
COMPUTATIONAL MATHEMATICS

COMPUTATIONAL MATHEMATICS

MSC 57M99 DOI: 10.14529/jcem220201

A GENERALISATION OF THE KAUFFMAN BRACKET
POLYNOMIAL TO DETERMINE AND ANALYSE
STRUCTURAL ELEMENTS IN A RNA SECONDARY
STRUCTURE

A. A. Akimova, South Ural State University, Chelyabinsk, Russian Federation,
akimovaaa@susu.ru

In this work, we use methods of knot theory to describe and analyze structural
elements of a RNA secondary structure by construction of a new generalisation of the
classical Kauffman bracket polynomial, which factorisation characterises these structural
elements. To this end, we develop a mathematical model of RNA endowed with a topology
invariant (RKB polynomial) that allows to determine a type, number and characteristics
of standard structural elements that form the RNA secondary structure. In order to define
the RKB polynomial, we introduce a new skein relation to smooth hydrogen bonds and
a new technique to color nucleotides, and use the known skein relation of the Kauffman
bracket polynomial. Note that the proposed technique to color nucleotides allows to take into
account the positional relationship of structural elements, which can be used to investigate
properties of RNA. Invariance of the RKB polynomial is shown. Computation of the
RKB polynomial by the given Dot-Bracket notation is implemented as a small Mathematica
program. Using RKB polynomials calculated by our program, we analyze some RNA
secondary structures presented in the bpRNA-1m database. The obtained results agree
with the real data.
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Introduction

The availability of huge amount of biological data opened a new direction in genomic
analysis and structural prediction of DNA, RNA, and proteins in recent years. Many
of these data, such as completely sequenced genomes, ribonucleic acids (RNAs), and
proteins, led to an absolute demand for specialized tools to view, analyze, and predict
the biological significance of the data. Throughout the last few decades, researchers pay
significant attention to determining the RNA structure, since it is one of the key issues in
understanding the genetic diseases and creating new drugs, which also helps the biologists
to understand the role of the molecule in the cell [1–4].

RNA secondary structure prediction and classification are two important problems
in the field of RNA biology. We pay attention to a part of the second one, while the
first problem is widely developed (see, for example, [5, 6] for overview of RNA secondary
structure prediction techniques) and is beyond the scope of our interests. Therefore, in
this paper, we assume that the secondary structure is known in advance (for example, by
its Dot-Bracket notation).
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Behavior of RNA can be understood by finding patterns in its secondary structure
in which it folds. This folding can be cumulative result of many different known and
unknown biological, chemical, thermodynamic and mathematical parameters. In this work,
we consider mathematical aspect of RNA secondary structures. There exist different types
of techniques to classify RNA secondary structure data from mathematical point of view.
Among them, we note the works that use permutations [5] and knot theory [7]. Note
that knot theory has wide applications in many branches of sciences [8]. Its application
in biology is explained by the existence of knotted structures in DNAs, proteins, and
RNAs [9], see also [7] for perfect review of different applications of knot theory in biology.

In this work, we propose a new solution to the problem considered in [7]: use methods
of knot theory to describe and analyze structural elements of a RNA secondary structure
by construction of a new generalisation of the classical Kauffman bracket polynomial [10],
which factorisation characterises these structural elements. To this end, we develop a
mathematical model of RNA endowed with a topology invariant (RKB polynomial that
is a new generalization of the Kauffman bracket polynomial) that allows to determine
a type, number and characteristics of standard structural elements that form the RNA
secondary structure. In order to define the RKB polynomial, we introduce a new skein
relation to smooth hydrogen bonds and a new technique to color nucleotides, and use the
known skein relation of the Kauffman bracket polynomial. Let us note that the proposed
technique to color nucleotides allows to take into account the positional relationship
of structural elements, which can be used in investigation of properties of RNA. We
analyze the factorization of the proposed invariant and demonstrate that the factors
of RKB polynomial reflect the structural features of RNAs. We show invariance of the
RKB polynomial. Computation of theRKB polynomial by the given Dot-Bracket notation
is implemented as a small Mathematica program. Using the RKB polynomials calculated
by our program, we analyze some RNA secondary structures presented in the bpRNA-1m
database [11]. The obtained results agree with the real data.

We consider application of the proposed generalization (RKB polynomial) of the
Kauffman bracket polynomial in the case of RNA, however, the similar ideas can be used
to investigate DNA and proteins.

The paper is organized as follows. Section 1 gives some required information on RNA as
an object of study, in particular, on RNA secondary structure and its structural elements.
In Section 2, we describe problem statement and present main result. Section 3 presents
interpretation of RNA as a graph in R

3 and its secondary structure as a diagram of such
a graph on the plane. In Section 4, we define the RKB polynomial, which properties are
discussed in Section 5. Finally, in Section 6, we present some computational examples:
using the proposed invariant calculated by our program, we analyze some RNA secondary
structures presented in the bpRNA-1m database.

1. Concept of RNA

RNA (Ribonucleic acid) is a polymeric molecule that belongs to one of the four major
classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids),
which is essential for all existing models of human life. Indeed, RNA molecules plays pivotal
role in many biological functions: rebuild and transport genetic data [12], drive chemical
reactions [13] and administer gene expressions [14]. Some RNA molecules play an active
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role within cells by catalyzing biological reactions, or sensing and communicating responses
to cellular signals. One of these active processes is protein synthesis, a universal function in
which RNA molecules direct the synthesis of proteins on ribosomes. Many viruses encode
their genetic information using an RNA genome. RNA molecule’s capability to perform bio-
molecular computation through nanotechnology explains its importance among researchers
from various fields [15], see also [5] for list of corresponding works.

RNA has three different types of structure: primary, secondary and tertiary ones by
analogy with DNA and protein taking into account a dimension. Primary structure is a
simple one dimensional sequence of nucleotides whereas secondary and tertiary structures
are nothing but two dimensional and three dimensional representation of that sequence,
respectively. Fig. 1 shows an example of primary and secondary structures of RNA [11].

Fig. 1. Primary and secondary structures of RNA bpRNA_RFAM_32267 [11]

An RNA molecule can be considered as a chain (a random linear sequence) composed
of four types of nucleotides, namely, adenine (A), uracil (U), cytosine (C), and guanine
(G), with each nucleotide connected to its adjacent neighbor via a backbone. A nucleotide
in one single strand RNA can pair through hydrogen bonds with another nucleotide, either
from the same or from a different RNA molecule. These nucleotide pairs are called base
pairs.

A consecutive group of base pairs forms a stem, which is the basic building block of
RNA secondary structure. Here we note that a key difference between the topology of an
RNA structure and that of a protein or a DNA duplex is the existence of RNA stems,
which connect two regions of the RNA backbone(s) and fix their relative positions.
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RNA stems can combine in different ways, giving rise to different secondary structures
of RNA molecules. We consider seven recognized secondary structural elements in
RNA: stem, hairpin loop, bulge loop, internal loop, multi-loop, single-stranded regions,
pseudoknots. A schematic view of various structural elements is shown in Fig. 2. Any RNA
secondary structure can be considered as a combination of these structural elements.

Fig. 2. Structural elements of secondary structure [5, 6]

Following [16], we consider the classification of pseudoknots per type provided in
PseudoBase++ [17]: H-, HH-, HHH-, HL_out-, HL_in- and LL_in-type. Note that
«H» means hairpin loop, «L» means bulge loop, «in» means internal loop or multiple
internal loops, and «out» means external loop or multiple external loops. Fig. 3 shows all
the six pseudoknot types [16].

For our analysis purpose, we use the bpRNA-1m database [11] (see [18] for the
corresponding paper and the work [5] for list of other databases), which consists of 102,318
RNA Secondary Structures from 7 different sources. For each RNA, the bpseq file, fasta
file, dot bracket file, and structure type file are provided. Moreover, the pdf file of each
RNA secondary structure is available. All of the files are available to download.

Different notations are used to represent secondary structures: Dot-Bracket notation,
String notation, Linked Graph notation, Circular notation, Dot Plot notation, Mountain
Plot notation, Mountain Metric notation, Tree notation. In this work, we use the Dot-
Bracket notation, which is just a sequence of dots and brackets in which a dot represents
an unpaired nucleotide and a bracket represents a paired nucleotide, where matching
brackets symbolize base pairs. In more difficult secondary structures, a more generalized
version of the original Dot-Bracket notation may use additional pairs of brackets, such as
<>, {}, and [], and matching pairs of uppercase/lowercase letters, etc. For more details
on formats of files to represent secondary structures, see the overview included in [5].
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Fig. 3. RNA pseudoknot types by PseudoBase++ [16] classification: H-, HH-, HHH-,
HL_out-, HL_in- and LL_in-types, see also [19] (hi denotes number of hydrogen bonds in
the i-th stem)

2. Problem Statement & Main Result

The problem is to construct a mathematical model of a RNA secondary structure to
describe and analyze its structural elements. To this end, following [7], we use methods of
knot theory, namely, we construct a new generalisation of the classical Kauffman bracket
polynomial [10], which factorisation characterises the desired structural elements.

The following steps describe the realized construction of a mathematical model of RNA
endowed with a topology invariant (RKB polynomial that is a new generalization of the
Kauffman bracket polynomial).

1. Represent RNA as a mathematical object (a graph in R
3, where one of edges is

divided in half).

2. Represent RNA secondary structure as a mathematical object (a diagram on the
plane).

3. Define the RKB polynomial by introducing a new skein relation to smooth hydrogen
bonds and a new technique to color nucleotides, and using the known skein relation
of the Kauffman bracket polynomial.

4. Show invariance of the RKB polynomial.

5. Analyze the factorization of the proposed invariant and demonstrate that the factors
of RKB polynomial reflect the structural features of RNA.

6. Write a small Mathematica program that computes the RKB polynomial by the
given Dot-Bracket notation of a RNA secondary structure.

7. Using the RKB polynomials calculated by the program, analyze some RNA
secondary structures presented in the bpRNA-1m database [11] to show that the
obtained results agree with the real data.
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3. RNA as Graph

In this paper, from mathematical point of view, we consider RNA to be a graph
G ⊂ R

3, where each vertex is given by either an unpaired nucleotide or a paired
nucleotide , and edges are given by connections between the nucleotides, which can

be of two types (a backbone (blue) that consecutively goes through each nucleotide or
a hydrogen bond (red) that connects exactly 2 paired nucleotides), and one of edges is
divided in half (that corresponds to ends of RNA backbone).

As a result of projection of the graph G ⊂ R
3 onto the plane (performed following usual

rules to construct a 2-dimensional projection of a 3-dimensional knot), we obtain a diagram
D with the vertices of the form or described above and 3 new types of classical

crossings: both parts of a strand are of the same type (either backbone or hydrogen bond)
or of different types (backbone and hydrogen bond). Therefore, we consider the secondary
structure of a RNA to be such a diagram D.

Following [7], we close off RNA strand into a circle using the virtual closure approach:
the backbone trace is closed off by connecting its ends virtually (i.e., self-intersections
appeared as a result of this closure are 4-valent vertices called virtual crossings and denoted
by , see the original paper [20] for more details about virtual knot theory). Note that,

since appears as a result of virtual closure of a backbone, at least one of two parts of

its strand is backbone, hence we obtain 2 types of virtual crossings only.
All 5 types of crossings described above (3 classical and 2 virtual ones) are subjected

with a set of local moves, which are the obvious generalization of the Reidemeister moves
Ω1 – Ω3 for classical crossings [21], their virtual Ω′

1 – Ω′
3 and semivirtual Ω′′

3 versions [20],
see Fig. 4. As regards to the generalization of the Reidemeister moves for the case of
3-valent vertices of the form , we recall that the work [22] proposes the extra vertex

moves Ω4, Ω5 that are sufficient to generate isotopy between graphs, see Fig. 4. Together,
these basic moves provide the ambient isotopy for RNA diagrams defined as plane graphs
of secondary structures.

4. Definition of RKB Polynomial

We develop a new generalization (RKB polynomial) of the classical Kauffman bracket
polynomial [10] specifically designed to study RNA secondary structure. Following [7], we
use ideas of Kauffman bracket polynomial, but do not compress stems into rigid vertices.
On the contrary, we propose one more skein relation specifically for hydrogen bonds. In
more details, the work [7] ignores the length of stems and treat stems of different sizes
equally, moreover, to be a rigid vertex, while we go inside each stem and take into account
both number of hydrogen bonds that form the stem and a position of the stem with
respect to backbone (for the latter, we introduce a new technique to color nucleotides). As
a result, ourRKB polynomial considers colored stems as complete description of structural
elements of RNA secondary structure and can be factored such that to associate each factor
with a structural element of RNA secondary structure described in Section 1.

Let us define the RKB polynomial {·}, where RKB stands for RNA K auffman
Bracket.

Step 1 (Color Nucleotides). Let us associate each nucleotide with an ordinal color ci,
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i = 1, 2, ..., as follows: we go through a primary structure (backbone), color a sequence of
unpaired nucleotides (i.e., single-stranded region) and the subsequent sequence of paired
nucleotides by the same color and use next ordinal color before to color each single-stranded
region. The following algorithm describes implementation of this idea in more details.

1. Choose any of two possible orientations of the backbone that form RNA.
2. Color all the nucleotides in the 1-st sequence of paired nucleotides of the backbone

by the same color c1 (if there exists a single-stranded region before these sequence, then
color its nucleotides by c1 as well).

3. For each new single-stranded region, take next ordinal color.
At this moment, we omit all unpaired nucleotides.
Two colors ci and ci+1 are said to be adjacent that is their ordinal numbers differ by 1.

Two colors ci and ci+2 are called quasiadjacent that is their ordinal numbers differ by 2.
Step 2 (Define Skein Relations). Let us define a skein relation to smooth a hydrogen

bond as follows:

ci cj = cicj · + , (1)

i.e. associate the hydrogen bond with the sum of the result of smoothing along the hydrogen

↔ ↔ ↔

Ω′
1 Ω′

2 Ω′
3

↔

Ω′′
3

Ω4 Ω5

Fig. 4. Reidemeister moves: classical Ω1 – Ω3; virtual Ω′
1 – Ω

′
3; semivirtual Ω′′

3; extra Ω4, Ω5
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bond multiplied by the product cicj and the result of smoothing along the backbone.
Therefore, each hydrogen bond is transformed to the weighted summation of a pair of
double parts of empty strains. After applying this transformation to all hydrogen bonds
of an RNA secondary structure diagram recursively, we obtain a summation of a group of
weighted diagrams without hydrogen bonds.

Any knot invariant, including knot polynomials, can be used to characterize resulting
diagrams. Here we use the Kauffman bracket polynomial [10] as follows. Let D be a diagram
of a RNA secondary structure. Endow each angle of each crossing of D with a marker A

or B according to the rule given in the center of Fig. 5. Each state s of the diagram D is
defined by a combination of ways to smooth each crossing of D such as to join together
either two angles endowed with a marker A, or two angles endowed with a marker B, see
Fig. 5 on the left and right, respectively. Obviously, if the diagram D has n crossings, then
there exist exactly 2n states of D.

←−−−−−−−−−−−−−−
A− smoothing

A

A

BB

−−−−−−−−−−−−−−→
B − smoothing

Fig. 5. A- and B-smoothings of a classical crossing

By the writhe of an oriented knot diagram D with n crossings we mean the sum over
all crossings of D

w(D) =

n∑

i=1

ε(i),

where ε(i) is a sign of the i-th crossing of D defined by the rules given in Fig. 6.

ε(i) = 1 ε(i) = −1

Fig. 6. Rules to define the sign ε(i) of the i-th classical crossing

The exact formula of the Kauffman bracket polynomial is as follows:

X (A, x)D = (−A)−3w(D) 〈A, x〉D , (2)

where
〈A, x〉D =

∑

s

Aα(s)−β(s)xγ(s)−1 (3)

is the Kauffman bracket. Here α(s) and β(s) are the numbers of markers A and B in the
given state s, while γ(s) is the number of curves obtained by smoothing of all crossings
according to the state s (for shortness, here we denote x = −A2 − A−2), and w(D) is the
writhe of D. The sum is taken over all 2n states of D.

Therefore, each of 3 types of classical crossings is smoothed by usual skein relation of
Kauffman bracket polynomial, while virtual crossings do not need skein relation. In
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addition, we use usual normalization (consider polynomial of one of circles in each state
to be 1 and polynomial of each of the rest circles to be x = −A2−A−2). Finally, as usual,
to obtain invariant under the Reidemeister move Ω1, we use the writhe of the diagram.

5. Properties of RKB polynomial

Lemma 1. [Invariance of RKB Polynomial] The RKB polynomial is invariant under all
three Reidemeister moves Ω1 – Ω3 generalised on 3 types of classical crossings, both virtual
Reidemeister moves Ω′

1 – Ω′
3 and semivirtual Reidemeister move Ω′′

3 generalised on 2 types
of virtual crossings, both extra vertex Reidemeister moves Ω4, Ω5 generalised on 2 types of
edges (backbone and hydrogen bond), see Fig. 4.

Proof of Lemma 1 is similar to proof of the corresponding theorem on Kauffman
bracket polynomial of knots for Reidemeister moves Ω1 – Ω3 with classical crossings only
(see, for example, [10] or [23]) and for virtual Reidemeister moves Ω′

1 – Ω′
3 and semivirtual

Reidemeister move Ω′′
3 with both virtual and classical crossings (see, for example, [20]).

Lemma 2. [Factorisation of RKB Polynomial] The RKB polynomial of a RNA secondary
structure with the unique backbone can be represented as a product of polynomials of stems
and pseudoknots that form the RNA secondary structure.

Proof of Lemma 2 is similar to proof of theorem on Kauffman bracket polynomial of
a connected sum of knots (see, for example, [23]).

Remark 1. [Stronger RKB Polynomial] The RKB polynomial can be defined to be more
stronger. To this end, we color a nucleotide associated with an opened bracket by ci, but
a nucleotide associated with a closed bracket by dj. However, for our proposes the original
definition (both types are colored by c, i.e. without using a new variable d) turns out to
be enough.

Below we present connection between the RKB polynomial and structural elements
of RNA secondary structure described in Section 1.

Lemma 3. [Number of single-stranded regions] Let nr be a number of single-stranded
regions in a RNA secondary structure, nb be a number of backbones that begin with a
paired nucleotide, ne be a number of backbones that end with an unpaired nucleotide, nc be
a number of colors in the RKB polynomial. Then

nr = nc − nb + ne.

Proof of Lemma 3 is obvious by definition of RKB polynomial (Step 1 (Color
Nucleotides)): every time then a new single-stranded region begins, take next ordinal
color.

Lemma 4. [RKB Polynomial of Stem] Let S
(h)
(i,j) be a stem with h hydrogen bonds formed

by paired nucleotides colored by ci and cj, i.e. . Denote by nk and n̂k a pair of
paired nucleotides that form the k-th hydrogen bond, k = 1, 2, .... Assume that a dashed
line that connects one of two pairs of opposite ends of the backbone of the stem S

(h)
(i,j),
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i.e. , cuts off a part P (without the stem S
(h)
(i,j)) of RNA that contains only full

hydrogen bonds, i.e. if nk ∈ P , then n̂k ∈ P for all k = 1, 2, .... Then the RKB polynomial
of the stem S

(h)
(i,j) is {

S
(h)
(i,j)

}
= (1 + cicjx)

h,

where x = −A2 − A−2 is a variable associated with a circle without crossings.

Proof. As a result of smoothing of all hydrogen bonds included in P by the skein
relation (1), we obtain a set of states, in each of which the dashed line remains as a
part of strand. This is due to the fact that P contains only full hydrogen bonds.

The last part of the proof can be performed by mathematical induction. Here we
present only the base of the induction, i.e. calculations in the case of a stem formed by
the unique hydrogen bond: .

Following (1), we smooth the hydrogen bond that form the stem as follows:

{ } = cicj







+

{ }
.

Taking into account that RKB polynomial of a circle without crossings is x, we obtain

(cicjx+ 1) ·

{ }
.

✷

Based on two colors used in a RKB polynomial of a stem, we can draw conclusion
about structural element formed using this stem.

Lemma 5. [RKB Polynomial of Hairpin Loop] Let LH

(h)
(i,i+1) be a hairpin loop with h

hydrogen bonds formed by paired nucleotides colored by adjacent colors ci and ci+1, i.e.

. Then {
LH

(h)
(i,i+1)

}
=
{
S

(h)
(i,i+1)

}
.

Proof of Lemma 5 follows immediately from Lemma 4, since P is given by a single

region: . Also, proof can be performed by mathematical induction similar to proof
of Lemma 4.

✷

Lemma 6. [RKB Polynomial of Bulge Loop] Let LB

(h1)(h2)
(i,j)(i,j+1) be a bulge loop with h1

hydrogen bonds formed by paired nucleotides colored by ci and cj and h2 hydrogen bonds
formed by paired nucleotides colored by ci and cj+1. Then

{
LB

(h1)(h2)
(i,j)(i,j+1)

}
=
{
S

(h1)
(i,j)

}
·
{
S

(h2)
(i,j+1)

}
.

Moreover, RKB polynomial of total RNA secondary structure contains no factor (1 +
cjcj+1x), since the RNA secondary structure contains no stem colored by the adjacent
colors cj and cj+1.
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Proof of Lemma 6 can be performed by mathematical induction similar to proof of
Lemma 4.

Lemma 7. [RKB Polynomial of Internal Loop] Let LI

(h1)(h2)
(i,j+1)(i+1,j) be an internal loop with

h1 hydrogen bonds formed by paired nucleotides colored by ci and cj+1 and h2 hydrogen
bonds formed by paired nucleotides colored by ci+1 and cj. Then

{
LI

(h1)(h2)
(i,j+1)(i+1,j)

}
=
{
S

(h1)
(i,j+1)

}
·
{
S

(h2)
(i+1,j)

}
.

Moreover, RKB polynomial of total RNA secondary structure contains no factors (1 +
cici+1x) and (1 + cjcj+1x), since the RNA secondary structure contains no stems colored
by the adjacent colors ci and ci+1 or the adjacent colors cj and cj+1.

Proof of Lemma 7 can be performed by mathematical induction similar to proof of
Lemma 4.

Lemma 8. [RKB Polynomial of Multi- Loop] Let LM

(h1)(h2)(h3)
(j,i)(k,i)(j+1,k) be a multi-loop with h1

hydrogen bonds formed by paired nucleotides colored by cj and ci, h2 hydrogen bonds formed
by paired nucleotides colored by ck and ci, h3 hydrogen bonds formed by paired nucleotides
colored by cj+1 and ck. Then

{
LM

(h1)(h2)(h3)
(j,i)(k,i)(j+1,k)

}
=
{
S

(h1)
(j,i)

}
·
{
S

(h2)
(k,i)

}
·
{
S

(h3)
(j+1,k)

}
.

Proof of Lemma 8 can be performed by mathematical induction similar to proof of
Lemma 4.

Following [16], below we consider the classification of pseudoknots per type provided
in PseudoBase++ [17]: H-, HH-, HHH-, HLout-, HL_in- and LL_in-type, see Fig. 3.
However, the RKB polynomial of any pseudoknot having another type can be constructed
in the similar way.

Lemma 9. [RKB Polynomial of Pseudoknot] Let x = −A2−A−2 be a variable associated
with a circle without crossings. Enumerate stems of a pseudoknot. Let hi be a number of
hydrogen bonds in the i-th stem, see Fig. 3.

1. Let PH

(h1)(h2)
(i,i+2)(i+1,i+3) be a H-type pseudoknot, stems of which are consecutively colored

by (ci, ci+2) and (ci+1, ci+3). Then RKB polynomial of the pseudoknot PH

(h1)(h2)
(i,i+2)(i+1,i+3) can

be found recursively as follows:

{
PH

(h1)(0)
(i,i+2)(i+1,i+3)

}
=
{
S

(h1)
(i,i+2)

}
;

{
PH

(h1)(h2)
(i,i+2)(i+1,i+3)

}
=
{
PH

(h1)(h2−1)
(i,i+2)(i+1,i+3)

}
+

+ci+1ci+3

{
S

(h2−1)
(i+1,i+3)

}(
x+ cici+2

h1−1∑

j=0

{
S

(j)
(i,i+2)

})
.

2. Let PHH

(h1)(h2)(h3)(h4)
(i,i+2)(i,i+1)(i+1,i+2)(i+2,i+3) be a HH-type pseudoknot, stems of which are

consecutively colored by (ci, ci+2), (ci, ci+1), (ci+1, ci+2) and (ci+2, ci+3). Then

2022, vol. 9, no. 2 13



A. A. Akimova

RKB polynomial of a pseudoknot PHH

(h1)(h2)(h3)(h4)
(i,i+2)(i,i+1)(i+1,i+2)(i+2,i+3) can be found recursively

as follows:
{
PHH

(h1)(0)(h3)(0)
(i,i+2)(i,i+1)(i+1,i+2)(i+2,i+3)

}
=
{
S

(h1)
(i,i+2)

}
·
{
S

(h3)
(i+1,i+2)

}
;

{
PHH

(h1)(h2)(h3)(h4)
(i,i+2)(i,i+1)(i+1,i+2)(i+2,i+3)

}
=

{
S

(h2)
(i,i+1)

}
·
({
PHH

(h1)(0)(h3)(h4−1)
(i,i+2)(i,i+1)(i+1,i+2)(i+2,i+3)

}
+

+ci+2ci+3

{
S

(h4−1)
(i+2,i+3)

}
·

(
cici+2 ·

{
S

(h3)
(i+1,i+2)

}
·

h1−1∑

j=0

{
S

(j)
(i,i+2)

}
+

+x+ ci+1ci+2

h3−1∑

j=0

{
S

(j)
(i+1,i+2)

}))
.

3. Let PHHH

(h1)(h2)(h3)
(i,i+2)(i+1,i+3)(i+2,i+4) be a HHH-type pseudoknot, stems of which are

consecutively colored by (ci, ci+2), (ci+1, ci+3) and (ci+2, ci+4). Then RKB polynomial

of a pseudoknot PHHH

(h1)(h2)(h3)
(i,i+2)(i+1,i+3)(i+2,i+4) can be found recursively as follows:

{
PHHH

(h1)(h2)(0)
(i,i+2)(i+1,i+3)(i+2,i+4)

}
=
{
PH

(h1)(h2)
(i,i+2)(i+1,i+3)

}
;

{
PHHH

(h1)(h2)(h3)
(i,i+2)(i+1,i+3)(i+2,i+4)

}
=
{
PHHH

(h1)(h2)(h3−1)
(i,i+2)(i+1,i+3)(i+2,i+4)

}
+

+ci+2ci+4

{
S

(h1−1)
(i,i+2)

}{
S

(h4−1)
(i+2,i+4)

}(
x+ ci+1ci+3

h2−1∑

j=0

{
S

(j)
(i+1,i+3)

})
.

4. Let PHL_out
(h1)(h2)(h3)
(i,i+2)(i+1,i+4)(i+2,i+3) be a HL_out-type pseudoknot, stems of which are

consecutively colored by (ci, ci+2), (ci+1, ci+4) and (ci+2, ci+3). Then RKB polynomial

of a pseudoknot PHL_out
(h1)(h2)(h3)
(i,i+2)(i+1,i+4)(i+2,i+3) can be found as follows:

{
PHL_out

(h1)(h2)(h3)
(i,i+2)(i+1,i+4)(i+2,i+3)

}
=
{
PH

(h1)(h2)
(i,i+2)(i+1,i+4)

}
·
{
S

(h3)
(i+2,i+3)

}
.

5. Let PHL_in
(h1)(h2)(h3)(h4)
(i,i+2)(i,i+1)(i+1,i+3)(i+1,i+2) be a HL_in-type pseudoknot, stems of which

are consecutively colored by (ci, ci+2), (ci, ci+1), (ci+1, ci+3) and (ci+1, ci+2). Then

RKB polynomial of a pseudoknot PHL_in
(h1)(h2)(h3)(h4)
(i,i+2)(i,i+1)(i+1,i+3)(i+1,i+2) can be found recursively

as follows:
{
PHL_in

(h1)(h2)(0)(0)
(i,i+2)(i,i+1)(i+1,i+3)(i+1,i+2)

}
=
{
S

(h1)
(i,i+2)

}
·
{
S

(h2)
(i,i+1)

}
;

{
PHL_in

(h1)(h2)(h3)(h4)
(i,i+2)(i,i+1)(i+1,i+3)(i+1,i+2)

}
=
{
S

(h4)
(i+1,i+2)

}
×

×
({
PHL_in

(h1)(h2)(h3−1)(0)
(i,i+2)(i,i+1)(i+1,i+3)(i+1,i+2)

}
+ ci+1ci+3

{
S

(h3−1)
(i+1,i+3)

}
×

×

(
cici+2

{
S

(h2)
(i,i+1)

}
·

h1−1∑

j=0

{
S

(j)
(i,i+2)

}
+ x+ cici+1

h2−1∑

j=0

{
S

(j)
(i,i+1)

}))
.
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6. Let PLL_in
(h1)(h2)(h3)
(i,i+2)(i+1,i+3)(i+1,i+2) be a HL_in-type pseudoknot, stems of which are

consecutively colored by (ci, ci+2), (ci+1, ci+3) and (ci+1, ci+2). Then RKB polynomial

of a pseudoknot PLL_in
(h1)(h2)(h3)
(i,i+2)(i+1,i+3)(i+1,i+2) can be found as follows:

{
PLL_in

(h1)(h2)(h3)
(i,i+2)(i+1,i+3)(i+1,i+2)

}
=
{
PH

(h1)(h2)
(i,i+2)(i+1,i+3)

}
·
{
S

(h3)
(i+1,i+2)

}
.

Proof. Let us show an idea of the proof of Lemma 9 on the example of the H-type
pseudoknot.

We begin smooth the hydrogen bonds that form the last (second) stem as follows:








=









+ ci+1ci+3









,

i.e.

{
PH

(h1)(h2)
(i,i+2)(i+1,i+3)

}
=
{
PH

(h1)(h2−1)
(i,i+2)(i+1,i+3)

}
+ ci+1ci+3









.

As regards to the last factor,








=
{
S

(h2−1)
(i+1,i+3)

}
·









,

and, finally, we smooth the hydrogen bonds that form the first stem as follows:








= cici+2









+









,

i.e. 







= cici+2S
(h1−1)
(i,i+2) +









.

✷
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6. Computational Examples

Let us present some computational examples. Using a program written by means of
Mathematica package, we calculate the RKB polynomials of some RNA presented in the
database [11]. Here we consider examples without classical and virtual crossings in order
to pay attention to the new skein relation and technique of color.

Example 1 (bpRNA_RFAM_14276). The Dot-Bracket notation is

............(|(((....((((((.....))))))..))).)...........,

where . stands for an unpaired nucleotide, ( and ) denote a paired nucleotide, and | is
used to divide sequences of paired nucleotides that form different stems. The secondary
structure is presented in Fig. 5 on the left.

Fig. 7. Secondary structure of RNA bpRNA_RFAM_14276 (left) and bpRNA_RFAM_38844
(right) [11]

We color nucleotides involved in the given Dot-Bracket notation as follows:

............(|(((︸ ︷︷ ︸
c1

....((((((︸ ︷︷ ︸
c2

.....))))))︸ ︷︷ ︸
c3

..)))︸︷︷︸
c4

.)︸︷︷︸
c5

...........︸ ︷︷ ︸
c6

.

Based on the factored RKB polynomial

(1 + c2c3x)
6 · (1 + c1c4x)

3 · (1 + c1c5x),
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we draw the following conclusions about the structural elements, which agree with Fig. 5.
Single-stranded region. Following Lemma 3, since number of colors is 5 and both the

first and the last nucleotides are unpaired, we conclude that the number of single-stranded
regions is 6.

Stem. Following Lemma 4, since the number of factors of the form (1 + cicjx)
h is 3,

we conclude that the number of stems that are not part of a pseudoknot is 3, moreover
(taking into account the powers of brackets), the number of hydrogen bonds in this stems
is 6, 3 and 1. In Fig. 5, the stems are denoted by blue.

Hairpin loop. Following Lemma 5, since the number of factors of the form (1+cici+1x)
h

(where ci and ci+1 are adjacent colors) is 1 (namely, (1 + c2c3x)
6, i.e. i = 2), we conclude

that the number of hairpin loops is 1. In Fig. 5, unpaired nucleotides of the hairpin loop
are denoted by orange.

Bulge loop. Following Lemma 6, since there exists the unique factor (i.e., (1+ c1c4x)
3 ·

(1+c1c5x)) of the form (1+cicjx)
m1 · (1+cicj+1x)

m2 ; i = 1; j = 4, where the colors cj and
cj+1 are adjacent, and there exists no factor (1 + cjcj+1x) (i.e., (1 + c4c5x)), we conclude
that the number of bulge loops is 1. In Fig. 5, unpaired nucleotides of the bulge loop are
denoted by reseda.

Internal loop. Following Lemma 7, since there exists the unique factor ((1 + c1c4x)
3 ·

(1+c2c3x)
6) of the form (1+cicj+1x)

h1 · (1+ci+1cjx)
h2 ; i = 1; j = 3, where ci and ci+1 are

adjacent colors, cj and cj+1 are adjacent colors, and there exist no factors (1+cici+1x) and
(1 + cjcj+1x) (i.e., (1 + c1c2x) and (1 + c3c4x)), we conclude that the number of internal
loops is 1. In Fig. 5, unpaired nucleotides of the internal loop are denoted by green.

Multi-loop. Following Lemma 8, there exist no multi-loops.
Pseudoknot. Following Lemma 9, there exist no pseudoknots.
Example 2 (bpRNA_RFAM_38844). The Dot-Bracket notation is

................((((.((((((..((....))..))))))((((...))))|)))).....,

where . stands for an unpaired nucleotide, ( and ) denote a paired nucleotide, and | is
used to divide sequences of paired nucleotides that form different stems. The secondary
structure is presented in Fig. 5 on the right.

We color nucleotides involved in the given Dot-Bracket notation as follows:

................((((︸ ︷︷ ︸
c1

.((((((︸ ︷︷ ︸
c2

..((︸︷︷︸
c3

....))︸︷︷︸
c4

..))))))((((︸ ︷︷ ︸
c5

...))))|))))︸ ︷︷ ︸
c6

.....︸︷︷︸
c7

.

Based on the factored RKB polynomial

(1 + c3c4x)
2(1 + c2c5x)

6(1 + c1c6x)
4(1 + c5c6x)

4,

we draw the following conclusions about the structural elements, which agree with Fig. 5.
Single-stranded region. Following Lemma 3, since number of colors is 6 and both the

first and the last nucleotides are unpaired, we conclude that the number of single-stranded
regions is 7.

Stem. Following Lemma 4, since the number of factors of the form (1 + cicjx)
h is 4,

we conclude that the number of stems that are not part of a pseudoknot is 4, moreover
(taking into account the powers of brackets), the number of hydrogen bonds in this stems
is 2, 6, 4 and 4. In Fig. 5, the stems are denoted by blue.
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Hairpin loop. Following Lemma 5, since the number of factors of the form (1+cici+1x)
h

(where ci and ci+1 are adjacent colors) is 2 (namely, (1 + c3c4x)
2 and (1 + c5c6x)

4, i.e.
i = 3 and i = 5), we conclude that the number of hairpin loops is 2. In Fig. 5, unpaired
nucleotides of the hairpin loop are denoted by orange.

Bulge loop. Following Lemma 6, there exist no bulge loops.
Internal loop. Following Lemma 7, since there exists the unique factor (i.e., (1+c2c5x)

6 ·
(1+c3c4x)

2) of the form (1+cicj+1x)
h1 · (1+ci+1cjx)

h2 ; i = 2; j = 4, where ci and ci+1 are
adjacent colors, cj and cj+1 are adjacent colors, and there exist no factors (1+cici+1x) and
(1 + cjcj+1x) (i.e., (1 + c2c3x) and (1 + c4c5x)), we conclude that the number of internal
loops is 1. In Fig. 5, unpaired nucleotides of the internal loop are denoted by green. Let us
note that there exists the factor (1 + c2c5x)

6 · (1 + c1c6x)
4 of the necessary form, but this

factor is not associated with an internal loop due to the existence of the factor (1+ c5c6x).
Multi-loop. Following Lemma 8, since there exists the unique factor (i.e., (1+ c1c6x)

4 ·
(1 + c5c6x)

4 · (1 + c2c5x)
6) of the form (1 + cjcix)

h1 · (1 + ckcix)
h2 · (1 + cj+1ckx)

h3 ; i =
6; j = 1; k = 5, where cj and cj+1 are adjacent colors, we conclude that the number of
multi-loops is 1. In Fig. 5, some nucleotides of the multi- loop are denoted by yellow.

Pseudoknot. Following Lemma 9, there exist no pseudoknots.

The author is grateful to Ph.G. Korablev for useful discussions of mathematical part
of the model, N.A. Manakova for problem statement and useful discussions, as well as
S.A. Zagrebina for creation of perfect conditions for productive work on the paper.
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ОБОБЩЕНИЕ СКОБОЧНОГО ПОЛИНОМА КАУФМАНА
ДЛЯ ОПРЕДЕЛЕНИЯ И АНАЛИЗА СТРУКТУРНЫХ
ЭЛЕМЕНТОВ ВТОРИЧНОЙ СТРУКТУРЫ РНК

А. А. Акимова

В этой работе мы используем методы теории узлов для описания и анализа струк-

турных элементов вторичной структуры РНК путем построения нового обобщения

классического скобочного полинома Кауфмана, факторизация которого характеризует

структурные элементы РНК. С этой целью разработана математическая модель РНК,

включающая топологический инвариант (RKB полином) и позволяющая определить

тип, количество и характеристики стандартных структурных элементов, образующих

вторичную структуру РНК. Чтобы определить RKB полином, мы вводим новое пра-

вило сглаживания водородных связей и новую технику окрашивания нуклеотидов, а

также используем известное сглаживание классических перекрестков, используемое

в скобочном полиноме Кауфмана. Отметим, что предложенная методика окрашива-

ния нуклеотидов позволяет учитывать взаимное расположение структурных элемен-

тов, что может быть использовано при изучении свойств РНК. Показана инвариант-

ность RKB полинома. Вычисление RKB полинома по заданному коду Dot-Bracket ре-

ализовано в виде небольшой программы средствами пакета Mathematica. Используя

RKB полиномы, рассчитанные нашей программой, мы анализируем некоторые вто-

ричные структуры РНК, представленные в базе данных bpRNA-1m. Полученные ре-

зультаты согласуются с реальными данными. Ключевые слова: РНК; вторичная

структура; обобщенный скобочный полином Кауфмана; узел; инвариант.
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