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The article is devoted to the algorithm for numerical solution of the optimal control
problem in a mathematical model of wave propagation in shallow water. The mathematical
model is based on the IMBq equation (improved modified Boussinesq equation) and
Dirichlet boundary conditions. The IMBq equation belongs to the semilinear Sobolev type
equations of the second order. As it is known, the Cauchy problem for a Sobolev type
equation is not solvable for arbitrary initial values. We consider a mathematical model with
Showalter — Sidorov initial conditions that are more natural for it, making references to
the Cauchy problem where necessary. The article also provides examples of computational
experiments.
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Introduction

Consider the inhomogeneous modified Boussinesq equation (IMBq equation)
(A — A)a(s, t)y — a?Ax(s, t) — A(2*(s, 1) = u(s,t), (s,t) € (0,1) x (0,T) (1)
with a homogeneous Dirichlet boundary condition
z(0,t) = z(l,t) =0, te x(0,T) (2)
and the initial Showalter — Sidorov conditions
(A= A)(@(5,0) — 20(5)) =0, (A= A)(wls,0) —21(5)) =0, s€(0,0)  (3)
or initial Cauchy conditions
x(s,0) = zo(s), x4(s,0) =x1(s), s€(0,0), (4)

where A\, a € R.

Equation (1) has many applications in various fields of natural science. For example,
it models the propagation of waves in shallow water, taking into account capillary effects.
In this case, the function x = z(s,t) determines the height of the wave. In [1], a linear and
nonlinear mathematical model of shallow water wave propagation was constructed. In [2],
the properties of solutions of the Cauchy problem for a nondegenerate IMBq equation in
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a one-dimensional domain were studied. The existence of a unique global solution of the
Cauchy problem for equation (1) was proved in [3] for A = 1, a = 1. In [4], conditions of
blow-up solutions were obtained.

For the mathematical model (1)-(3) (or (1), (2), (4)) we set the optimal control
problem. To do this, we introduce the control space 4 = L*([0,{] x [0,7]) and single
out a non-empty, closed, and convex set U,q in it, which is called the set of admissible
controls

J(x,u) = inf,  u € Uyy. (5)

The penalty functional is given by formula

Haa) =5 [ S0 - 2O OlLedt + (1= 5) [ Juo)]at, ©)

here z(t) is the desired state of the system, 5 € (0, 1) is the weighting factor.

The optimal control problem is solved as a classical optimization problem. It allows
to balance between the proximity to the desired state and the volume of energy costs.
The optimal control problem for semilinear Sobolev type equation of the first order was
studied earlier in [5].

1. Numerical Study Algorithm

Let us describe the developed information processing algorithm for finding the optimal
control function for the mathematical model of wave propagation in shallow water in steps
corresponding to the blocks shown in Figure 1. A similar algorithm was successfully applied
for semilinear Sobolev type equation of the first order in [6].

Beginning of the program.

Step 1. Introduce all the parameters of the problem: the parameters of the equation
A, «, the ranges of variables [ and T, the initial state xo(s) and the initial velocity z1(s);
functional parameters: the desired state z(s,t), weight coefficient (3, admissible control
domain U,y, number M of terms in the Galerkin sum, and number N of term in the
Ritz sum; the weighting factor for the decomposition method 6, the penalty factor r» and
the marginal error parameter §. At this step, the parameter 6 is chosen from the interval
(0,1), and the parameter r is as large as possible so that the solution and the auxiliary
are sufficiently close (r =1, ¢ —0).

Step 2. Find the eigenfunctions ¢; and the eigenvalues \; of the homogeneous Dirichlet
problem for the Laplace operator.

Step 3. Apply the decomposition method. Linearize the equation and introduce an
auxiliary function y = y(s,t), obtain

(A — A)zy — a?Az — A(y?) = u(s, t),
y=x.
Now the IMBq equation is linear with respect to the function z.
Step 4. Define the unknown functions in the form of Galerkin sums

o(s.6) = Yo (st =D u®as) ulst) =Y wlb)eis).

74 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

C Start )

6. Setting the coefficients of
/ 1. Input initial data / Galerkin sums by the Ritz

method

7. Transformation of the

2. Solving the Sturm — .
penalty functional

Liouville problem

8. Minimization of the
3. Linearization of the IMBq penalty functional
equation

9. Compose the solution

4. Specifying functions in the
form of Galerkin sums

no

10. Verification

5. Finding a solution to the
problem with respect to the
coefficients of the control

function
/ 12. Output solution /

C End )

Fig. 1. Diagram of the algorithm

Step 5. A diagram illustrating the operation of this step is shown in Figure 2.

Step 5.1. Initial data from the main program is passed to the input.

Step 5.2. Check equation (1) for degeneracy if A = — (kT”)Q, for some k € N,
then the equation is degenerate go to step 5.3, otherwise the equation is nondegenerate,
go to step 5.8.

Step 5.3. If the Cauchy initial conditions are given, then go to Step 5.4,
otherwise go to Step 5.6.

Step 5.4. Check whether the initial functions (the initial state and initial
velocity) belong to the phase space of equation (1). If they do not belong to the phase
space, then go to step 5.5, otherwise go to step 5.6.

Step 5.5. The problem has no solutions. Completion of the subprogram.

Step 5.6. In the cycle over ¢ from 1 to M, multiply the equation and initial
conditions by the eigenfunctions (Step 2) in the sense of the inner product in L?[0,].
At the k-th step, an algebraic equation appears, and the initial conditions for zx(t) are
excluded from further consideration. Then the ordinary differential equations with initial
conditions and the algebraic equation are combined into an algebraic differential system.

Step 5.7. Solve the algebraic differential system [7].

Step 5.8. In the cycle over ¢ from 1 to M, multiply the equation and initial
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Fig. 2. Diagram of the step 5

9. Solve ODS

conditions by the eigenfunctions (Step 2) in the sense of the inner product in L?[0,1].
Since the equation is non-degenerate, the result is a system of ordinary linear differential
equations.
Step 5.9. Solve a system of ordinary differential equations by varying an
arbitrary constant.
Step 5.10. The resulting solution is output and passed to the main program.
Completion of the subprogram.
Step 6. The coefficients of the Galerkin sums for the auxiliary and control functions
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according to the Ritz method are represented as polynomials

yi(t) =Y by (OF,  wilt) = Zcz‘j ()t

It must be taken into account that

50 =20, P(0) = 2igo)

Step 7. Transform the penalty functional to take into account the introduced auxiliary
function

T 4
)= 06 [ 37 [0s,8) = 29 (s, ) ade
0 k=0
T
/ S 1y ® (s, 1) — 2 (s, 1) Ladi+ (7)

0 =0

+(1-p /Hu Hudt+r/ZHy(k (s,8) — x®) (s, )| 4.dt.

0

Step 8. Using the branch and bound method built into Maple, the minimum values
of the functional and the minimum point ¢;j,¢ =1, M,5 =0, N and b;;,i = 1,M,j =0, N
are found.

Step 9. Substituting the found values into the Ritz expansions (step 5) and then into
the Galerkin sums (step 4), obtain an approximate solution of problem (1)—(3), (5) (or
(1), (2), (4, (5)).

Step 10. This step of the algorithm is informative and consists in checking the
proximity of the solution to problem (1)—(3) (or (1), (2), (4)) z(s,t) obtained above and
the solution of the same problem w(s,t) obtained under the assumption that the control
function is known. The solution w(s,t) can be found using the algorithm described in [7].
If the error

4

err = /ZZ u(x, t;) (z,t;))*ds (8)

k=0 t;=

is greater than the given ¢, then it is necessary to return to step 1 and increase one or
more of the parameters M, N,r. If err < 9, then go to the next step.

Step 11. The functions z(s,t), u(s,t) and their graphs are displayed.

End of the program.

2. Computational Experiments

Let us present the results of information processing according to the developed
algorithm, which was implemented in the Maple environment. Information processing was
carried out on the basis of computational experiments.

Example 1. Let the following input information be given: A = -1, a =1, T = 1,
l=m1r=10,5=0.5,0=05, z(s,t) = s(m —s), M =2, N =2, z9(s) = 0.25sin(s) +
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0.5sin(2s), x1(s) = sin(s) — 0.5sin(2s). It is required to determine the optimal control
over the solutions of the Showalter — Sidorov problem for a mathematical model of shallow
water wave propagation, such that the marginal error 6 will not exceed 0.01. The domain
of admissible controls U,q = {u € L*: |u(s,t)||7. < 100}.

From this input information, it is obvious that the equation is degenerate. Using
the developed algorithm, the information was processed and the minimum value of the
functional J,,;, = 4.41 was obtained, but the marginal error was 0.03. Turn to beginning
of the algorithm and increase the penalty parameter to » = 100, obtain J,,;, = 4.86 and
err = 0.008. On figure 3 shows graphs of the solution.
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Fig. 3. Graph: a) of function z(s,t); b) of function wu(s,t)
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Example 2. Let the following input information be given: A\ = —1, a = 1, T =
1.9, 1l =, r =100, 8 = 0.5, 8 = 0.5, z(s,t) = 2sin(s), M = 2, N = 2, zo(s) =
0.25sin(s) + 0.5sin(2s), z1(s) = sin(s) — 0.5sin(2s). The domain of admissible controls is
the same. In this example, we have increased the time span to 1.9 and got the minimal
value J,,,;, = 4119. On Figure 4 shows the graphs of the control function and the system
state function.
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Fig. 4. Graph: a) of function z(s,t); b) of function wu(s,t)

Figure 5 shows changing the deviation of the state of the system from the desired. The
graph shows that the best approximation is achieved in the interval ¢ € [1.8,1.9].
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Fig. 5. Graph of function |z(s,t) — z(s,t)]

Acknowledgments. This work was supported by a grant from the Ministry of

Education and Science of the Russian Federation N FENU-2020-0022 (2020072GZ).

References

1.
2.

Whitham G.B. Linear and Nonlinear Waves. NY, Wiley, 1974.

Wang Y. On Properties of Solutions to the Improved Modified Boussinesq Equation.
Journal of Nonlinear Science and Applications, 2016, vol. 9, no. 12, pp. 6004-6020.
DOI: 10.22436/jnsa.009.12.08

Runzhang Xu, Yacheng Liu. Global Existence and Blow-up of Solutions for
Generalized Pochhammer—Chree equations. Acta Mathematica Scientia, 2010, vol. 30,
no. 5, pp. 1793-1807. DOI: 10.1016/S0252-9602(10)60173-7

. Korpusov M.O., Sveshnikov A.G. Sufficient Conditions for the Blow-up of a Solution

to the Boussinesq Equation Subject to a Nonlinear Neumann Boundary Condition.
Computational Mathematics and Mathematical Physics, 2008, vol. 48, no. 11. pp. 2077—
2080. DOI: 10.1134/S0965542508110122

Sviridyuk G.A., Manakova N.A. An Optimal Control Problem for the Hoff Equation.
Journal of Applied and Industrial Mathematics, 2007, vol. 1, no. 2, pp. 247-253.
DOI: 10.1134/S1990478907020147

Gavrilova O.V. Numerical Study of the Unique Solvability of the Showalter — Sidorov
Problem for a Mathematical Model of the Propagation of Nerve Impulses in the

Membrane. Journal of Computational and Engineering Mathematics, 2021, vol. 8§,
no. 3, pp. 32-48. DOI: 10.14529/jcem210303

Zamyshlyaeva A.A., Bychkov E.V. On the Numerical Study of the Mathematical
Model of Wave Propagation in Shallow Water. Mathematical notes of YaSU, 2013,
vol. 20, no. 1, pp. 27-34. (in Russian)

Alyona A. Zamyshlyaeva, DSc (Math), Full Professor, Head of the Department

of Applied Mathematics and Software Development, South Ural State University
(Chelyabinsk, Russian Federation), zamyshliaevaaa@susu.ru

2022, vol. 9, no. 2 79



A. A. Zamyshlyaeva, E. V. Bychkov

FEvgeniy V. Bychkov, Senior Researcher of the Department of Mathematical

Physics Equations, South Ural State University (Chelyabinsk, Russian Federation),
bychkovev@susu.ru

Received May 15, 2022.

YK 517.95, 517.97 DOI: 10.14529/jcem?220207

AJITOPUTM YNCJIEHHOT'O PEIIEHUS 3AIAYN
OIITUMAJIBHOTO YITPABJIEHU I

TIJIST MATEMATUYECKOM MOJIEJI
PACIIPOCTPAHEHU S BOJIH HA MEJIKOII BOJIE

A. A. Bamviwasesa, E. B. Bviukos

peccop,

B crarbe 06cyKaeTcss aJropuTM THCJIEHHOTO PEIIeHUsT 389U ONTUMAIBLHOTO YIIPaB-
JIEHUsI PEIIeHUsIMA B MaTeMaTHIeCKOH MOJIE/I PACIIPOCTPAHEHUsI BOJIH Ha MeJIKOi Boje. B
ocHOBe MaTeMaruieckoil mogesu jexur IMBq ypasuenue (yiydiiennoe MoauduupoBa-
Hoe ypaBHenue Byccunecka) u kpaesbie ycnosus Jupuxiie. Ypasuenune IMBq ypasuenue x
MOJTYJINHEHHBIM ypaBHEHUSIM CODOJIEBCKOIO TUIIA BTOPOro mopsiiaka. Kak m3BecTHO, 3371844
Komm jy1st ypaBHeHUsT cOHOIEBCKOTO THIIA HE PA3PEINMa IIPU TPOU3BOJIBHBIX HAYATBHBIX
sHaveHusiX. Mbl OyjieM paccMaTpuBaTh MATEMATHIECKYIO MOE/b ¢ 0oJiee eCTeCTBEHHBIMU
it Hee HavdatbHbIME yestoBusiMu [Tloyosrepa — CumopoBa, jierast OTCBLIKE K 3a1a4de Ko
TaM, TJie 9T0 HeoOxonmuMo. B craTbe Tak»Ke MPUBEIEHBI TPUMEPHI BEIYUCIUTEIBHBIX JKCIIE-
PUMEHTOB.

Karouesvie caosa: mamemamuieckas modeas; moduduyuposarnoe ypasrenue Byccu-
Hecka; 3a0a4a ONMUMAADHO20 YNPABACHUA; HUCACHHOE UCCAEIOBAHUE; NOAYAUHETHOE YPa6-

HEeHUE CODOAEBCKO20 MUNG 61Mopo2o nopm?%:a.
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