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Under consideration are mathematical models of heat and mass transfer. We consider
inverse problems of recovering coefficients in the main part of a parabolic equation occurring
simultaneously in a Robin-type boundary condition. The overdetermination conditions are
values of a solution at some collection of points lying inside the domain. In particular,
in the class of these inverse problems the classical problems of recovering the thermal
conductivity tensor are included. The main attention is paid to existence, uniqueness, and
stability estimates for solutions to inverse problems of this type. The problem is reduced to
an operator equation which is studied with the use of the fixed point theorem and a priori
estimates. The method of the proof is constructive and it can be used in developing new
numerical algorithms for solving the problem.
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Introduction

We examine the question of recovering heat conductivity and other thermophysical
characteristics in mathematical models of heat and mass transfer. Let G be a domain in R™
with boundary I of class C%. Assign Q = (0,7) x G. Under consideration is the parabolic
equation

u + A(t,z, D)u = Z bi(t, x)q(t) + f, (t,x) € Q, (1)

where A is an elliptic operator of the second order representable as

A(t,z,D)u = — Z aij(t, T)Ug,e; + Z a;(t, x)uy, + apu,
i=1

1,51

The equation (1) is furnished with the initial and boundary conditions

u’t:O = Uo, Bu’S = Z aij(tax>u:tj(tax>l/i+a(t7 l‘)U(t, 33')‘5 = g(ta 33'), S = (OaT) x I, (2)

ij=1

where 7 = (vy,...,1,) is the outward unit normal to I'. The unknowns in (1), (2) are a
solution w and the function ¢;(t) (i = 1,2,...,s) occurring into the right-hand side of (1)
and the operator A as coeffcients. If the functions {¢; }_; occur into the main part of the
operator A then we arrive at the classical problem of recovering the thermal conductivity
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tensor [1, 2|. The overdetermination conditions for recovering the functions {¢;}7_, are as
follows:

u’$=yi = wl(t)7 Z = 1727 . '757 (3)

where {y;} is a collection of points in G. The problems (1)-(3) arise in many fields.
The continuous emergence of new materials with complex structures (anisotropic,
multilayers, porous, and heterogeneous) in various industrial sectors appeals their thermal
characterization to ensure the control and the modelling of the heat transfers through
the processes. Essential attention has been paid to the identification of thermophysical
properties of such materials for many years. Many articles were devoted to estimation
of diffusivity, effusivity, conductivity, heat capacity and other parameters. The problems
of estimating the thermophysical parameters arise also in description of heat regimes of
permafrost zone [3]. The development of permafrost regions occurs with the disturbance
of natural conditions (deforestation, removal of snow and ground cover, development of
vegetation), which lead to a change in geocryological conditions and the development of
negative cryogenic processes. Assessment of the thermal state of frozen soils under climate
change and anthropogenic impacts is very important in northen regions.

The theoretical result devoted to the problems (1), (2), (3) are mainly connected
with the one-dimensional case. In particular, we can refer to [4, Sect.4.3], [5]-[8], where
existence and uniqueness theorems in Holder spaces are established in the case of the
heat conductivity depending on time. In the case of the heat conductivity depending only
on the space variable, some numerical methods for solving the problem are described
in [9, 10]. The main overdetermination conditions are the additional Dirichlet data at
the boundary points of the interval, on which the equation is considered or the integral
of a solution over this interval with some weight. The articles [11, 12| deal with the
multidimensional problems with integral and pointwise overdetermination conditions,
respectively. In contrast to [11, 12|, the main peculiarity of the problem (1)-(3) is that
the unknowns appear in the equation (1) and the boundary condition (2) as well and this
fact essentially complicates the problem. It is often the case when the heat conductivity
or capacity depends on temperature. As we know, there are no serious theoretical results
in this case but a lot of articles are devoted to a numerical methods for solving these
inverse problems We can refer to the articles [13]-[16], where the heat conductivity or
capacity are restored with the use of additional boundary data (for instance, additional
Dirichlet data on the boundary) and to [17]-[23] where the unknowns are recovered with
the use of temperature measurements at some points in the domain. It is often the case
that the results of numerical calculations not the heat conductivity k(u) but the value of
this functions at some collection of points. Sometimes k(u) is a polynomial in u, in this
case its coefficients are to be determined. We also refer to the known monographs [24]-
[29], where the reader can find the known results and the bibliography concerning with
parabolic inverse problems.

We look for the unknown coefficients of the operator A and the source function in the
form >, qi(t)#i(t, z), where ¢;(t, x) are some basis functions and ¢; are unknown Fourier
coefficients. In this case the operator A is representable as

A= Zferrl ql(t>AZ + As+17 (7: (q7‘+17 cee 7QS)7

Akzu == sz‘:l afj(t x)uxiacj + Z?:l af(t x)uwz + algu (Z =r+ 17 RREES + 1)’
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where the coefficients afj are known functions. In the present article we prove existence
and uniqueness theorems for solutions to the problem (1)-(3). The first section contains
conditions on the data of the problem and auxiliary results. Main results are presented in
the second section.

1. Preliminaries

Let E be a Banach space. The symbol L,(G; E) (G is a domain in R") stands for
the space of strongly measurable functions defined on G with values in E and a finite
norm ||||u()|| ||z, [15]. The notations of the Sobolev spaces W;(G; E) and W3 (Q; E)
are conventional (see [30, 31]). If E = R or £ = R" then the latter space is denoted by
W#(Q). The definitions of the Hélder spaces C*#(Q), C*#(S) can be found, for example, in
[32]. The function spaces and coefficients of (1) are assumed real. By the norm of a vector,
we mean the sum of the norms of its coordinates. Given an interval J = (0,7"), put
Wir(Q) = Wi(J: Ly(G)) N Ly(JsW () and Wy (S) = Wy (J; Ly(D)) 1 Ly(J Wy ().
Let (u,v) = [ u(x)v(x) dz.

e
Let Bs(b) be a ball of radius d centered at b. A parameter § > 0 is called admissible

if Bs(y;) NI =0, Bs(y;) N Bs(y;) =0 for i # j, 4,5 =1,2,...,s. Introduce the following
notations: Q7 = (0,7) x G, Gs = |UBs(b;), ST = (0,7) x I'. Considering the problem

(1)-(3), we assume that T' € C? (see the definition in [32]). Endow the space W (0, §; E)
(s €(0,1), >0, F is a Banach space) with the norm

B B
K lq(t:) — a(t2)II%
lo(O bz = (ol 0+ @2) " @2 = [ [ CENE atar,
0 0

If £ = R then we obtain the usual space, W (0, 3). Given s € (0,1), denote W;(O, B E) =
{q € W3(0,8; E) : t72q(t) € Ly(0, 3; E)} Endow this space with the norm

q p
ts

+(2)% 5

p
HQ( )H 0.6:E) Ly(0,6;E)

Ifs>1/pandq € W;(O, B; E) then ¢(0) = 0 and this norm and the usual norm ||-[|w:(a,p:)
for functions ¢(t) such that ¢(0) = 0 are equivalent (see [15, Subsect. 3.2.6, Lemma 1]). The
spaces W3(0, ; L,(G)) and W (QF) = W (0, 8; Ly(G)) N Ly (0, ; WA(G)) for s # 1/p
comprise the functions v(¢,z) in W;3(0, 3; L,(G)) and W;’QS(QB), respectively, such that
v(0,z) =0 for s > 1/p. The norms || - HW;,zs(Qﬁ) and || - HW;(O,B;LP(G)) are defined naturally,
i e.,

1/
el 2egey = (el 0 5.1, + 1L 0 8w20)

The spaces Wps (0,8; L,(I")) and W;’QS(SB) are defined by analogy.
The following lemma is known (see [33], Lemmas 1-4).

Lemma 1. Assume that G is a bounded domain with boundary of the class C?, Q7 =
(0,7) x G, and S™ = (0,7) x G. There exists a constant C' independent of T € (0, T such
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that

@
ov

1 1 1
< CHUHW;’Q(QT), S0 = 5 - %, s1=1- 2_p’

[ee—
WP (S ) W;O’2SO(ST)

for all v € W;*(QT) such that v(z,0) = 0. Here % s a derivative with respect to
the outward normal to 0G.

The following lemma can be found in [33, lemma 2|.
Lemma 2. Assume that s € ((n+ 2)/2p,1) and p > n + 2. Then the product qu of

the functions in W32(Q7) (1 € (0,T]) belongs to W*(Q7), and if ¢ € W*(Q) and
v e W(QT) then qu € W;’QS(QT) and the following estimate holds:

lgvllywgzsgry < collallwgzsgr (0l (gry + 0]l Laci@r)-

Ifv e W;”Q‘S(Q) then the last inequality can be rewritten in the form

||qv||WIf’25(Qf) < ClHqHWIf’QS(QT)HUHW;’QS(Q)a
and if v € W;’QS(QT) then

HQUHW;»QS(QT) < CQHQHWPS’QS(QT)||UHWPS’25(QT)'

where the constants ¢;, i = 0, 1,2, are independent of q,v and T € (0,T]. The set Q7 can
be replaced ST and the claim is valid for s € ((n + 1)/2p,1). If q depends on only one
variable t then the norm of q in W;’QS(QT) in this inequalities is replaced with the norm

of q in W;(O, 7). If both functions are independent of x then the claim remains valid but
the norms W;’QS(QT) and W;’QS(QT) in the above inequalities are replaced with the norms
in W3(0,7) and W;(0,7), respectively. In the case of q(t),v(t) € W3°(0,7) we have the
estimate

HQUHW;O(O,T) < HQHLoo(o,r)HUHW;O(O,T) + HUHLOO(Om)HQHW;O(O,Ty

In what follows, we assume that an admissible parameter § > 0 is fixed.
The smoothness and consistency conditions on the data can be written as follows:

ug(x) € W P(G), g € WoP(S), so=1/2—1/2p, f € L,(Q); (5)
ug(z) € W,72P(Gy), f € Ly(0,T; W2(Gs)); (6)

Pi(t) € W;’/2_1/2p(0,7'), Y;(0) = uo(z;), j=1,2,...,s; (7)

al, € C(Q), af € L(Q), o,dl|s € W**(S), p>n+2 (8)

ak. € Loo(0,T; W2(Gy)), af € L,(0,T; W2(Gy)),
ihi=12...,n,1=0,1,....n, k=r+1,....s (9)

bi(t,x) € Ly(Q), bi(t,x) € Ly(0,T;W2(Gy)), (1=1,2,...,7). (10)
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We look for the functions ¢; in the class W;°(0,7). So we need additional smoothness
conditions

afj (t7 yl)a &];(ta yl)7 f(tv yl)a bm(ta yl) € szo (O, T), (11)
forallg=0,1,...,n,4,j=12,....n, k=r+1,1,...;0s, m=1,2....r,l=1,...,s. In
view of the conditions (9), the traces b,,(t, y,), af(t,y;) are defined and b, (¢,y,), ay(t,y;) €
L,(0,T); even more we have that b,,(t,v,),af(t,z) € C(Gs; L,(0,T)) after a possible
modification of these functions on sets of zero measure.

Introduce a matrix B(t) of dimension s x s with rows

(=by(t, @), —ba(t, 2), ..., —bo(t, ), Apirtio(x), . ., Adtio(x)) ey, (12)

Under the above conditions, it is easy to demonstrate that the entries of this matrix belong
to the space W°(0,T). We require that there exists a constant d; > 0 such that

| det B(t)| > 8, vt € [0,T]. (13)

Consider the system
0 o o T
Bt)7° =g, 7° = (a{,45,---,4))" .
where ¢ is a vector with the coordinates f (¢, y;)—Ast1uo(y;) = (t) (7 =1,2,.. ., s) Under
the condition (11), this system has a unique solution ¢° = (¢?,...,q°) = (B(t))'g(t). The
above conditions on the data and Lemma 2 ensure that ¢° € W;°(0,T) C C([0,T]).
Introduce the operators Ao(t, x, D,) = — > 7', af)(t, x)uxlx]jLZZ Lad(t, x)uxz—l—aou =
Zf:TH @ (t)A; + Agy1, Bou = Z G al: (t, T)ug;v; + ou and assume that there exists a
constant 0y > 0 such that

n

> ali(t2)&g > 6ol¢PVE R, V(tx) € Q.

ij=1
We need also the consistency condition
Bouo(0,2)|r = (0, ). (14)

The former part of the following theorem results from Theorem 2.1 in [31] and the
proof of the latter is quite similar to those in Theorems 1.1 in [34] and Theorem 2 in [35].
Additional interior smoothness of solutions is established in many books, for instance, we
can refer to Ch. 3,5 in [32].

Theorem 1. Assume that G is a bounded domain with boundary of class C? and the
conditions (5), (8), (14) hold. Then there exists a unique solution u € W, *(Q) to the
problem

u + Ao(t, 2, Dp)u = f, uli—o = uo(z), Bouls =g (15)

satisfying the estimate

il iy < € (11, + lgllysoo ) + lollya-sogey | (16)

with ¢ a constant independent of f, g, uy and a solution w. If additionally uy = 0, g(0,z) = 0
then a solution u satisfies the estimate

||u||WI}’2(QT) < c(l[f Lo + HQHW;O»QSO(ST))a (17)
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where a constant ¢ is independent of T. If in addition the conditions (6), (9) hold then
u € Lp(ovT; W;(G&)); up € Lp(oaT; Wp2(G61>> fOT‘ every 51 S (075> [f Ug = Oag(oax> =0
and 61 € (0,6) then a there exists a constant ¢ > 0 such that

||u||WI}’2(QT) + Hu’|Lp(O,T;W§1(Gal)) + HutHLp(O,T;WpQ(Gal)) <
([ fllzp@n + 119llz0200 5oy + 1 flLo0mmzies), (18)

where the constant c is independent of 7 € (0,T).

2. Main results

Our main result is the following theorem

Theorem 2. Assume that the conditions (5)-(11), (13), (14) are fulfilled. Then on some
interval (0,70) there exists a unique solution (u,q,...,qs) to the problem (1)-(3) of the
class

u e WI}’2(QTO) ©uw € Ly(0, 7o; W;(Ggl)),ut € L,(0, 7; W;(G(sl)) Vo, € (0,06),
g €W2(0,70), j=1,2,....5.

Proof. Let u be a solution to the problem (1)-(3). Consider an auxiliary problem
q)t + Aoq) = fo, CI)(O,ZE) == Uo(l'), BOCI)‘S =4g, (19)
where
fo=f+ Z bi(t,2))(t), By® = Z ag; (t, )0, (¢, 2)v; + o (t, 2)u(t, z).
i=1 ij=1
By Theorem 1, a solution ® to this problem exists and
® e W, (Q), @ € Ly(0,70; W, (Gs,)), ®r € Ly(0, 70; W2 (Gs,)) Vo1 € (0,6).

After the change of variables u = v 4+ ®, we arrive at the problem

v+ Agv + Ao = —A(E) @ + Z bilt, 2)pi(t), pa(t) = ailt) — i (¢)- (20)
vli=0 =0, Bov+ B(fi)v]s = —=B(i)®, (21)
’U(tvy]):wj_q)(t’yj):&j’ J=12,...5s, (22)

where A(f)v = Y0 puk(t) A, B(E)v = Y75y pe(t)alve,vs, i = (..., ps). Thus,
we reduce the problem (1)-(3) to an equivalent problem (20)-(22). Fixing the functions
Wi € W;’O(O, 7) and constructing a solution v to the problem (20)-(21) on (0, 7), we obtain
a mapping v = v(fi). Study its properties. By definition, [|illyis0 o)) = iz [l1illw20 0,0
Denote by af; the higher-order coefficients of the operator Aq + A(ji). In view of the
structure of this operator, there exist a parameter p such that, for ||fi||c(o,m) < o,

n

D ajgit; 2 olel*/2 VE €R", W(t,2) € Q.

ij=1
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Theorem 1 yields that a solution to the problem (20), (21) exists and the corresponding
estimates that of Theorem 1 hold. Without loss of generality, we can assume that constants
from these estimates are independent of 7 € (0, 7. Thus, we have

lollyr2gry < el = AP + Y bilt, @) palt) |y i@r) +

ot (23)
+ HB(,L_[:>®HW;O7QSO(ST) <a Hﬁuwgo’%o(o,q—)’

where a constant c¢ is independent of 7 and we employ Lemmas 1, 2. Fix §; < d5 < ¢ and
write out the last estimate of Theorem 1, where we take the set G5, rather than G5 on the
right-hand side. Similarly, we obtain that

||UHWP1’2(QT) + ||UHLp(0,T;W£‘(G52)) + HthLp(O,T;Wg(G(;Q)) < C2||/7HW;0»250(0,T)7 (24)

where ¢, is independent of T but it depends on &1, d2. Let i € By = {/i : ||fillyirso 0,1y <
M?}. The parameter M < pg is chosen below. We have the embeddings (see Sect. 6.3 in
[36] and Theorem 18.9 in [37], the last inclusion is well known [38]).

50,28 1/2—(n42)/2p,1—(n+2)/p (T 1,2 1—(n+2)/2p,2—(n4+2) /p ()
Wio0(S) C C /2= (n+2)/2p,1=( )/p(S)’ W,*(Q) cC (n+2)/2p,2—( )/p(Q)’

s 1/2-3/2
W:(0,T) C CV27#727([0,T7). (25)
For functions vanishing at ¢ = 0, the corresponding embedding estimates are valid in S
and Q7 with constants independent of 7. This statement follows from the possibility of
zero extensions of these functions for ¢ < 0 preserving the class. But the norm on the
right-hand side must be replaced with the norm of the space W;0**0(S7) and W;3°(0,7),
respectively, in the case of the first and the last embeddings. For example, we have the

inequality

HUHcl/2—(n+2)/2p,1—(n+2)/p(§) < CHu’|W;O!250 (S7)° (26)

with ¢ independent of 7. The following inequality results from the last embedding
lu()lleqor < ™™ Pllullioq, (27)

with ¢; independent of 7. In order to prove this inequality, we should consider the function
u(é1) € W30 (0,1), write out the inequality

[u(€T)leqo) < erllwl€r)llwso o),

and make the change of variables {é7 = t. The last inequality in lemma 2 yields

lg(@)u(t, )00 < c2(lgl oo lult; ) w007 + [0t 2) w0 lalizo0.m)

and the definition of the norm in the space W;0**0(S7) and the estimate (27) ensures the
estimate

lq(t)u(t, z) HW;O’QSO(ST) < C3Tso_l/p||q“ﬁ/;0(0,r) HUHW;O’QSO(ST)v (28)

Now we obtain some additional estimates for solutions. Let v;,v, be two solutions to
the problem (20)-(21) relating to two different vectors jit, i? € By;. Extracting equalities
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(20)-(21) for different ji', we obtain

wi + Aow + A(i)w = —A(fi2) (01 +v2)/2+ Y bilt, x) () () — 17 (1)),

=1
flo(t) = fi' — [, i (t) = (@' + [)/2, w= v —vy. (29)
wli—o =0, Bow + B(fin)w|s = —B(fi2)(v1 + v2)/2[s — B(fi2)®. (30)

The analogs of the estimates (23), (24) written for solutions to this problem and these
estimates themselves imply the estimate

lwllwr2gry + lwllz,©mwies, ) + lwill,omwzes, ) < clliallyzorog,y, (1)

where the constant ¢, depends on known quantities and independent of 7. Proceed with
the construction of a solution to our inverse problem. Let v be a solution to the problem
(20), (21). The embedding theorems ensure the existence of the traces at z = y; of all
functions occurring in (20) and we have

&jt + on(éa yj) + A(ﬁ>v(t7 yj) = —A(ﬁ)@(t, yj)+

. 32
i=1
These equalities can be written in the form
Bji = F + S(fi), (33)

where the rows of the matrix B(t) are as follows:
(_bl(ta x)a _bQ(ta x)a cey _br(ta .1'), ATJrch(ta J}), cot 7Asq)(t7 x))‘x:yj'

In view of (11), all entries of B(t) are continuous. We have B(0) = B(0) and there exists
a parameter 7, such that |det B(t)| > &, > 0 on [0, 7], where &, is a positive constant. The
right-hand side of (33) contains the vector-function S(fi) whose j-th coordinate is written
as —Aov(t,y;) — A(f)v(t,y;), with v = v(f)) a solution to the problem (20), (21). The
j-th coordinate F} of the vector F'is just a function _szt- Define the parameter M =
IB="Fllwz0(0,r)/2- As we have proven, the operator ji — v(ji) is defined for the vectors
i € By We can determine the vector [i as a solution to the system (33). Demonstrate
that there exists a constant 7 < 71 such that the operator B™F+B~1S(i) : W(0, ) —
W;O (0, 72) takes the ball By, into itself and is a contraction. The definition of the quantities
q) implies that F;(0) = 0. As before, let vy,v; be solutions to the problem (20)-(21)
relating to two different vectors ji', ii* € By;. We need to estimate the norm ||[B~1S (/;1) —
B~'S (/;2)”‘;[/;0(077_). To this end, we consider the expression

— Ao (t, y;) — A(E M oi(t, y;) + Aoua(t, y;) + A *)va(t, ;) =
— Agw(t,y;) — A(fi)w(t, y;) — A(fi2) (01 + va)(t,y5) /2, (34)
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Lemma 1 yields (7 < 7!)

S

IB7'S(E1)(t) = BTS(@2) (O oo < 1 (1 Ao(vr = v2) (&, 95) o 0,0+

j=1
+ [[A(fE2) (v1 + v2) (€ y)liso 0.0y + A (01 — v2) (8, y5) w50 0,)) - (35)

Next, involving the conditions on the coefficients, Lemma 2, and the inequality (28), we
can estimate the right-hand side by the quantity

CQZ Z ||Da(vl - UQ)(t7yj’|W;O(O,T)+

j=1 |a|<2

+ e A — Bl D Y 1D (01 +0a)(t yillo o = S (36)

J=1 |a|<2

Next, we refer to Sect.5.5 in [36]. Given a function v € W}*(Q) with v(0,z) = 0, we have
the estimate

ot 5o < e o0t Bl oy < 100D lgznn gy (37)

where we take so < 51 < sy < 1 —n/2p. Note that (see Sect.5.5 in [36]) if v € W*(Q3,)

then v(t,y;) € Wy "*(0,7) and the corresponding estimate holds. Using the estimate
(37) in (36) we obtain that

J < e (o = vallLy0mwias, ) + 1vre = varllLyommwz@s, ) + 18 = Bl o)

where [ is a positive constant. This inequality, the inequalities (31), (35) imply the estimate
1B71S () (8) = B™S () ()0 0.0y < eIt — i hiro 0.

where the constant ¢ is independent of 7. If 77 < 1/2¢ then the operator B~'F+B~'S(ji) :
Wie(0,7) — W3°(0,7) takes the ball By, into itself and is a contraction. Choose a

parameter 7, < 7 so that 7, < 1/2c. The fixed point theorem ensures the existence
of a solution to the system (33) in the ball By,.

Let v = v(f). Show that this function satisfies (22). By construction, v is a solution
to the problem (20)-(21). Taking = = y; in (20), we infer

'Ut(ta yj) + on(t, yj) + A(ﬁ)”(t7 yj) = —A(ﬁ)@(t, yj>+
Zgzl bi(ta yj)ﬂi@)a ] = 17

Subtracting these equalities from (32), we obtain that (v(t,y;) — ;)); = 0 for all j and
thus the equality (22) holds.

2,...,8.
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OITPEAEJIEHNE TEPMO®OU3NYECKUX ITAPAMETPOB
B MATEMATNYECKUNX MOJAEJIAX
TEIIJIOMACCOIIEPEHOCA

C. I II1amxos

Mpr paccMaTpuBaeM MaTeMaTHIECKIE MOJEN TeImoMacconepenoca. Vceceremyrores 06-
paTHBIE 33JIa9H OIIPe e/ IeHus KO3 (MUIIEHTOB B IJIABHOM YacT TapaboInIecKOro ypaBHEeHUST
OJIHOBPEMEHHO BXOJAIIUX U B I'PAHUYHOE yCJI0BHe THlla PoOnHA. YCJIOBUsI IIEPEOIIpe e IeH s
— 3HAYEHUs PeIleHns B HEKOTOPOM HabOpe TOUEK, JIeXKAIUX BHyTpH objactu. B wacTHOCTH,
B KJIACC PACCMATPHUBAEMBIX 3aJ1a9 BXOJAT KJIACCUYECKUE 3aJIa9U BOCCTAHOBJICHUS TEH30DA
TEILJIONTPOBOIHOCTH. [JIaBHOE BHUMAHWE YJIEJISETCS BOIPOCAM CYIECTBOBAHUS, €IMHCTBEH-
HOCTHU U OIIEHKAM YCTOWYMBOCTH PEIIeHMil 0OpaTHBIX 3a/a9 TOr0 THUIA. 3aJada CBOIUTCS
K OIIEPATOPHOMY YPABHEHUIO KOTOPOE MCCJIELyeTCs IIPU IIOMOIIM TEOEPMbI O HEITOIBUKHOM
TOYKE U AllPUOPHBIX OIEHOK. MeToJ 10Ka3aTeIbCTBa sIBJISeTCs KOHCTPYKTUBHBIM M MOXKET
OBITH UCIOJBL30BAH [IPU [TOCTPOCHUN YHCJICHHBIX AJITOPUTMOB PEIeHUs 3a/aH.

Karouesvie crosa: obpamnas 360a4a; MENAOMACCONEPEHOC; MENAONDOBOOHOCTVG; NAPA-
borumeckoe YpasHEHUE.
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