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A METHOD FOR SHOCK CALCULATION

V. F. Kuropatenko1, v.f.kuropatenko@rambler.ru,
M. N. Yakimova1, yakimovamn@yandex.ru.
1Russian Federal Nuclear Center E. I. Zababakhin All-Russian Scientific Research

Institute of Technical Physics, Snezhinsk, Russian Federation.

The mass, momentum and energy conservation laws allow shock and rarefaction waves

to be present in the solution of continuum mechanics problems. When these problems are

solved with homogeneous difference techniques, the strong shock surface is represented by a

layer of a finite width within which the quantities vary continuously from a state before the

shock front to a state behind it. These states are related by the strong shock conditions. Since

they lie on the Hugoniot, there must exist a mechanism which maintains energy dissipation

in the shock layer. One of these mechanisms is a method by Kuropatenko which uses

the difference equations applicable for strong shocks. The method can be implemented in

different difference schemes. The paper presents one of them, describes its basic properties,

and provides results of some calculations.
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Introduction

In 1D, the laws of mass, momentum and energy conservation for ideal continuum with
no heat conduction in Lagrangian coordinates for the case of plane symmetry read as

∂V

∂t
−

∂U

∂M
= 0, (1)

∂U

∂t
+

∂P

∂M
= 0, (2)

∂ε

∂t
+

∂(PU)

∂M
= 0, (3)

where t is time, M is mass coordinate, U is material velocity, V is specific volume, P is
pressure, ε = E + 0.5U2 is specific total energy, and E is specific internal energy.

The system of equations (1)–(3) is closed by the equation of state

P = F (V,E) (4)

and the equation of trajectory for a particle with coordinate M
(

∂x

∂t

)

M

− U = 0, (5)

where x is the Eulerian coordinate of the particle.
Since equations (1)–(3) are not linear, they allow strong and weak discontinuities to

be present in continuum mechanics problems. Material states before and behind the shock
front are related by the system of non-linear algebraic equations (Hugoniot conditions)

P1 − P0 −W (U1 − U0) = 0, (6)

U1 − U0 +W (V1 − V0) = 0, (7)

(E1 + 0.5U2

1 − E0 − 0.5U2

0 )W − (P1U1 − P0U0) = 0. (8)
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Here W is strong shock velocity, and the subscript 0 corresponds to the state before the
front and the subscript 1 corresponds to the state behind the front. Entropy jumps on the
strong shock surface. This is the key difference between the shock waves and the waves
where the quantities vary continuously.

When homogeneous difference methods are used for hydrodynamics, the strong shock
surface is represented by a layer of a finite width [1, 2]. The strong shock smears [3]. In the
layer, the quantities continuously vary from a state before the shock front to a state behind
it. Since entropy jumps across the shock, there arises the question about the mechanism of
energy dissipation in the shock layer. In the literature we can find four basically different
mechanisms of energy dissipation [4, 7]. Consider a difference scheme based on the method
proposed in [7].

1. Basic equations

The difference equations are written for a staggered mesh (Fig. 1). Velocities and
coordinates are updated on the boundaries of intervals and the thermodynamic quantities
are updated in their centers.

Fig. 1. Staggered mesh

All intervals are divided into those where material is compressed (Un
i −Un

i−1 < 0) and
those where material expands (Un

i −Un
i−1 > 0). For the intervals of the first type, equations

(1)–(5) are approximated by the difference equations

xn+1

i = xn
i + τUn

i , V
n+1

i−0.5 =
xn+1

i − xn+1

i−1

∆Mn
i−0.5

(9)

Un+1

i = Un
i −

2τ

∆Mn
i+0.5 +∆Mn

i−0.5

(P
n

i+0.5 − P
n

i−0.5), (10)

εn+1

i−0.5 = En
i−0.5 + 0.5(U∗n

i−0.5)
2 −

τ

∆Mn
i−0.5

(P ∗

i U
n
i − P ∗

i−1U
n
i−1), (11)

P n+1

i−0.5 = F (V n+1

i−0.5, E
n+1

i−0.5), (12)

where ∆Mn
i−0.5 = Mn

i −Mn
i−1.

In equations (9)–(12) we use the auxiliary quantities P
n
, P ∗ and U∗. The quantity

P
n

is derived from Hugoniot conditions (6)–(8) and ∆Unwhich is known. The method to
derive P ∗ ad U∗ will be described below.
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For the intervals of the second type, the difference equations are written as

xn+1

i = xn
i + τUn

i , V
n+1

i−0.5 =
xn+1

i − xn+1

i−1

∆Mn
i−0.5

(13)

Un+1

i = Un
i −

2τ

∆Mn
i+0.5 +∆Mn

i−0.5

(P
n

i+0.5 − P
n

i−0.5), (14)

En+1

i−0.5 = En
i−0.5 −

V n+1
∫

V n

Pi−0.5(Vi−0.5, Ei−0.5)dV, (15)

P n+1

i−0.5 = F (V n+1

i−0.5, E
n+1

i−0.5), (16)

where P
n

i−0.5 = P n
i−0.5 − ani−0.5κi−0.5(U

n
i − Un

i−1), ani−0.5 = ρni−0.5c
n
i−0.5, c =

√

√

√

√

(

∂P

∂ρ

)

S

is

adiabatic sound velocity, and κi−0.5 =
τani−0.5

∆Mn
i−0.5

is local Courant number. Internal energy

at step n+1 is calculated by integrating (15) and (16) along the isentrope which ensures
any predefined accuracy in the determination of entropy.

2. Determination of auxiliary quantities

The quantities P ∗ and U∗ are defined on the following mesh (Fig. 2).

Fig. 2. Mesh for auxiliary functions

The values of P ∗

i are defined by solutions in the intervals on the right and left from
point i in accord with Table 1.

The quantity U∗n
i−0.5 for the intervals of the first type is defined with respect to the

shock direction.
If P n

i+0.5 < P n
i−1.5, the wave moves right W n

i−0.5 > 0 and U∗n
i−0.5 = Un

i .
If P n

i+0.5 > P n
i−1.5, the wave moves left W n

i−0.5 < 0 and U∗n
i−0.5 = Un

i−1.
In the intervals of the second type W n

i−0.5 = 0 and U∗n
i−0.5 is calculated as the half-sum

of boundary velocities: U∗n
i−0.5 = 0.5(Un

i−1 + Un
i ).
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Table 1

The values of P ∗

i

N
Interval i− 0.5

ωL = W n
i−0.5(U

n
i − Un

i−1)
Interval i+ 0.5

ωR = W n
i+0.5(U

n
i+1 − Un

i )
P ∗

i

1 ωL = 0 ωR = 0 P ∗

i = 0.5
(

P
n

i−0.5 + P
n

i+0.5

)

2 ωL = 0 ωR < 0 P ∗

i = 0.5
(

P
n

i−0.5 + P n
i+0.5

)

3 ωL = 0 ωR > 0 P ∗

i = P
n

i+0.5

4 ωL > 0 ωR = 0 P ∗

i = 0.5
(

P n
i−0.5 + P

n

i+0.5

)

5 ωL > 0 ωR < 0 P ∗

i = 0.5
(

P n
i−0.5 + P n

i+0.5

)

6 ωL > 0 ωR > 0 P ∗

i = P
n

i+0.5

7 ωL < 0 ωR = 0 P ∗

i = P
n

i−0.5

8 ωL < 0 ωR < 0 P ∗

i = P
n

i−0.5

9 ωL < 0 ωR > 0 P ∗

i = 0.5
(

P
n

i−0.5 + P
n

i+0.5

)

The quantity U∗n+1

i−0.5 which is needed for the determination of internal energy
En+1

i−0.5 = εn+1

i−0.5 − 0.5(U∗n+1

i−0.5 )
2, is calculated from the equation

U∗n+1

i−0.5 = U∗n
i−0.5 −

τ

∆Mi−0.5

(P ∗

i − P ∗

i−1).

3. Basic properties of the difference scheme

3.1. Approximation errors

According to [8], the differential conservation laws are written as

∂x

∂t
− U = ω4,

∂x

∂M
− V = ω5,

∂U

∂t
+

∂P

∂M
= ω2,

∂ε

∂t
+

∂(PU)

∂M
= ω3,

where the approximation errors ω4, ω5, ω2 and ω3 for an acoustically approximated shock
(W = a) are as follows

ω4 = −
τ

2
U̇ +

τ 2

12
Ü + o(τ 3), ω5 = −V ′′

h2

24
+ o(h3),

ω2 = −
τ

2
Ü −

τ 2

6

...
U + ahU ′′ −

h2

24
P ′′′ + o(τ 3, h3),

ω3 = −
τ

2
ε̈−

τ 2

6

...
ε − h(

1

2
P ′U ′ +

1

2
P ′′U − a(U ′)2 − aUU ′′) + o(τ 3, h2).
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For the rarefaction wave, they are

ω4 = −
τ

2
U̇ +

τ 2

12
Ü + o(τ 3), ω5 = −V ′′

h2

24
+ o(h3),

ω2 = −τ(
Ü

2
− a2U ′′)−

τ 2

6

...
U −

h2

24
P ′′′ + o(τ 3, h3).

The entropy production equation for rarefaction is T

(

∂S

∂t

)

M

= 0.

Thus the approximation errors are first order infinitesimals in τ and ∆M on the shock
wave, and first order infinitesimal in time and second order infinitesimal in the Lagrangian
coordinate on the rarefaction wave.

3.2. Stability condition

Theorem 1. The difference scheme under consideration is conditionally stable.

Proof.

We use harmonics. For finding the stability condition, we write the difference scheme
in the acoustic case

Un+1

i − Un
i

τ
+

P
n

i+0.5 − P
n

i−0.5

h
= 0;

P n+1

i+0.5 − P n
i+0.5

τ
+ a2

Un
i+1 − Un

i

h
= 0. (17)

Substituting

δP n
i+0.5 = δP0e

αtn+iβmi+0.5 , δUn
i = δU0e

αtn+iβmi , eατ = λ, eiβ
h

2 = ξ

yields

U0(λ− 1−
τa

h
(ξ2 − 2 + ξ−2)) +

τ

h
P0(ξ − ξ−1) = 0,

τa2

h
U0(ξ − ξ−1) + P0(λ− 1) = 0.

The determinant of this system is

(λ− 1)2 − κ(λ− 1)(ξ2 − 2 + ξ−2)− κ
2(ξ2 − 2 + ξ−2) = 0,

where κ =
τa

h
. We solve this equation and obtain that |λ| 6 1 at

τa

h
6 1.

✷

3.3. Monotony condition

Let a shock move to the right from point i (W > 0). On the shock, equations (17)
take the form

Un+1

i+0.5 = Un
i+0.5 −

τ

∆Mi+0.5

(P ∗

i+1 − P ∗

i ), P
n+1

i+0.5 = P n
i+0.5 −

τa2

h
(Un

i+1 − Un
i ). (18)
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Velocity in interval (i + 0.5) is constant and equal to Un
i+1. All quantities in

interval (i + 0.5) are before the shock front. With P ∗

i = P n
i+0.5 − W n

i+0.5(U
n
i+1 − Un

i ) and
P ∗

i+1 = P n
i+1.5 −W n

i+1.5(U
n
i+2 − Un

i+1) equation (18) takes the form

Un+1

i+0.5 = Un
i+0.5 −

τ

h

(

(P n
i+1.5 − P n

i+0.5)− a(Un
i+1.5 − 2Un

i+0.5 + Un
i−0.5)

)

, (19)

P n+1

i+0.5 = P n
i+0.5 −

τa2

h
(Un

i+0.5 − Un
i−0.5). (20)

With the Riemann invariants α = P + aU, β = P − aU , we convert (19)–(20) to

αn+1

i+0.5 − βn+1

i+0.5 = αn
i+0.5 − βn

i+0.5 − κ(αn
i+1.5 + βn

i+1.5 − αn
i+0.5 − βn

i+0.5)+

+ κ(αn
i+1.5 − βn

i+1.5 − 2(αn
i+0.5 − βn

i+0.5) + αn
i−0.5 − βn

i−0.5),

αn+1

i+0.5 + βn+1

i+0.5 = αn
i+0.5 + βn

i+0.5 − κ(αn
i+0.5 − βn

i+0.5 − αn
i−0.5 + βn

i−0.5).

Summing these equation gives

2αn+1

i+0.5 = 2(1− κ)αn
i+0.5 + 2καn

i−0.5 + 4κβn
i+0.5 − 2κβn

i+1.5 − 2κβn
i−0.5.

Taking into account that for a right moving wave, β = const, we obtain

αn+1

i+0.5 = (1− κ)αn
i+0.5 + καn

i−0.5. (21)

By Godunov’s theorem, a scheme is monotone if coefficients in (21) are non-negative.
This is true at κ 6 1.

Do similar manipulations for rarefaction. In this case, equations (17) with
P

n

i−0.5 = P n
i−0.5 − ani−0.5κ(U

n
i − Un

i−1) take the form

Un+1

i = Un
i −

τ

h
(P n

i+0.5 − P n
i−0.5) + κ

2(Un
i+1 − 2Un

i + Un
i−1), (22)

P n+1

i+0.5 = P n
i+0.5 − aκ(Un

i+1 − Un
i ). (23)

Substituting yields

αn+1

i −βn+1

i = αn
i −βn

i −κ(αn
i+0.5+βn

i+0.5−αn
i−0.5−βn

i−0.5)+κ
2(αn

i+1−βn
i+1−2(αn

i −βn
i )+αn

i−1−βn
i−1),

αn+1

i+0.5 + βn+1

i+0.5 = αn
i+0.5 + βn

i+0.5 − κ(αn
i+1 − βn

i+1 − αn
i + βn

i ).

Summing with account for β = const gives

αn+1

i = 0.5κ2αn
i+1 − καn

i+0.5 + (1− κ
2)αn

i + καn
i−0.5 + 0.5κ2αn

i−1.

One of the coefficients is negative and therefore the scheme is non-monotone on
rarefaction waves.
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4. Generalization to spherical and cylindrical cases

In 1D, hydrodynamic equations for ideal medium read as

(

∂r

∂t

)

M

= U, V =
∂rα

∂M
, (24)

∂U

∂t
+ αrα−1

∂P

∂M
= 0, (25)

∂ε

∂t
+

∂(αrα−1UP )

∂M
= 0, (26)

where α is dimensionality (α = 1 for plane, α = 2 for cylinder, and α = 3 for sphere), and
the Lagrangian coordinate M reads as

M =

r
∫

0

ρrα−1dr.

Equations (24)–(26) in finite differences are written as

rn+1

i = rni + τUn
i , V

n+1

i−0.5 =
(rn+1

i )α − (rn+1

i−1
)α

∆Mn
i−0.5

,

Un+1

i = Un
i − α(rni )

α−1
τ

Mn
i+ +∆Mn

i−

(P n
i+0.5 − P n

i−0.5),

εn+1

i−0.5 = En
i−0.5 + 0.5(U∗n

i−0.5)
2 − α

τ

∆Mn
i−0.5

(

(rni )
α−1P ∗

i U
n
i − (rni−1)

α−1P ∗

i−1U
n
i−1

)

,

where Mn
i− = ρni−0.5

(

(rni )
α − (rni−0.5)

α
)

is the mass of a half of interval i and
Mn

i+ = ρni+0.5

(

(rni+0.5)
α − (rni )

α
)

is the mass of a half of interval i+1 (see Fig. 3). For plane
with α = 1, these masses equal the halves of the masses of the intervals.

Fig. 3. Mesh

The auxiliary quantity U∗n+1

i−0.5 is calculated from the equation of motion

U∗n+1

i−0.5 = U∗n
i−0.5 − α(rni−0.5)

α−1
τ

∆Mn
i−0.5

(P ∗

i − P ∗

i−1).

5. Verification

The figures below compare results for some problems from [9] which were calculated
with the proposed scheme, and their analytical solutions. All calculations were done with
Courant number 0.5.
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Example 1. Propagation of a stationary shock in ideal gas.
At the initial time t = 0, ideal gas, γ = 4/3 , is in the region 0 6 x 6 14.
Initial conditions: ρ0 = 1, E0 = 0, P0 = 0, U0 = 0.
Boundary conditions: UL = 3, UR = 0. A uniform mesh of 100 intervals was used.

Fig. 4. Pressure and velocity in the stationary shock

Figures 4a and 4b show P (x) and U(x) profiles at t = 1.904. The solid line shows the
analytical solution and the dashed one shows calculation with the proposed method.

Example 2. Propagation of a rarefaction wave in ideal gas.
At the initial time t = 0, ideal gas, γ = 2 , is in the region 0 6 x 6 14.
Initial conditions: ρ0 = 4.5, E0 = 1.125, P0 = 5.0625, U0 = 0.
Boundary conditions: UL = −1, UR = 0. A uniform mesh of 100 intervals was used.

Figures 5a and 5b show P (x) and U(x) profiles at t = 4.043. The solid line shows analytics

Fig. 5. Pressure and velocity in the rarefaction wave
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and the dashed one shows calculation with the proposed method.

Example 3. A spherically symmetric shock converging to the center.
At the initial time t = 0, the cold ideal gas, γ = 5/3, is at rest in the region 0 6 r 6 1.
Initial conditions: ρ0 = 1, E0 = 0, P0 = 0, U0 = 0.
The condition on the boundary of the gas sphere is taken from the analytical solution

[9] as a table of U versus t (Table 2).

Table 2

N t UR N t UR

1 0 -1 9 0.328273 -1.04392
2 0.02 -1.004474 10 0.36 -1.0395
3 0.102828 -1.02181 11 0.39144 -1.03309
4 0.16 -1.0323 12 0.42 -1.0227
5 0.20701 -1.0391 13 0.438247 -1.01479
6 0.241516 -1.04277 14 0.475136 -0.991499
7 0.286642 -1.04513 15 0.50547 -0.964469
8 0.31 -1.045 16 0.540474 -0.92164

A uniform mesh of 200 intervals was used.

Fig. 6. Pressure and velocity in the spherically symmetric shock

Figures 6a and 6b show P (r) and U(r) profiles at t = 0.45. The solid line shows
analytics from [9] and the dashed one shows calculation with the proposed method.

Example 4. Shock interaction with interface at
ρR

ρL
= 0.5 in ideal gas.

At the initial time t = 0, gas with the initial state ρ0 = 1, E0 = 0, P0 = 0, U0 = 0 is
in the region 0 6 r 6 14, and gas with the initial state ρ0 = 0.5, E0 = 0, P0 = 0, U0 = 0
is in the region 14 6 r 6 28. In both the regions, the equation of state is ideal gas with
γ = 4/3.
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Boundary conditions: UL = 3, UR = 0.
A uniform mesh was used with 200 intervals in the first region and 100 intervals in the

second one.

Fig. 7. Pressure and velocity in the shock interaction

Figures 7a and 7b show P (x) and U(x) profiles at t = 5. The solid line shows calculation
by the VOLNA code [9] with shock capturing, and the dashed one shows calculation with
the proposed method. The vertical line at x = 17.44 shows the position of the interface at
that time.

This work was assumed by RFBR, project 13-01-00072.
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