 =32+ 4.5,z € [2,3],
0,z ¢ (0,3).

U(z) =

The basis functions are assumed to be equal to zero outside the considered rectangular
domain

(2, y) =0, (v,y) ¢ i =T,m,j=Tn, mneN,

2022, vol. 9, no. 1 47



A. L. Ushakov

In the solution space for the extended problem, linear combinations of basis functions form
a finite-dimensional subspace.

V= {i ivi,j@’j(x;y)} cV.
i=1 j=1

We present the continued problem on the introduced finite-dimensional subspace in
the variational and operator form

i€V MA@ D)+ An(, ) = Fi(L0), Vo eV, )
ueV: Bu=f,

if we define the right side and the operator in the continued problem in the following form.

(Bii, ) = A (@, [,0) + Au(@,9), Y, 0 €V, (f,0) = Fi(I1d), Yo € V.

A finite-dimensional space contains a finite-dimensional subspace for solutions to the
continued problem. This is a finite-dimensional subspace of solutions to the original
problem on the first domain, which is continued by zero on the complement to the
rectangular domain.

Vi = Vi(Il) = {@1 €V ilpg, = 0}.

We assume that the projection operator acts on the corresponding finite-dimensional
subspaces in the same way as before. In conclusion, we assume that, on the space of
solutions to the continued problem, the projection operator sets to zero the coefficients of
the basis functions whose carriers do not completely belong to the first domain.

L:Ve—=WV, Vi=imh, I, =12

We also define finite-dimensional subspaces corresponding to the previously introduced
subspaces.

Vs = V(1) = {@3 €V : sy = 0} ,

Uy = V() = {172 €V : A(Gs, 51) = 0,V € Vi, A(fn, B3) = 0, Viis € Vg} V= ViaThals.

We suppose that for finite-dimensional subspaces, the assumptions for the continuation
of functions in the same form are satisfied.

361 € (0,1], By € [B1,1] 1 BilM(Dg, D) < Ai(Da, By) < Bol\(Dy, ) Vg € Vi,

361 € (0,1], By € [B1, 1]+ B1(Ady, Ba) < (Anba, By) < Bo(Ady, ) Yy € Vi,

where the considered operators are defined in the following way.

A=A+ Ay, (A, ) = A, 0), (Avi, 9) = Ay(@,9), (A, ) = Ap(a,d) Ya, 5 € V.

48 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

5. Operator Form of Method of Iterative Extensions
on Finite-Dimensional Subspace

On a finite-dimensional subspace, we formulate the modified method of fictitious
components both in the variational form and in the operator form.

it eV A@F — @b 0) = —moy (A (@51, 19) 4 Ap(ab—t, 0)—

— F(L?), Vo €V, k€N,
eV ANk — @) = - (BaF ' — f), ke N,
Vil € Vi, 1o = 1,11 = 2/(B1 + B2), ke N\ {1}.

(7)

We consider the method of iterative extensions on a finite-dimensional subspace as a
development of the method of fictitious components. We consider an iterative process at
each step, for which we solve an extended problem with the introduced bilinear form, with
the operator generated by this bilinear form on a finite-dimensional and approximating
subspace.

C(,0) = Ay (@0, 9) + yAn(@, 0), Vi, o € V, v € (0; +00),

(Ciu,v) = C(a,0), Vi, v € V.
The solution to such a problem belongs to the space of solutions to the extended

problem, to the extended space of solutions to the continued problem, as well as in the
finite-dimensional version.

i eV C@@k — a1, 0) = =1y (A (@FY, 10) + Ap (@, 0)—

— F(I;9)),Yo € V,k €N,
eV :C@k - = —m_ (Bi* ' — f), keN,
W eVi,y>a,1=11_1=F1 /(G 5, ke N\ {1}.

(8)

When calculating iteration parameters, we need to calculate the residuals, corrections,
and equivalent residuals, respectively.

,’:k—l — B,ak‘—l . f’ /lI/k_l — O_lfk_l, ﬁk_l — Bwk_17 k c N.

Now, we write the fulfilled assumptions about the continuation of functions in the
appropriate form.

30, € (0,400), 03 € [0y, +00) 1 62(Cg, Cy) < (Apba, Anitn) < 62(Cy, Ca), Vi € Va,

E|O~é - (0, +OO) . (AI/&Q, /~\11~}2) S O~é2(/~\111~}2, /~\Hl~)2) V@Q € ‘72,

where the considered operators are defined in the following way

C = A+ A, (Cu,d) = C(a,9), (A, 9) = Ay (@0, 9), (Ana, ©) = Au(@,v), Vi, o € V.

6. Matrix Form of Method of Iterative Extensions

Consider the matrix form of the continued problem. This system of equations is
obtained after approximating the continued problem on a finite-dimensional subspace.

w e€RY: Bu=f, feR", (9)
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We also assume that the operator of projection onto the solution space of the continued
problem sets to zero the coefficients of the basis functions, whose carriers do not completely
belong to the first domain. We obtain the matrix form of the continued problem by defining
the continued right-hand side of the system and the continued matrix of the system.

(Ba, ) = Ay (@, D) + An(@, 0), Va, o € V
<f777> = Fl(-llﬁ)v Vo € ‘77
(f,0) = (f,0)hihy = fohihy, 0 = (v1, 0, ...,un) € RY, N =mn.

For example, let us present the numbering of the grid nodes, the basis functions at
these nodes, the coefficients at these basis functions.

Un(i—1)+5 = Vij, ch(ifl)Jrj = (bid(xia yj)a L= 17 m,j = 17”7

m n N

~ ,J _

U= E v; ;" (z,y) = E u®;.
i=1 j=1 =1

First, we enumerate the basis functions, whose carriers belong completely to the first
domain. Then, we enumerate the basis functions, whose carriers cross the boundary of the
first and the second domains, together. We finish the numbering by the basis functions,
whose carriers belong completely to the second domain. With this numbering, the resulting
vectors have the following structure.

’ ’ /

0= (0y, Ty, 3) 0 = (a,,0,0), f = (f;,0,0).

We calculate the components of the vector from the right side, the elements of the
matrix for the previously specified system.

bij = hi'hy "(A1(Ps, [1®5) + Au(®;, ®))), fi = hi'hy 'Fi(11®;), 4,5 =1,N.

Now, consider the modified method of fictitious components in the matrix form.
The well-known method of fictitious components in the matrix form is obtained by
approximating the modified method of fictitious components in the variational form on a
finite-dimensional subspace with the previously indicated projection operator.

ab € RN : A(@* —a*Y) = -1 (BaF ' — f), keN,
VQ_LO6‘71,7'0:1,7']971:2/(61"'62% kEN\{l}

At each step of this iterative process, an extended problem is obtained in the matrix form
and with an extended matrix.

(10)

Find the elements of this matrix.

lij = hi'hy ' A(®i, @), 4,5 =1, N,

The resulting matrices have the well-known structure, namely,
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All A12 O All A12 0
A= A21 A22 A23 ) B = 0 A12 A23
0 Agg A33 0 A32 A33

We introduce a subspace of vectors.

’ ’

V= {@: (Ty, Ty, Ty)' eRN:EQ:(),@g:O}.

In addition, we define subspaces of vectors, as we previously introduced the
corresponding finite-dimensional subspaces.

Vs = {o = (5,0, 5)' € RN 1 0y = 0,5 = 0}
Vy = {6 - (6176;762/3)/ € RNt Aty + Apay = 0, Ags + Agsl3 = G} RY=Vi@V,0 Vs

In the method of fictitious components, the continued problem is usually solved in the
matrix form.

B All A12 O 1}1 f:l
Ba = T, 0 A Ags | |0 | =10
0 Az Ass 0 0

The solution to the continued problem in the matrix form contains the solution to the
original problem in the matrix form and the zero solution to the fictitious problem in the

matrix form.
_ 7| Aoz A uy | [0 up | _ [0
=g [ an | = 1) [ ]=[5]

We introduce norms without a matrix, with an extended matrix, and with a squared
extended matrix.

HT)H =V <1_)777>7 H@HA =V <A1_)777>7 HEHA2 =V <A21_}777>7 VT) € RN'

Lemma 1. In method of fictitious components (10), the following estimate takes place:
|l =l < 2" —al .

Lemma 2. In method of fictitious components (10), the following inequality with a positive
value is satisfied:
_1 _ _1 _
e —al|, < d|ja" —al ..
where
d~ (A +an)?AL5, by he — 0, Mg = w2 (b7 + by %) /4.

Theorem 1. In method of fictitious components (10), the absolute error is estimated as
follows:

[a* —al|, <ella’ —ally. =</~ F],
g = quil, C = 2d -~ (O,+OO), k’ e N, fO = Al_LO, O S q = (62 —61)/(61 —f-ﬁg) < 1,
dm (M +an)2A\5, b ho — 0, Ay = m2(bp 2 + b37) /4.
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The absolute error of the method of fictitious components has a rate of convergence in the
energy norm no worse than the rate of convergence of a geometric progression.

In the matrix form, the method of iterative extensions is a development of the method
of fictitious components in the matrix form. To solve problem (9), we use a new method.
Let us define the matrices used in what follows.

(Arii, ) = A (@, ), (Apa, 0) = Au(@,0), Vi, o e V.

These matrices have the following structure:

Ain A O 0 0 0
A= Aoy Ay O, Ap=1|0 Ap Ay
0 0 0 0 Az Ass

We apply the new definition of the extended matrix, using an additional positive
parameter.

Cll 012 0 A11 A12 0 0 0 0
C=MAN+7An, | Cop Co Cos | = Aax Ay O |+ ] 0 Ape Ass |, 7€ (0,400).
0 Cs Cs 0 0 0 0 Asy Ass

Let us write the assumptions for finite-dimensional subspaces on the continuation of
functions in the matrix form.

351 € (0, +OO),52 € [51, +OO) : 5% <C’172,C’172> S <AH?_)2,AH’172> S 53 <C?_)2, C/(_)2> , V’Ug € ‘_/2,
ElOé - (0, +OO) : <A1172, Aﬂjg) S 0[2 <AH?72, AHl_)2> s VT)Q - ‘72
Next, we use the last inequality.
(Cvg, Clg) = (A1Da, A1) + 27 (A10a, Artia) + ¥* (An1va, Aptn) <
< 2 (A10g, A1Da) + 29% (Ao, Ana) < 2(a? + 42) (Anrva, Arrva) .

We obtain an estimate for the constant of the first inequality.

0,5(c® +~%) 7" <87

We assume the existence of an asymptotic equality.

(Cvg, CUg) =~ (A1g, A1D2) + 72 (An1v2, Anvs) , hy,hg — 0.

We obtain asymptotic estimates of the constants of the first and second inequalities.
(5% ~ (0[2 + 72)_1,53 =~ 7_2, hl, hg — 0.

Now, to solve problem (9), we consider the method of iterative extensions as a
generalization of the method of fictitious components by introducing an additional
parameter for the extended matrix. The method of fictitious components is obtained with
a single value of this parameter from the method of iterative extensions, if the choice of
iterative parameters is not taken into account.

e RN : C(uF — b ') = —m (BuF ' = f), keN, (1)
Vi € Vi,y > a, 19 =11y = (PR S (g gt ke N\ {1}
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When calculating iterative parameters, we need to calculate residuals, corrections,
equivalent residuals.

“l_ BgEl @bl = ¢kl phel = Bkl ke N,

Lemma 3. In method of iterative extensions (11), the following estimate takes place.
la" —allc. < 2]j@° -] . -

Theorem 2. For method of iterative extensions (5), the following estimate takes place.

2(02/01)(/%)F7!, k€N,

a’fv

where the relative errors are estimated by an infinitely decreasing geometric progression in
the norm generated by the square of the operator of the extended problem

Y]

0]l 2 = \/ (CB, C¥), Vo € V.
Proof. In the iterative process, errors and residuals satisfy equalities.
PF = F T — O A = T - ApC T R e N\ {1}
Let us minimize residuals.
0< (7%, 7) = 7 (AnC1# =1 AnCtit 1) — om (A=t i) 4 (71, 741).
We determine the iterative parameters under the condition of minimizing the residuals.

(AHC Lkl ek 1) (91, 1)
Te—1 = 7o o (7F=L, k1)
<AHC k=1 R Ok 1) nk=1, 1

We get the equality

<AHC_17*’“_1, 7%—1) <AHwkz—1’ kazq)
Tg—1 = =

<A110717\4k717/\110717\4k71> <Anwk71,/\nwk*1>

Let us introduce the notation.

<7)d ib) ] (a,i)) ] (a,a)”(é,i)
ey (o )"

We write out the inner products for the residuals with the obtained iterative parameters.

T =
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VR 2
<AHC*17%71, ;,kfl)
vk—1 vk—1

i) = (PR — — :
( ) ( ) <AHC—17*’“—1,AHC—17*’“—1)

We determine the ratio of inner products of residuals during iterations.

VY 2
ok vk A Cflfkfl ykfl
(7" , T ) - < 11 )

2
A = 79001 w1y v v v v
(Tk 177'k 1) <AHO_1¥'I€_1,AHC_1%I€_1) (f’k_ly%k_l)

We introduce the notation

then ; ) »
= v — < max z) = — | =< =5=q.
= a3+ 272) |z|gmq’“( ) =i ( ¥ ) 2 =5 1

Taken into account
/ —25 o’ b 52D
S ek [ e ) N L PN L
Y

2 2
% 2 0, (k(2)). bla+ 72b+252)2 25

we get the inequalities.

(A, ) < ¢ (R ") L ke N {1},

</V\Hl/u)k7 /V\qu)k) < g*+ D </v\111/u)17 /V\mﬁl) , ke N\ {1}.

) > < o2 (f\n&’“,ﬂn&’“) ; (AH&Ia]\Iﬂzl> < 62 (5‘121,5“@51) < 467 (5‘120,5“150) ;

B (Can e < a (G0, ¢,
We have an inequality that gives an estimate of convergence in the iterative process of the
method of iterative extensions. Additionally, we take into account the passage to the limit

in the following inequality.
(G0, oY) m (COH, Oty < 4(CR0, €Y m 4 (G0, i), sy = 0.
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Theorem 3. For method of iterative extensions considered in the case of a finite-
dimensional subspace (8), the following estimate of convergence holds:

[ = il < £ @ = 1] a2 = 262/30)(G/5), k€N,

where the relative errors are estimated by an infinitely decreasing geometric progression
i the norm generated by the square of the operator of the extended problem on a finite-
dimensional and approrimating subspace

9]l g= = 1/ (Co,Co), Yo € V.
We assume that the properties are satisfied during the approximation.
(A, A1) ~ (Ayd, Apd), (Aud, And) ~ (A, Aud),  hy, hy — 0.
In this version, the previous theorem follows from the last theorem after passing to

the limit.

Theorem 4. There exists an estimate for the method of iterative extensions in matriz
form (11)
|@* — || . <e|l@’ =i, e =2(6:/01)(a/1)"", keN,

where the relative errors are estimated by an infinitely decreasing geometric progression in
the norm generated by the square of the operator of the extended problem in the matrix

form
9]l 2 = +/(Co, Cv), Vo € RN,

Remark 1. If we use the passage to the limit, then Theorem 2 follows from Theorems 3
and 4. We can say that Theorem 3 and Theorem 4 coincide practically up to their notation.
The proof of Theorem 4 is practically similar to the proof of Theorem 2 and does not use
the passage to the limit in the inequality, which is obtained at the first iteration.

7. Algorithmic Implementation of Method of Iterative Extensions
in Matrix Form

We choose a zero initial approximation and apply the method of minimum residuals
to select the iterative parameters.
I. Calculate square of the norm of the initial absolute error.

Eo = <f7 f> .
I1. Find the first approximation
@ =Cf.
ITI. Calculate the residual
Pt = Bat Tt — f = Apa*T!, ke N\ {1}.

IV. Calculate square of the norm of the absolute error

Epq = (7L 7, ke N\ {1}.
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V. Find the correction
"t =C7 ke N\ {1}.

VI. Calculate the equivalent residual

7! = B = Agw*T!, ke N\ {1}.
VII. Calculate the iterative parameter

ey = <7;k—1’77k:—1> / <77k:—1’77k—1>’ ke N\ {1}.

VIII. Calculate the next approximation
L™ ke N\ {1},
IX. Check the condition for stopping the iterations

Er1 <EE, ke N\ {1}, E€(0,1).

i =

If the condition for stopping iterations is not satisfied, all calculations are repeated from
Step III.

8. Example of Using Method of Iterative Extensions in Matrix
Form

Consider the problem for the following domains:
IT=(0,8) x (0,b), & =(0,8) x (0,4), Qi = (0,8) x (4,b).
We assume that the domains have the boundaries
F0 = ®7 F1 = (078> X {b}a FQ = (078) X {O}U{O,8} X (07b>7 F3 = ®7
FLO = (0, 8) X {4}, Fl,l = @,FLQ = (0, 8) X {0} U {0, 8} X (0,4), Fl,g = @,
Tio =0, Ty = (0,8) x {b}, Tz = {0,8} x (4,b), T’z = (0,8) x {4}.

We take the right side with the coefficient of the equation.
filz,y) =6, (z,9) € (0,8) x (0,4), an(z,y) =1, (z,y) € (0,8) x (4,b).
We present a solution to the problem.
i(z,y) = (y+4)°(y —4)*/4, (z.y) € (0,8) x (0,4).
When discretizing, we choose
hi =hy =8/(n+2), b=42n+1)/(n+2), n =36,42,...,102.

When calculating, under the zero initial approximation by the method of iterative
extensions, under a single relative error, the iterative process stops at the sixth iteration,
if the estimate for the relative error is considered to be one ten thousandth.

n =102, E=0,0001,u}; >u}, ~ul; mu}; ~u); ~uf; ~uy >, =0, k=6.

On the smallest of the grids used, at the last iteration, there exist estimates that
demonstrate the accuracy of the approximate solution for solving the original problem.

uf, — ol 115 ™ 1
n =102, E=0,0001, max —2 "1 <0 004, —2 < 0,00004, k = 6.
(@im)ed |l max - |u
(4,y5)€
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AHAJING 3AJAYN IJIA BUTAPMOHNYECKOI'O
YPABHEHUA

A. JI. Ywaxos

JlJ1st GUrapMOHMYECKOT0 YPaBHEHHUsI PACCMATPUBAETCsT CMEIIaHHAS 3312493 C TJIABHBIMA
KpPaeBbIMU yCJIOBUsAMHE. /leaeTcs mpo1o/KeHue NCXOTHOM 3a/1a9H 110 TPAHUIIE C YCIOBUIMUI
upuxje B npsiMOyrojibHY0 00j1acThb. [IpogosrkenHast 3a/1a4a IPUBOIUTCS KaK OIIepaTop-
Hoe ypasHenue. MeTom UTE€PAIMOHHBIX PACIINPEHUI BBIIUCHIBAETCH B OMEPATOPHOI (hop-
Me TIPU PelIeHnn TPOJIOIKEeHHO 3a1aun. OnepaTopHast MPOIOJIZKEHHAS 381298 TTPUBOIT-
¢ Ha KOHEYHOMEPHOM IOAIIPOcTpaHcTBe. MeTom nTeparuonHbIX PACIIHPEHN TPUBOIUTCS
JJIsl pellieHnsl OepaTOPHOI IPOJOJIKEHHON 381849l Ha KOHEYHOMEDPHOM IIOIIPOCTPAHCTBE.
[TponosrkenHast 3a7a49a 1Mocjie JUCKPETU3alNN 3allicbiBaeTcs B MaTpudHoii ¢popme. [Ipo-
JIOJKEHHAs 33/1a9a B MATPUIHON (bOpPME PEIraeTcs METOIOM UTEPAIMOHHBIX PACITHPEHUI
B MaTpUYHON (opMe. YCTAaHABIMBAETCS, 9YTO B PACCMATPUBAEMBIX CJIyYasdX METOJ[ UTepa-
[IMOHHBIX PACIIHPEHUII UMEET OTHOCUTEJIbHBIE ONINOKM, CXONANINECH KAK MeOMEeTPUIECKAS
nporpeccusi B 0ojiee CHJILHON HOpMe, YeM dHepreTUdecKas HOpMa y PACIIUPEHHON 33 1atu.
WrepanuonHble mapaMeTphl B IPUMEHSIEMbIX HTEPAIMOHHBIX [IPOIECCAX BHIOUPAIOTCS HA OC-
HOBE MUHUMU3AIMN HEBA30K. [IpuBOISATCS yCI0BUS rapaHTUPYIONIAE CXOJIUMOCTHU UCIIOJb-
3yeMbIX UTEPAIMOHHBIX IPOIeccoB. lIpuBoauTcs aaropurM, peasn3yionuil B MaTPUIHON
dopmMe MeTOM UTEPAIMOHHBIX PACIIUPEHHI. B ajropurmMe BBITOTHSIETCH CAMOCTOATEIbHBIN
BBIOOpP UTEPAIMOHHBIX [TaPAMETPOB U IIPUBOIUTCS KPUTEPUN JJIsi OCTAHOBKH, €CJIU JIOCTHUT-
HyTa OIEHKa HeOOXOAMMO# TOUHOCTHU. [IpUBOAUTCS BBIMUCIUTENBHBIN IPUMEDP UCIIOJIH30Ba-
HUsI METOJIa UTEPAIMOHHBIX paciupennii Ha DBM.

Karouesvie ca08a: 6u2apmonuveckoe ypashenue; Memod umepayuontolir paciuuperud.
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