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The article is devoted to the study of a nonlinear model of fluid filtration based

on the stochastic Oskolkov equation. It is assumed that the experimental initial data is

affected by “noise”, which leads to the study of a stochastic model with the Nelson–Glicklich

derivative. Sufficient conditions for the existence of solutions of the investigated model with

the initial Showalter–Sidorov condition are constructed. An algorithm for the numerical

solution method is constructed and a computational experiment is presented.
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Introduction

In the study of natural phenomena, the development of the theory of random processes
led to a transition from deterministic representations to probabilistic ones and, as a result,
the emergence of a large number of works devoted to stochastic modelling in mathematical
biology, chemistry, economics, etc. [1–3]. For a long time, the theory of stochastic models
(in the finite-dimensional case) was developed in the framework of the now classical Ito–
Stratonovich–Skorokhod direction [4]. The main problem solved here is cupping difficulties
associated with differentiating a non-differentiable (in the “usual” sense) Wiener process.
These difficulties are overcome by passing from the differential equation to the integral
one and subsequent consideration of the integrals of Ito, Stratonovich, etc. The work [5]
presents fundamental review of attempts to continue the Ito–Stratonovich–Skorokhod
approach in the infinite-dimensional situation. The paper [6] contains applications of the
results obtained in [5] to classical models of mathematical physics. Currently, researchers
(see, for example, [4, 7]) actively develop a new approach to the study of stochastic
equations, where “white noise” stands for the Nelson–Gliklikh derivative of the Wiener
process. We also note that overcoming the differentiation of the Wiener process by
integration is not the unique method of studying stochastic equations. At the school
founded by I.V. Melnikova, a direction arose in which stochastic equations are considered
in Schwartz spaces [8]. Here the white noise is the generalized derivative of the Wiener
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process. Let us also pay attention to the model of the Shestakov–Sviridyuk measuring
device, in which the “white noise” is understood as the Nelson–Gliklikh derivative of the
Wiener process [9, 10].

One of examples of problems with random influence is the problem of recovering the
input signal, since the experimental data are distorted by random noise. Problems of
finding observation values by experimental data arise when solving various problems [11].
This problem is a preliminary stage in solving problems of dynamic measurements. In
the theory of dynamic measurements, an actual problem is the problem of restoring a
measurement by an observation. The traditional approach to solution of this problem is
an approach based on the theory of inverse problems. Another one, which is traditional
approach as well, is the approach based on the theory of automatic control [12]. Also,
researchers study the case when the observation is distorted by white noise, which is
understood as the derivative of Brownian motion in Einstein’s theory. The work [13]
obtains sufficient conditions for the existence of a solution to the Cauchy–Dirichlet problem
for a stochastic model of Sobolev type. Note that in the model of the measuring device
Shestakov–Sviridyuk under the “white noise” is understood as the derivative of Nelson–

Gliklich
o
η (t) [9]. The notion of the Nelson–Gliklikh derivative

o
η (t) was introduced in

the monograph [4]. Moreover, this derivative coincides with the classical derivative if η is
a function. Also, note that the Nelson–Gliklikh derivative is based on the concept of the
derivative in the mean introduced by E. Nelson [10]. In order to study the Cauchy problem,
we construct the spaces of K-“ noises”, i.e. the spaces of stochastic K-processes that are
almost surely differentiable in the sense of Nelson–Gliklikh. This approach is based on the
paper [7]. Note that this approach allows to transfer on the stochastic case the methods of
functional analysis that are applied in the deterministic case [1–3]. The work [13] considers
various mathematical models based on semilinear equations in evolutionary and dynamic
form in the deterministic case. The work [7] is the first attempt to study the evolutionary
model in the stochastic case. It should be noted that the main research methods of this
model are transformed from the deterministic case [13].

This work is devoted to the numerical study of the Showalter–Sidorov problem for
the stochastic equation of fluid filtration. Let D ⊂ R

n be a bounded domain with a
boundary ∂D from the class C∞. Often in experiments, “noises” can occur. Then, to study
physical models, it is necessary to consider stochastic models. In the stochastic case, the
mathematical model of nonlinear filtering has the form

η(s, t) = 0, (s, t) ∈ ∂D × R+, (1)

(λ−∆)
o
η= α∆η − |η|p−2η, p ≥ 2. (2)

One of the well-known initial value problems for the model under consideration is the
weakened (in the sense of S.G. Kerin) Showalter–Sidorov problem

lim
t→0+

(λ−∆)(η(t)− η0) = 0, s ∈ D. (3)

For the first time, equation (2) without stochastic component was described by
A.P. Oskolkov [15]. In general, equation (2) without stochastic component illustrates the
dependence of the pressure of a viscoelastic incompressible fluid (for example, oil), filtering
in a porous formation, on an external load (for example, the pressure of water injected
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through the wells into the formation). Problem (1), (2) can be reduced to the stochastic
equation

L
o
η= Mη +N(η) (4)

endowed with weakened Showalter–Sidorov condition (3). Solution (4) η = η(t) is a
stochastic K-process. Stochastic K-processes η = η(t) and ζ = ζ(t) are considered to be
equal, if almost surely each trajectory of one of the processes coincides with a trajectory
of other process.

1. Stochastic Mathematical Model of Nonlinear Filtration

Consider a complete probability space Ω ≡ (Ω,A,P) and the set of real numbers R

endowed with a Borel σ-algebra. A measurable mapping ξ : D → R is called a random
variable. The set of random variables having zero expectations (i.e. Eξ = 0) and finite
variance forms Hilbert space L2 (i.e. Dξ < +∞) with the inner product (ξ1, ξ2) = Eξ1ξ2,

where E, D are the expectation and variance of the random variable, respectively.
Consider a set I ⊂ R and the following two mappings. The first one, f : I → L2

associates each t ∈ I with the random variable ξ ∈ L2. The second one, g : L2 ×D → R,
associates each pair (ξ, ω) with the point ξ(ω) ∈ R. The mapping η : R × D → R of
the form η = η(t, ω) = g(f(t), ω), where f and g are defined above, is called a stochastic
process. A random process η is called continuous, if almost surely all its trajectories are
continuous. The set of continuous stochastic processes forms a Banach space, which is
denoted by C(I,L2).

Consider a real separable Hilbert space (H, < ·, · >) identified with its conjugate
space with the orthonormal basis {ϕk}. Each element x ∈ H can be represented as x =
∞
∑

k=1

< x, ϕk > ϕk. Next, choose a monotonely decreasing numerical sequence K = {µk}

such that
∞
∑

k=1

µ2
k < +∞. Consider a sequence of random variables {ξk} ⊂ L2 such that

∞
∑

k=1

µ2
kDξk < +∞. Denote by HKL2 the Hilbert space of random K-variables of the form

ξ =
∞
∑

k=1

µkξkϕk. Moreover, there exists a random K-variable ξ ∈ HKL2, if, for example,

Dξk < const ∀k. Note that the space HKL2 is a Hilbert space with the scalar product

(ξ1, ξ2) =
∞
∑

k=1

µ2
kEξ

1
kξ

2
k. Consider a sequence of random processes {ηk} ⊂ C(I,L2) and

define the H-valued continuous stochastic K-process

η(t) =
∞
∑

k=1

µkηk(t)ϕk, (5)

if series (5) converges uniformly in the norm HKL2 on any compact set in I and consider
random variable

η0 =
∞
∑

k=1

µkη0kϕk. (6)

Consider the Nelson–Gliklikh derivatives of the random K-process

o
η (t) =

∞
∑

k=1

µk

o
ηk (t)ϕk
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inclusively in the right-hand side, and all series converge uniformly in the norm HKL2

on any compact from I. Next, consider the space C
1(I;HKL2) of continuous stochastic

K-processes and the space C
1(I;HKL2) of stochastic K-processes whose trajectories are

almost surely continuously differentiable by Nelson–Gliklikh.
Consider dual pairs of reflexive Banach spaces (H,H∗) and (B,B∗), where N =

◦

W 1
2 (D), B = Lp(D), H =L2(D) defined in the domain D such that the embeddings

H →֒ B →֒ H →֒ B∗ →֒ H∗ (7)

are dense and continuous. The operators L, M and N are defined as follows:

(Lη, z) = λ(η, z) + (∇η,∇z) ∀ η, z ∈ HKL2,

(Mη, z) = −α(∇η,∇z) ∀ η, z ∈ HKL2,

(N(η), z) = −
(

|η|p−2η, z
)

∀ η, z ∈ BKL2,

where (·, ·) is the dot product in HKL2. Similarly, we construct the spaces HKL2 and BKL2.
As a system of functions {ϕk} consider sequence of eigenfunctions of the homogeneous
Dirichlet problem for the Laplace operator (−∆) in the domain D, and denote by {λk}
the corresponding sequence of eigenvalues numbered in non-decreasing order taking into
account the multiplicity.

Lemma 1. [14] (i) For all λ ≥ −λ1, the operator L ∈ L(HKL2;H
∗

KL2) is self-adjoint,
Fredholm and non-negative definite.

(ii) For all α ∈ R+, the operator M ∈ L(HKL2;H
∗

KL2) is symmetric and the operator
(−M) is 2-coercive.

(iii) The operator N ∈ C1(BKL2;B
∗

KL2) is dissipative and the operator (−N) is p-
coercive.

Taking into account that the operator L is self-adjoint and Fredholm, we identify
H ⊃ kerL ≡ coker L ⊂ H∗. We use the subspace kerL in order to construct the
subspace [kerL]KL2 ⊂ HKL2 and, similarly, the subspace [coker L]KL2 ⊂ H

∗

KL2. Taking
into account that embeddings (7) are continuous and dense, we construct the spaces
H∗

KL2 = [cokerL]KL2 ⊕ [im L]KL2 and B∗

KL2 = [cokerL]KL2 ⊕ [im L ∩ B∗]KL2. We use
the subspace coimL ⊂ H in order to construct the subspace [coimL]KL2 such that the
space HKL2 = [kerL]KL2⊕ [coimL]KL2. Consider [kerL]KL2 ≡ B0

KL2 such that the space
[coimL]KL2 in order to construct the set B1

KL2, then BKL2 = B0
KL2⊕B1

KL2. Notice, that
L ∈ L(H;H∗) is a linear, continuous, self-adjoint, non-negatively defined and Fredholm
operator, then L ∈ L(HKL2;H

∗

KL2) is a linear, continuous, self-adjoint, non-negatively
defined and Fredholm operator, and

HKL2 ⊃ [kerL]KL2 ≡ [coker L]KL2 ⊂ H
∗

KL2

if

H ⊃ kerL ≡ coker L ⊂ H∗.

There exists a projector Q of the space H∗

KL2 on [coimL]KL2 along [cokerL]KL2 (likewise
a projector P of the space HKL2 on [kerL]KL2 along [coimL]KL2).
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Suppose that I ≡ (0,+∞). We use the space H in order to construct the spaces of
K-“ noises”, spaces C

k(I;HKL2) and C
k(I;HKL2), k ∈ N. Consider stochastic Sobolev

type equation (4).
Let λ ≥ −λ1

kerL =

{

{0}, if λ > −λ1;
span{ϕ1}, if λ = −λ1.

Then

[im L]KL2 =

{

H∗

KL2, если λ > −λ1;
{η ∈ H∗

KL2 : 〈η, ϕ1〉 = 0}, if λ = −λ1,

[coim L]KL2 =

{

HKL2, if λ > −λ1;
{η ∈ HKL2 : 〈η, ϕ1〉 = 0}, if λ = −λ1.

Hence the projectors

P = Q =

{

I, if λ > −λ1;
I− 〈·, ϕ1〉 , if λ = −λ1.

Definition 1. A stochastic K-process η ∈ C1(I;BKL2) is called a solution to equation
(4), if almost surely all trajectories of η satisfy equation (4) for all t ∈ I. A solution
η = η(t) to equation (4) that satisfies the initial value condition

lim
t→0+

L(η(t)− η0) = 0 (8)

is called a solution to Showalter–Sidorov problem (4), (8) if the solution satisfies condition
(8) for some random K-variable η0 ∈ HKL2.

Fix ω ∈ Ω, since the solution of the problem is considered trajectory. The [13] has
obtained sufficient conditions for the existence of a solution to the Cauchy–Dirichlet
problem for a Sobolev type stochastic model. The difficult problem is that the solution
lies in a subset, while in the Showalter–Sidorov problem the solution lies in the space.

Theorem 1. Let λ ≥ −λ1, α ∈ R+, n = 2, ∀p or n ≥ 3, 2 ≤ p ≤ 2+
4

n− 2
, then for any

η0 ∈ HKL2), there exists a unique solution η ∈ C
k(I;HKL2) to problem (1) – (3).

Proof. So ω ∈ D is fixed that the proof of the Theorem is equivalent to the deterministic
case [14].

2. Algorithm for a Numerical Method for Finding a Solution
to the Showalter–Sidorov Problem

Based on the theoretical results and the modified Galerkin method, an algorithm
was developed for the numerical method of solving the Showalter–Sidorov problem for the
Oskolkov model, which allows one to find approximate solutions on a segment for given
initial values and values of the coefficients α, λ, and also obtain a graph of the approximate
solutions.

Consider the Oskolkov equation (2) with the boundary condition (1) and the
Showalter–Sidorov condition (3). Here is an algorithm for finding an approximate solution
to the problem (1) – (3):
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Stage 0. Choose a monotonely decreasing numerical sequence K = {µk} such that
∞
∑

k=1

µ2
k < +∞.

Stage 1. Finding the eigenvalues and eigenfunctions of the eigenvalues of the
homogeneous Dirichlet problem for the Laplace operator (−∆).

Stage 2. Representation of the required functions in the form of a Galerkin sum

ηN (s, t) =
N
∑

k=1

µkηk(t)ϕk(s)

and substitution in (2).
Stage 3. Scalarly multiplying the equation obtained at the previous step by the

eigenfunctions ϕi(s), k = 1, ..., m,, we form a system of algebraic differential equations

E

(

∫

D

[ληktw +∇ηkt · ∇ϕi(s) + α∇ηk · ∇ϕi(s) + |ηk|p−2ηkϕi(s)]ϕids

)

= 0,

w ∈ W 1
2 (D), i = 1, ..., k.

(9)

Stage 4. Showalter–Sidorov initial conditions are set in the form

E





∫

D

[λ (ηk(s, 0)− η0(s))ϕi(s) +∇ (ηk(s, 0)− η0(s)) · ∇ϕi(s)] ds



 = 0, (10)

where the function is η0 =
∞
∑

k=1

µkη0kϕk(s) whose coefficients are independent Gaussian

random variables such that their variances are bounded (Dη0k ≤ C, k ∈ N).
Stage 5. We find the solution of the system of algebraic-differential equations (9) with

initial conditions (10) by the Runge–Kutta method of 4-5 orders.
Let us present the algorithm of a program that implements the Galerkin projection

method. The program was written in the Maple 2017 application package, operated on
an Intel (UX64) platform personal computer, and runs under Microsoft Windows. Based
on the results of generating η0k random variables, we obtain η0. Fig. 1 shows the block
diagram of the program. Let’s describe its work step by step.

Step 1. We introduce the coefficients of the Oskolkov equation α, λ, the parameters
of the domain D, the number of Galerkin approximations N , the parameter T of the time
interval [0, T ], the parameters of the random influences – mathematical expectation and
standard deviation, random variables are generated, which are part of the expansion for
the initial function, using the function stats[random, normald[µ,σ]](1).

Step 2. A separate procedure is used to find the eigenvalues and eigenfunctions of the
homogeneous Dirichlet problem for the operator (−∆).

Step 3. Using the for i to 1 do N end do loop, we form an approximate solution
in the form of a Galerkin sum and substitute it into the (2) equation.

Step 4. A separate procedure, in the for i to 1 do N end do loop, forms a system
of differential equations and a system of algebraic equations.

Step 5. The first equation of the system, which is algebraic, is solved at the initial
time and η01 is found.
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Fig. 1. Block diagram of the program for studying the Oskolkov model using the Galerkin
projection method

Step 6. A system consisting of algebraic and differential equations is solved, taking
into account the expansion of the initial function and the η01 obtained at step 5. The
solution is found using the dsolve built-in procedure.

Step 7. Functions for solving the problem are formed at times from 0 to T with a
step frequency of 0, 01T .

Step 8. Using the plot, plot3d built-in procedures, 2D and 3D plots of the functions
obtained in step 7 are displayed.

The study of a stochastic model requires a lot of computational experiments. Each of
the experiments uses the above algorithm, where for the software implementation of this
stochastic model, a generator of a random normally distributed variable with specified
parameters of mathematical expectation and variance is used. Let us present the results
of one of the computational experiments carried out. The following coefficients of the
Oskolkov equation α = 1 are given, λ = −1, the number of Galerkin approximations
N = 5, the parameter T = 1 of the time interval [0, T], the parameters of the random
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action are the mathematical expectation equal to 0 and the standard deviation equal to
2. Consider the domain D as an interval from 0 to π. The generation of random variables
included in the decomposition for the initial function gave the following results:

η0 = −0, 212286293540
√
2 sin(s)+0, 735283722265

√
2 sin(2s)−0, 113735508924

√
2 sin(3s)−

−0, 379582956388
√
2 sin(4s)− 2, 40515897478

√
2 sin(5s).

t = 0 t = 0, 5 t = 1

Fig. 2. Results of a computational experiment using the Galerkin projection method

As a result of the fifth step of the algorithm, we obtain a system of algebraic-differential
equations of the form (9), which contains four differential equations and one algebraic
equation - the first

3(η1(t))
3 − 3(η1(t))

2η3(t) + 6η1(t)(η2(t))
2 − 6η1(t)η2(t)η4(t) + 6η1(t)(η3(t))

2−
−6η1(t)η3(t)η5(t) + 6η1(t)(η4(t))

2 + 6η1(t)(η5(t))
2 + 3(η2(t))

2η3(t)− 3(η2(t))
2η5(t)+

+6η2(t)η3(t)η4(t) + 6η2(t)η4(t)η5(t) + 3(η3(t))
2η5(t)− 2η1(t)π = 0,

6(η1(t))
2η2(t)− 3(η1(t))

2η4(t) + 6η1(t)η2(t)η3(t)− 6η1(t)η2(t)η5(t)+
+6η1(t)η3(t)η4(t) + 6η1(t)η4(t)η5(t) + 3(η2(t))

3 + 6η2(t)(η3(t))
2 + 6η2(t)(η4(t))

2+
+6η2(t)(η5(t))

2 + 3(η3(t))
2η4(t) + 6η3(t)η4(t)η5(t) + 6π(η

′

2t(t))
2 − 8η2(t)π = 0,

−(η1(t))
3 + 6(η1(t))

2η3(t)− 3(η1(t))
2η5(t) + 3η1(t)(η2(t))

2 + 6η1(t)η2(t)η4(t)+
+6η1(t)η3(t)η5(t) + 6(η2(t))

2η3(t) + 6η2(t)η3(t)η4(t) + 6η2(t)η4(t)η5(t) + 3(η3(t))
3+

+6η3(t)(η4(t))
2 + 6η3(t)(η5(t))

2 + 3(η4(t))
2η5(t) + 16π(η

′

2t(t))
3 − 18η3(t)π = 0,

−3(η1(t))
2η2(t) + 6(η1(t))

2η4(t) + 6η1(t)η2(t)η3(t) + 6η1(t)η2(t)η5(t) + 6(η2(t))
2η4(t)+

+3η2(t)(η3(t))
2 + 6η2(t)η3(t)η5(t) + 6(η3(t))

2η4(t) + 6η3(t)η4(t)η5(t) + 3(η4(t))
3+

+6η4(t)(η5(t))
2 + 30π(η

′

2t(t))
4 − 32η4(t)π = 0,

−3(η1(t))
2η3(t) + 6(η1(t))

2η5(t)− 3η1(t)(η2(t))
2 + 6η1(t) eta2(t)η4(t) + 3η1(t)(η3(t))

2+
+6(η2(t))

2η5(t) + 6η2(t)η3(t)η4(t) + 6(η3(t))
2η5(t) + 3η3(t)(η4(t))

2 + 6(η4(t))
2η5(t)+

+3(η5(t))
3 + 48π(η

′

2t(t))
5 − 50η5(t)π = 0

with Showalter–Sidorov conditions

η2(0) = 1, 30325646504, η3(0) = −0, 201590940777,

η4(0) = −0, 672793272788, η5(0) = −4, 26303328689.

Then an approximate solution of the initial-boundary value problem is found, the result
which is graphically presented in Fig. 2 in the form of three-dimensional graphs at different
times t through equal time gaps.
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Fig. 3. Block diagram of the information processing algorithm for the numerical study of
the Oskolkov model

3. Information Processing and Algorithm of Its Software
Implementation. Results of Computational Experiments

The study of a stochastic model involves m computational experiments, each of
which uses a generator of a random normally distributed variable with given parameters
of mathematical expectation and variance for modeling. After the generation of random
variables, the first three stages of the numerical solution of the Showalter–Sidorov–Dirichlet
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problem for the stochastic Oskolkov equation (section 2) are implemented. For subsequent
processing of the results, a loop is run on i, which allows processing the results of m

experiments in one program. Each cycle will allow you to get several implementations of
the solution. The algorithm for the numerical study of the Oskolkov stochastic model is
shown in Fig. 3.

Experiment 1 Experiment 5 Experiment 10

Fig. 4. Graphs of the function η̃(s, t), i = 1, 5, 10

Fig. 5. Expectation
E(η̃(s, 0)) and its estimate

Fig. 6. Expectation
E(η̃(s, 0.5)) and its
estimate

Fig. 7. Expectation
E(η̃(s, 1)) and its estimate

According to the experimental results, the mathematical expectation will be the
function E(η̃(s, t)), which for any value of t is equal to the mathematical expectation
of the corresponding section, i.e. the averaged trajectory (realization) obtained as a result
of processing m experiments. The sample mean variance and standard deviation will be
functions of D(η̃(s, t)) and ση̃(t), which for any value of t are equal to the variance and
standard deviation of the corresponding sections of the random process.

As a result, with a probability of 0,997 we can use the estimate

‖η(s, t)−E(η̃(s, t))‖ < 3ση̃(t). (11)

As an example of processing information obtained as a result of a series of computational
experiments, we will use the results of ten experiments CE1 – CE10. Table presents the
values of random variables of computational experiments.

48 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

Table

Values of random variables in computational experiments CE1 – CE10

η01(t) η02(t) η03(t) η04(t) η05(t)
CE1 3,133285 1,253314 1, 110223 · 10−16 2,506628 3,759942
CE2 2,351236 0,681369 0,458532 0,942530 0,900221
CE3 2,215488 0,562147 0,493288 0,671034 0,304110
CE4 2,137601 0,518318 0,498064 0,515260 0,084965
CE5 2,085840 0,501462 0,498692 0,411737 0,000682
CE6 2,050346 0,494856 0,498748 0,340750 −0,032346
CE7 2,025767 0,492238 0,498738 0,291592 −0,045437
CE8 2,008669 0,491190 0,498727 0,257396 −0,050675
CE9 0,025985 0,490767 0,498720 0,233544 −0,052793
CE10 1,988412 0,490593 0,498716 0,216882 −0,053660

On Figure 4 shows graphs of the function η̃(s, t), i = 1, 5, 10. Graphs are placed one
by one according to the experiment number. On Figure 5 shows the execution of the
estimate (11), the red lines represent the graphs of the functions η̃(s, 0), i = 1, . . . , 10, the
green lines represent the functions E(η̃(s, 0)) + 3ση̃(0) and E(η̃(s, 0)) − 3ση̃(0) obtained
numerically. On Fig. 6 combines several graphs of functions. The red lines represent the
graphs of the functions η̃(s, 0, 5), i = 1, . . . , 10, the green lines represent the functions
E(η̃(s, 0, 5)) + 3ση̃(0, 5) and E(η̃(s, 0, 5)) − 3ση̃(0, 5) obtained numerically. Note that the
evaluation (11) is performed. On Figure 7 shows the graphs of the functions η̃(s, 1), i =
1, . . . , 10, E(η̃(s, 1)) + 3ση̃(1) and E(η̃(s, 1)) − 3ση̃(1). Graphs of η̃(s, 1), i = 1, . . . , 10
are represented by green lines, the red lines represent functions E(η̃(s, 1)) + 3ση̃(1) and
E(η̃(s, 1))− 3ση̃(1) obtained numerically, the estimate (11) is satisfied.
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АЛГОРИТМ ЧИСЛЕННОГО МЕТОДА НАХОЖДЕНИЯ
РЕШЕНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
НЕЛИНЕЙНОЙ ФИЛЬТРАЦИИ СО СЛУЧАЙНЫМ
НАЧАЛЬНЫМ УСЛОВИЕМ ШОУОЛТЕРА–СИДОРОВА

Н.А. Манакова, К.В. Перевозчикова, О.В. Гаврилова, И.М. Манаков

Статья посвящена исследованию нелинейной модели фильтрации жидкости, ос-

нованной на стохастическом уравнении Осколкова. Предполагается, что на экспери-

ментальные начальные данные влияет ≪шум≫, который приводит к исследованию сто-

хастической модели с производной Нельсона–Гликлиха. Построены достаточные усло-

вия существования решений исследуемой модели с начальным условием Шоуолтера–

Сидорова. Построен алгоритм численного метода решения и представлен вычисли-

тельный эксперимент.

Ключевые слова: уравнения соболевского типа; стохастическая модель нелиней-

ной фильтрации; производная Нельсона–Гликлиха.

Наталья Александровна Манакова, доктор физико-математических наук, до-
цент, заведующий кафедрой, кафедра уравнений математической физики, Южно-
Уральский государственный университет (г. Челябинск, Российская Федерация),
manakovana@susu.ru

Ольга Витальевна Гаврилова, кандидат физико-математических наук, доцент,
кафедра уравнений математической физики, Южно-Уральский государственный
университет (г. Челябинск, Российская Федерация), gavrilovaov@susu.ru

Ксения Владимировна Перевозчикова, старший преподаватель, кафедра урав-
нений математической физики, Южно-Уральский государственный университет
(г. Челябинск, Российская Федерация), vasiuchkovakv@susu.ru

Игорь Михайлович Манаков, студент, Санкт-Петербургский государствен-
ный университет информационных технологий, механики и оптики (г. Санкт-
Петербург, Российская Федерация), immanakov@gmail.ru

Поступила в редакцию 15 марта 2022 г.

2022, vol. 9, no. 2 51


