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This paper presents a mathematical model of one- and two-dimensional elastoplastic
flows of a medium. The Prandtl — Reuss model is used to describe the plastic properties
of a material. The presented model is implemented as a one-dimensional code in a plane
geometry and a two-dimensional code in a cylindrical axisymmetric geometry. Also, these
program codes allow to calculate the absorption of synchrotron radiation in the volume
of the medium at different points in time, which makes it possible to interpret the results
of shock-wave experiments using synchrotron diagnostics. In order to verify the numerical
code that implements this model, we carried out mathematical modelling of the experiment
on the impact of two plates of polymethyl methacrylate and the Taylor problem for a
copper cylinder. The application of the Prandtl — Reuss plasticity model to the description
of dynamic processes in polymethyl methacrylate showed that this model works quite
well in a viscoplastic medium without using any fitting parameters. Also, in 1D and 2D
formulations, we carried out mathematical modelling of an experiment with synchrotron
diagnostics on shock-wave loading of a cylindrical sample of polymethyl methacrylate
in counter-propagating shock waves. The calculated profiles of the relative absorption of
synchrotron radiation are consistent with the experimental ones, which makes it possible
to give an unambiguous interpretation of the results of experiments using synchrotron
radiation. The study of the role of radial unloading showed that the stress profiles for
1D and 2D calculations at the stage of shock wave convergence to the center are in
good agreement, however, as shown by two-dimensional calculations, a significant density
inhomogeneity along the radius arises during unloading due to re-reflection of shock waves,
which complicates interpretation of experimental results using synchrotron diagnostics.
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Introduction

The appearance of a technique for recording phenomena using synchrotron radiation
(SR) significantly expanded the information content about the processes occurring in
shock-wave experiments. Measurement of the absorption of a direct SR beam makes it
possible to obtain data on the dynamics of changes in the particle density of the studied
object (various structural materials, explosives and detonation products), which makes it
possible to determine the profiles of compression and rarefaction waves.

In order to demonstrate the possibilities of SR in diagnostics of shock-wave processes
in solid inert bodies, the works [1, 2] choose a porous material, i.e. spheroplastic, and
polymethyl methacrylate (PMMA) as the object of study, which has a complex of various
physical and mechanical properties under such loading. In the experiments, we measure
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the intensity of the X-ray beam passing through the sample, and the intensity varies with
the density of the material. Quantitative estimates of the observed processes are carried
out on the basis of relations for the attenuation of the intensity of the transmitted beam.
The applicability of SR to the study of this class of phenomena is shown.

As is well known, experiments with single and two-fold shock compression of substance
are the basis for constructing the equations of state of materials at high pressures |3, 4].
Two-fold compression, compared with single compression, is accompanied by a smaller
increase in internal energy, as a result of which the realized states are located below the
shock adiabat of single compression, approaching the isotherm. This fact explains the
importance of two-fold compression experiments for studying the state of substances and
their equations of state at high pressures. The paper [5] presents the results of experiments
on loading PMMA by incident and reflected shock waves, as well as during the collision of
counterpropagating shock waves in the substance under study. Thus, the interpretation of
the results of experiments using SR for the subsequent construction or refinement of the
equations of state of substances is an urgent problem.

The purpose of this study is to mathematically model the results of experiments with
synchrotron diagnostics on shock-wave loading of PMMA using mathematical models that
describe one-dimensional and two-dimensional flows in condensed media in a plane and
cylindrical axisymmetric geometry in Lagrange variables, as well as approbation of the
technique for reconstructing the mass of substance along the SR beam. The results of
mathematical modelling allow to make an unambiguous interpretation of the results of
experiments using SR. In this paper, for the first time, the Prandtl — Reuss model of
elastoplasticity is used to describe dynamic processes in a viscoplastic medium (PMMA),
and application of the model is substantiated. Also, we show the limits of applicability of
one-dimensional modelling of problems in the formulation corresponding to experiments
using SR.

1. Mathematical Model

The system of equations describing one-dimensional elastoplastic flows in Cartesian
coordinates has the form

ov 0
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The system of equations describing two-dimensional elastoplastic flows in cylindrical
coordinates has the form
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where p, wv,, v, are particle density and velocity components; P is a nonequilibrium
pressure; T is a temperature; g, = —NOT'/0xy is a heat flow; N is a coefficient of thermal
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conductivity; p is a shear modulus, 0%, = —P%;;, 4+ 59, is an equilibrium part of the stress
tensor, PP, S?k are equilibrium pressure and stress deviator tensor; o, = —Pd; + Sik
is a nonequilibrium stress tensor, P, S;; are non-equilibrium pressure and stress deviator
tensor; U is a specific internal energy.

Systems (1), (2) are written taking into account the irreversibility of real physical
processes. To this end, in the equations, we use nonequilibrium stresses, which take into
account the finite time of system relaxation to an equilibrium state [6].

We represent the equilibrium stress tensor as the sum of stresses due to longitudinal
and transverse deformations

oA = (P4 f3) g+ TS,

)

where T3, = 2u (usx — uydiy) is a tensor that takes into account the addition to stresses
due to transverse (with respect to the i-th axis) deformations.

In the case of adiabatic deformations, the rate of change of equilibrium stresses is as
follows:

2
o3 = EL Vo + T4, (3)
V
where ¢, = /(OP°/dp)g +4c?/3 is a longitudinal speed of sound, ¢; = /u/p is a
transverse speed of sound, ﬂ% =2u (Uik — Uuéik), v, 1S a deformation rate tensor.

The nonequilibrium spherical part of the stress tensor can be represented as P =
P%+ 60, the nonequilibrium stress deviator tensor can be written as Sj; = S?k+5ﬂ-k, where
0o, 6Ty, are non-equilibrium additions due to longitudinal and transverse deformations,
respectively.

In the process of compression of a medium element during the time At, an
inhomogeneous velocity field is formed in the element, which leads to the appearance of an
excess particle density dp in the disturbed domain whose size is ¢; At. The nonequilibrium
addition has the form [7] 0p = —p (VU) At if (VT) < 0, and dp = 0 if (VT) > 0. Taking
into account that longitudinal perturbations propagate with the speed ¢;, the effective
volume of the element of the medium, which is equal to the part V perturbed in the

process of deformation, is equal to V5 = V ¢ At/§ under the compression (V < 0) and

Vers = V under the tension <V > O), where ¢ is a characteristic linear size of the volume.

Since (VU) = V/Veff, then, taking into account (3), the expression for do can be
written as 6o = pcinV/V for V < 0, and §o = 0 for V > 0, where 7, = £/¢; is a relaxation
time for longitudinal deformations. Similarly, we can write an expression for 67j;. For
diagonal elements,

5Tz‘z‘:{ ﬁ?Tt, Tg>0
0, 79 <0

where 7, = £/¢; is the relaxation time for transverse deformations.

The non-diagonal components 07;; describe the non-equilibrium addition to stresses
due to shear. When estimating the relaxation time for a shear, the length of the contour
enclosing the considered volume should be taken as a linear scale. Then the relaxation
time for the shear has the form Tt, = w&/c; and the expression for the nonequilibrium shear
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addition is
5Tzk - k Tta i 7é k.

Various empirical models are used to describe plastic flows. The most commonly used
model is the von Mises yield criterion, which limits shear stresses at the yield point

SO =2u vy, (S9)° < 2v/3, (4)

where Yj is the yield limit for simple tension, U= v;x — Ui /3. Realization (4) is carried

out by multiplying each element of the stress deviator by the factor \/7 Yo/ S?k) if
condition (4) is not satisfied [8].

A more detailed description of plastic flows is implemented in the Prandtl — Reuss
model [9, 10], in which the plastic deformation rate tensor appears explicitly. Taking
into account plastic flows, in the general case, the equation for the components of the
equilibrium stress deviator tensor has the form

Siok =2u <Eik _ufk) ) (5)

where @}, is the plastic deformation rate tensor, which is related to stresses by the von
Mises equations @f, = S5 /A, A is the modulus of plasticity. Expression (5) reflects the fact
that only elastic deformations are responsible for elastic stresses.

From the Mises equations and (4), (5) we can obtain the following relations:

T2 97 ®

S+ S/ = 20 v, (7)

where 77 = A\ /2u is the time of elastic stress relaxation due to plastic flows (Maxwell time
of relaxation). It follows from (6) and (7) that, at 77 — 0, the stresses reach the limiting
value, which is determined by the von Mises yield criterion (4).

Thus, when describing plasticity within the Prandtl — Reuss model, the equations for
S9 in (1 ), (2) should be replaced by equations (6) and (7). In this case, the limitation of
elastic stresses at the yield point is performed automatically. In the one-dimensional case,
equation (5) has the form S..+8S.. /T = 4puv,./3, and the modulus of plasticity is given
by 1/X\ = 3S,,v,./2Y2 for S,.v., > 0, that is, for deformations that lead to stress growth.

Note that equations (5) have the same form as the equations for stresses in the model
of a viscoelastic medium (Maxwell model) [8], in which the role of elastic and viscous
processes is determined by the relaxation time. Since the relaxation time is determined in
the Prandtl — Reuss model, there is no need to introduce an additional fitting parameter,
i.e. the viscosity [11].

Systems of equations (1), (2) must be endowed with the corresponding initial and
boundary value conditions and equations of state of substances [12, 13].

For the numerical solution of the proposed mathematical model, the semi-analytical
method [6] was used, the distinctive feature of which is that only spatial derivatives are
replaced by finite differences. In this case, the system of equations of continuum mechanics
is reduced to a system of differential equations that admit an approximate analytical
solution at a certain time step.
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2. Reconstruction of Substance Mass along SR Beam

In this work, for numerical modelling, we use the results of a series of experiments on
shock-wave loading of polymethyl methacrylate in counterpropagating shock waves using
synchrotron radiation.

In the process of shock-wave loading of the material under study, the density of the
substance changes significantly along the SR beam, and, consequently, the absorption
spectrum changes. When conducting experiments for the material under study, the DIMEX
detector is calibrated by measuring the absorption depending on the mass along the SR
beam, the results of which are used to construct a logarithmic dependence of the relative
absorption [14]. The intensity recorded by the detector before the experiment has the form

Jbefore = Jair exp (_OélmO + OéQm(2)) s

where J,;, is the SR flux intensity for the unperturbed sample, mg is the unperturbed mass

of substance along the SR beam (mg = pody, where pqg is the unperturbed sample density

and dy is the sample diameter), a; and s are the interpolated absorption coefficients.
The intensity recorded by the detector during the experiment can be represented as

2
Jexp = Jair €XP (—almx + ngx) ,

where m, is the perturbed substance mass along the beam.
Following [14], the logarithm of the ratio of Jex, and Jiesore is

JBX
In (7J fp ) =g=—ag(my; —mg) + az (mi—mg). (8)
before

In the case when the regime of one-dimensional flows is realized (along the z axis), the
perturbed mass along the SR beam has the form m, = p(z,t) dy and expression (8) takes

the form
(2, ) = —anpodo (p(z’t) - 1) + s (pods)? ((p('z’”)Z _ 1) . ()

£o Po

Thus, the measurement of the intensity of the SR passed through the sample under study
makes it possible to trace the dynamics of the particle density distribution.

3. Test Problems

For the one-dimensional case, verification of the mathematical model was carried
out using experimental data [15]. The experiments were carried out using PMMA as the
material of the projectile plate, the specimen, and the «windows supporting the specimen,
through which the particle velocity was recorded using a laser interferometer. Thus, the
specimen and the «windows formed a continuous layer in which the particle velocity was
measured in a certain plane.

Below we present the results of one-dimensional calculations in the geometry
corresponding to the experiment [15]. The impact of two PMMA plates is considered.
Geometry is as follows: initial thickness of impactor and sample is h = 6.35 mm, initial
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thickness of «<windows is h = 25 mm. At the initial moment of time, the impactor speed
was set equal to ug = 450 m/s and ug = 640 m/s.

The results of numerical modelling are shown in Fig. 1. Note that the work [15] presents
data averaged over a series of experiments with impactor velocities equal to 450.1 m/s and
639.1-641.2 m/s.

u, 111:’5

640 m's

300 —

450 m/s

0 2 4 6 tLus 8

Fig. 1. Time dependence of the particle velocity considered on the plane given by sample and
window: points denote experiment, lines denote numerical calculation.

The calculation results presented in Fig. 1 are in good agreement with the experiment
in the domain of both the shock wave and rarefaction wave. Thus, the Prandtl —
Reuss plasticity model describes with high accuracy the viscoplastic character of PMMA
deformation. For the two-dimensional case, verification of the mathematical model was
carried out on the Taylor problem (impact of a rod on a rigid barrier) presented in [16].

Let us present the statement of the problem. Consider a normal impact of a solid copper
cylinder on a rigid wall. The problem has axial symmetry (z is the axis of symmetry).
Geometry is as follows: the initial length Ly is 100 mm and the rod radius r is 10 mm.
The control (final) moment of time is determined by the time when the deformation of
the material stops. As a reference solution, we use experimental data on the finite length
of the rod Ly depending on the impact velocity ug. The results of numerical modelling are
presented in Table 1.

Table 1
Comparison table of experimental and numerical modelling results
ug, m/s | Ly, mm (experiment [16]) Ly, mm (calculation)
110 90 90.03
158 82 81.75
205 72 72.51
250 62 63.33

Thus, a comparison of the calculation results with experimental data showed that the
constructed mathematical model gives a correct description of shock-wave processes in solid
deformable bodies that have both viscoplastic and elastic-plastic nature of deformation.
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4. Numerical Experiment Results

This paper presents the results of numerical modelling of an experiment on shock-wave
loading of a cylindrical PMMA specimen in counterpropagating shock waves [5|. Let us
present the statement of the problem. Consider a symmetrical impact of two solid copper
cylinders by the end surfaces of a cylindrical PMMA specimen. The problem has axial
symmetry (z is the axis of symmetry). Geometry is as follows: the initial thickness of each
copper impactor is 0.5 mm, the radius is 10 mm, the thickness of the PMMA specimen is
20 mm, the radius is 10 mm. At the initial moment of time, the velocities of cylindrical
impactors made of copper are 400 m/s. The unperturbed density of PMMA is 1.18 g/cm?.

The results of numerical modelling are shown in Fig. 2.

. ke/nr’
00

1 35 s 0.5 ps

U
0 4 8 12 16 Z. mm 20

Fig. 2. Distribution of PMMA particle density at different time points.

Only the PMMA domain is highlighted in Fig. 2. The time is counted from the moment
of impact of the impactors and the specimen. Time points 0.5 us, 1.5 us, 2.5 us, 3.5 us
correspond to the convergence of shock waves to the center of the specimen, and time
points 4.5 us, 5.5 us, 6.5 us correspond to unloading.

The results shown in Fig. 2 were used to interpret the results of synchrotron diagnostics
in experiments on two-fold compression [5]. Expression (8) and the results shown in Fig. 2
make it possible to reproduce the results of synchrotron diagnostics and to compare the
results thus obtained with experiment.

To make such a comparison, it is necessary to reduce the calculated data of <relative
absorption> to the same scale that was used in the experiments [5], and also to find the
coefficients a; and s used in (8).

It follows from (8) and (9) that the quantity ¢ (z,t) is an alternating quantity, which is
positive when Jexp/Jpefore > 1, that is, for p(z,t) < po, and negative for Jep/Jbefore < 1,
i.e. for p(z,t) > po. In [5], the value of <relative absorption> is only positive. For the time
point equal to 0.5 us, the value of <relative absorption> at the center of the specimen,
where the perturbation does not yet arrived, is equal to unity. Therefore, we assume that,
in the experiment [5], the <relative absorption> is understood as the quantity g (z,t) + 1.

From a comparison of the calculated density distribution and the experiment for the
time point equal to 0.5 us, the values a;=0.5 cm?/g and ay = 107" (cm?/g)? are found.
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The application of the obtained parameters to find the <relative absorption> at the time
point equal to 4.5 us leads to agreement with the experiment (Fig. 3).

Thus, the above comparison shows that the modelling of medium flows in shock-wave
experiments allows to give a correct interpretation of the results of synchrotron diagnostics.

relative absoiption

0 4 8 12 16 Z mm 20

Fig. 3. Comparison of the calculated profiles of the relative absorption of SR with the
experimental ones. Lines without markers denote calculated profiles, lines with markers denote
experimental ones

To assess the effect of lateral unloading in a cylindrical PMMA specimen and the limits
of applicability of the one-dimensional complex, the results of numerical modelling in one-
and two-dimensional cases are compared. Figs. 4-7 show the density profiles at the time
points equal to 2.5 us and 3.7 us, corresponding to the convergence of shock waves to the
center of the specimen, and the time points equal to 5 us and 7.5 us, corresponding to
unloading. In Fig.8, the stress fields are presented at the same time points for the one-
and two-dimensional cases.

p, kemr’
r, mm

1230
1210
1190
1170
1150
1130
1110
1090

5 A 5 A
2 4 6 8 10 12 14 16 13z mm 1070

Fig. 4. Density distribution at the time point equal to 2.5 us
Conclusion

In this work, we implement a mathematical model in the form of an one- and
two-dimensional code, which makes it possible to calculate viscous-elastic-plastic flows
of a solid deformable body in Lagrangian variables. To describe dynamic processes in
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Fig. 5. Density distribution at the time point equal to 3.7 us
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Fig. 6. Density distribution at the time point equal to 5 us

p, ke’

I, 1mm
10 1170
1150
8
1130
6
1110
4 1090
1070
2 4 6 8 10 12 14 16 18z, mm

1030

Fig. 7. Density distribution at the time point equal to 7.5 us

PMMA, the Prandtl — Reuss model of elastoplasticity is applied, and the use of the model
is proved. To verify the numerical code, we carry out mathematical modelling of the
experiment on the impact of two PMMA plates and the Taylor problem. Mathematical
modelling of an experiment on shock-wave loading of a cylindrical PMMA specimen in
counterpropagating shock waves was also carried out in 1D and 2D formulations. The
calculated profiles of the relative absorption of synchrotron radiation are in good agreement
with the experimental ones. The study of the role of radial unloading shows that the stress
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0.0 0.5 1.0 15 z,mm 2.0

Fig. 8. Stress fields: lines without markers denote the calculated profiles for the one-dimensional
case, lines with markers denote the calculated profiles for the two-dimensional case

profiles for 1D and 2D calculations at the stage of shock wave convergence to the center
are in good agreement, however, as shown by two-dimensional calculations, a significant
density inhomogeneity along the radius arises during unloading due to re-reflection of
shock waves, which complicates interpretation of experimental results using synchrotron
diagnostics.
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MOAEJJINMPOBAHUE YIAPHO-BOJ/JIHOBBIX
QKCIIEPUMEHTOB IIO JIBYKPATHOMY C2XXATUIO
ITIOJIMMETNJIMETAKPUJIATA

H. JI. Kaunawesa, E. C. Illecmaxosckasn, A. II. Slaosey

B nanHOi1 pabore mpejicTaB/ieHa MaTeMaTHIeCKasi MOJIEJIb OJIHO- M JIBYMEPHBIX YIIPYTO-
IJIACTUYECKUX TedeHuil cpenpbl. JIjis onmcaHust IIaCTUYIECKUX CBONCTB MaTepuasia IIprMe-
HsieTcst Mojiestb [Ipanariis — Peiica. IIpeacraBiennast Mojiesib peau30BaHa B BUE OJITHOMED-
HOTO KOJI3 B IJIOCKOI N€OMETPHUHU U IBYMEPHOI'O KOJIa B IUJINHIPUIECKONH OCECUMMETPUIHOM
reomerpun. Jlanable TpOrpaMMHbIE KOJbI [TO3BOJIAIOT BBIYUCIISATH TAKKe ITOTJIOIIEHNE CHH-
XPOTPOHHOIO U3JIy4eHnsl B 00beMe CPeIbl B PAa3/IMYHble MOMEHTHI BPEMEHHU, UTO JTAeT BO3-
MOXKHOCTH WHTEPIIPETUPOBATH PE3YJIbTAThI YIAPHO-BOJHOBBIX SKCIIEPUMEHTOB C IIPUMEHe-
HUEM CUHXPOTPOHHOI nuarfHoctuku. s Bepudukamum 9ucjeHHOro Ko/a, pean3yioero
JAHHYIO MOJIEJb, IIPOBEIEHO MATEMATHIECKOE MOJEIUPOBAHNE IKCIEPUMEHTA 110 COyIape-
HUIO JIBYX ILUIACTUH U3 MOJMMETUIMETAKPUIIATA U 331a49n Teiiyiopa [IJisi MEIHOTO ITUINHIIPA.
[Tpumenenne moenu mwractuanoctu [Ipanaris — Peiica Kk onncanuio [uHAMIYECKHAX IPOIEC-
COB B IIOJINMETHJIMETAKPUJIATE IOKA3AJIO, UTO JaHHASI MOJE/Ib JOCTATOYHO XOPOIIIO paboraer
U B BSABKOILIACTUYIECKOI cpejie 6e3 UCII0JIb30BaHUs KAKUX-IH00 MTOANOHOYHBIX [IaPaMETPOB.
Taxke nposejieHo B 1D- u 2D-mmocranoBKe MaTeMaTndeckoe MOJIEJNPOBAHIE SKCIEPUMEH-
Ta C CHHXPOTPOHHON JUATHOCTUKON 110 yIaPHO-BOJTHOBOMY HATDPYKEHUIO [MJINHIPAIECKOTO
00pasma MoJIMMeTHIMETAKPUIIATA BO BCTPEYIHBIX YIAPHBIX BOIHAX. PacdyeTHbie npoduin o1-
HOCHUTEJIbHOTO IOTJIOIIEHUsI CUHXPOTPOHHOI'O MU3JIyUYeHUsI COIJIACYIOTCsI C IKCIEPUMEHTAJIb-
HBIMH, 9TO TO3BOJISIET JATh OJHO3HAYHYIO HHTEPIIPETAINIO PE3Y/IbTATOB SKCIIEPUMEHTOB C
[IPUMEHEHUEM CHHXPOTPOHHOI'O u3JiydeHus. VcciegoBaHue poJin paiuajbHON pasrpys3Ku
TOKa3aJ10, I9TO Mpoduan Hanpsikeruit misg 1D- u 2D-pacdeToB Ha cTaaun CXOXKICHUST Yaap-
HBIX BOJIH K IEHTPY XOPOIIO COIVIACYIOTCS, OHAKO, KaK IMOKA3aJIM JIBYMEDHBIE PACUETHI,
[IPU PA3rpy3Ke BO3HUKAET CYIIECTBEHHAS HEOIHOPOIHOCTD IIJIOTHOCTH 10 PAJIAYCY U3-3a IIe-
peoTpaXKeHusl YAapHBbIX BOJIH, UYTO YCIOXKHSIET HHTEPIIPETAINIO PE3YJIbTATOB SKCIIEPUMEHTOB
C WCIIOJIb30BAHNEM CHHXPOTPOHHOM JUATrHOCTUKH.

Karouesvie caosa: eazkonaacmuveckoe mewerue; ynpy2oniacmuieckoe MmeveHue; Mo-

deaw Ilpandomasn — Petica; noAuMemuiMeMaKpusam,; CUHTPOMPOHHOE USAYUEHUE.
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