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Modifications of the BDF-method as applied to the calculation of trajectory of the

moving elements of piston machines were analyzed. On the example of the calculation of the

connecting-rod bearing of "Ruston & Hornsby 6VEB-X MK-III" engine as an international

standard for testing we estimated the effectiveness of proposed algorithms for solving the

equations of motion.
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Introduction

To solve the equations of motion of the movable elements of tribosystems well
known such techniques as implicit BDF-method [1]. BDF-methods are based on the so-
called backward differentiation formulas, when the derivative, for example, du/dτ in the
point τn+1 is calculated according value of un+1 and values of u (τ) in previous k points
un, un−1, ..., un+1−k, where k defines the order of method.

Exact solution u (τ) for the interval (τn+1−k; τn+1) is replaced by a polynomial for
unequal intervals on the basis of which we forecast vector of unknown values.

BDF-method was studied in detail with reference to the specific case - for analyzing
of the dynamics of autonomous supports. The traditional way is the reduction of the
equations of motion of the second order to equations of the first order. Will consider this
algorithm in a more general way for non-autonomous supports with misalignment of the
shaft.

1. Differential equations of the first order

Represent the equations of motion of the movable elements of tribosystems, which
described in papers [1,2,3], in the matrix form
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Ô =

(

0 0
0 0

)

; Ê =

(

1 0
0 1

)

.

For discretization of system (1) we write the vector of displacement and derivatives
in the next time step τn+1 = τn +∆τ using functions U̇n+1 = ϕ (Un+1) ; Un+1 = ξ (Un+1).
Then instead of continuous expression we obtain a next discrete task:

⌢

M ϕ (Un+1) =
⌢

F (ξ (Un+1) , τ) . (2)

For BDF-method of k-order the functions ϕ, ξ for first approximation were determined
by polynomials

U
(1)
n+1 = L(τn+1) = Un +

k
∑

i=0

βi∆Un−i, (3)

U̇
(1)
n+1 = L̇1 (τn+1) =

k−1
∑

i=−1

αi∆Un−i , (4)

where coefficients βi, αi were determined by polynomials L, L1.
Put (3), (4) to (2) for τ = τn + 1 we obtain

M̂

k−1
∑

i=−1

αi∆Un−i = F̂ (Un+1, τn+1) . (5)

The system (5) is an implicit difference scheme, which can be efficiently solved by
Newton’s method. Will find a solution for Un+1, writing the equation (5) in the form of
Newton.



α−1M̂ −

(

∂ F̂

∂ U

)(s)

n+1





(

U
(s+1)
n+1 − U (s)

n

)

=

F̂
(

U
(s)
n+1, τn+1

)

− α−1M̂
(

U
(s)
n+1 − U (s)

n

)

−

k−1
∑

i=0

αiM̂∆Un−i (6)

We introduce the notation:



α−1M̂ −

(

∂ F̂

∂ U

)(s)

n+1



 = A
(s)
n+1 ;

F̂
(

U
(s)
n+1, τn+1

)

− α−1M̂
(

U
(s)
n+1 − U (s)

n

)

−

k−1
∑

i=0

αiM̂∆Un−i = G
(s)
n+1,
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then

A
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n+1 =
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∂ẋ
−

∂M̄x

∂ẏ
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Solving system (6) by Gauss method we obtain:

∆x
(s+1)
n+1 , ∆y

(s+1)
n+1 , ∆α

′(s+1)
n+1 , ∆β

′(s+1)
n+1 .

According to coordinate’s increments in the polar coordinates we find:

χ
(s+1)
n+1 , δ

(s+1)
n+1 , χ̇

(s+1)
n+1 , δ̇

(s+1)
n+1 , σ

(s+1)
n+1 , ε

(s+1)
n+1 , σ̇

(s+1)
n+1 , ε̇

(s+1)
n+1 .

The iterative process at the next step of the integration is carried out till next condition

Ẽs+1
n+1 ≤ ε,

where

Ẽs+1
n+1 = max







∣

∣

∣

∣

Us+1
n+1 − Us

n+1

Us
n+1

∣

∣

∣

∣

, if
∣

∣Us+1
n+1

∣

∣ > 1;
∣

∣Us+1
n+1 − Us

n+1

∣

∣ , if
∣

∣Us+1
n+1

∣

∣ ≤ 1;

(7)

The value of error ε was equal 0,0001.
The value of error we estimated for each components of vector and chosen the maximal

value.
If we had Ẽs+1

n+1 > ε after i iterations the solving process was finished and we decreased
the step of the integration. After that we calculated new values of U1

n+1.
Since it is necessary to determine the forces R(u, u̇, γ, γ̇)at each time step to integrate

the partial differential equation of second order to determine the pressure in the lubricating
layer (Reynolds equation [2] or Elrod [4,5]), the time required are so large that in some
cases it is impossible to perform parametric research. This is particularly evident in the
tasks of nonlinear dynamics of journal bearings with supply of lubricating fluid through the
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holes and grooves, as in such cases the equation for the pressure distribution are integrated
numerically.

On this basis, appear relevant research and development of methods and algorithms
for solving of the equations of motion directly without reducing them to equations of the
first order, which halves the dimension of the task.

2. Differential equations of the second order

Consider another method of solving of the equations of motion without reducing them
to a system of equations of the first order. It allows to reduce the number of integrations
of Reynolds equation [5]. This is especially important when we use numerical methods of
integration, since the calculated time is essentially increasing. Consider it an example of
solutions of equation of motion for autonomous tribosystem, written in the form

mü = f(τ)− P (u, u̇). (8)

For discretization of the system (8) we replace the vector of derivatives in the next
moment of time τn+1 = τn + ∆τ by the functions u̇n+1 = ϕ(un+1), ü = ψ(un+1). Then,
instead of continuous writing obtain

m · ψ(un+1) = fn+1 − P (un+1, ϕ(un+1)). (9)

The system of equations (9) is an implicit difference scheme, which is solved by
Newton’s method. At each iteration step is required to find the solution of algebraic
equations in the form

J
(s)
n+1(u

(s+1)
n+1 − u

(s)
n+1) = F

(s)
n+1,

where

J
(s)
n+1(u

(s)
n+1, u̇

(s)
n+1, ü

(s)
n+1) =

[

m
∂ü

∂u
+
∂P

∂u̇
·
∂u̇

∂u

](s)

n+1

;

F
(s)
n+1 = −mün+1 − P (un+1, u̇n+1) + fn+1.

Having constructed the same as in the previous method, interpolation polynomials
according to (3) and (4) we can to determine the value of the function and its first derivative

u̇
(1)
n+1 at the point τn+1. The value of the second derivative of the function L1 (τ) we obtain

from the expression

ün+1 = L̈1(τn+1) =

k−1
∑

i=−1

βi∆un−i, (10)

where coefficients βi determines from L1 (τ)
Substituting (3), (4), (10) in the equation of motion (8) for moment of time τn+1 we

obtain

m

k−1
∑

i=−1

βi∆un−i + P (un+1,

k−1
∑

i=−1

αi∆un−i) = fn+1. (11)

The solution of equation (11) for the unknown value un+1 we find by Newton’s iterative
method

[

mβ−1Ê +

(

∂P

∂U

)(s)

n+1

+ α−1

(

∂P

∂U

)(s)

n+1

]

(

u
(s+1)
n+1 − u

(s)
n+1

)

= F
(s)
n+1, (12)
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where F
(s)
n+1 = fn+1−P

(

u
(s)
n+1

k−1
∑

i=−1

αi∆u
(s)
n−i

)

−m
k−1
∑

i=−1

βi∆u
(s)
n−i; Ê =

(

1 0
0 1

)

; u
(1)
n+1, u̇

(s)
n+1,

ü
(s)
n+1 – are calculated by formulas (3), (4), (10).

In general, for the coordinates x, y we can be written solution of the system (11) as
follows:

x
(s+1)
n+1 = x

(s)
n+1 +

c1b2 − c2b1

a1b2 − a2b1
; y

(s+1)
n+1 = y

(s)
n+1 +

a1c2 − a2c1

a1b2 − a2b1
, (13)

where

a1 = mβ−1 −
∂Rx

∂x
− α−1

∂Rx

∂ẋ
; a2 = −

∂Ry

∂x
− α−1

∂Ry

∂ẋ
;

b1 = −
∂Rx

∂y
− α−1

∂Rx

∂ẏ
; b2 = mβ−1 −

∂Ry

∂y
− α−1

∂Ry

∂ẏ
;

c1 = fn+1,x +R(s)
x −m

k−1
∑

i=−1

βi∆x
(s)
n−i; c2 = fn+1,x +R(s)

y −m

k−1
∑

i=−1

βi∆y
(s)
n−i;

We named this approach – algorithm 1.
Numerical experiments have shown that a significant increase in effectiveness of BDF-

method can be achieved if instead of Newton’s method in the form of (12) to apply it’s
modification

[

mβ−1Ê +

(

dP

du

)(s)

n+1

]

·

[

u
(s+1)
n+1 − u

(s)
n+1

]

= F
(s)
n+1, (14)

where F
(s)
n+1 = fn+1 − m

k−1
∑

i=−1

βi · ∆u
(s)
n−i − P

(

u
(s)
n+1 ,

k−1
∑

i=−1

αi∆u
(s)
n−i

)

; ∆u
(s)
n+1 = u

(s)
n+1 − un;

∆u
(s)
n−i = ∆un−i, (i = 0, 1, ..., k − 1) .

The expression
dP

du
is a matrix of full derivatives of function

P (u) = P

(

un+1,

k−1
∑

i=−1

αi∆un−i

)

.

Thus, in the solution is not necessary to compute partial derivatives of functions P
by u̇, so the calculation time is essentially reduced. We named this approach - fast BDF-
method or algorithm 2. In the available literature this modification of the method could
not be found.

To determine the partial derivatives we used difference relations:

∂Rx

∂x
=

Rx

(

ũ
(s)
n+1,

k−1
∑

i=−1

αi∆ũn−i

)

− Rx

(

u
(s)
n+1,

k−1
∑

i=−1

αi∆u
(s)
n−i

)

∆x
, (15)

where

ũ
(s)
n+1 =

(

x
(s)
n+1 +∆x

y
(s)
n+1

)

∆ũ
(s)
n+1 =

(

x
(s)
n+1 +∆x− xn

y
(s)
n+1 − yn

)

,

∆ũ
(s)
n+1 = ∆un−1, (i = 0, 1, . . . , k − 1).
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Solution of system (14) we found by formulas (13), where

a1 = mβ−1 +
∂Rx

∂x
; a2 =

∂Ry

∂x
; b1 =

∂Rx

∂y
; b2 = mβ−1 +

∂Ry

∂y
;

c1 = (F
(s)
n+1)x; c2 = (F

(s)
n+1)y.

It is known that Newton’s method converges for the right choice of the initial
approximation. To select the initial positions and velocities of the shaft we use a polynomial
of the second degree, and for accelerations - third-degree polynomial.

We introduce a new coordinate axis T . Positive direction which is opposite to the
direction of the axis τ , the beginning corresponding to the current point in time τn+1.
Discrete values Ti are determined by the values τn−i according to the expression

Ti = τn+1 − τn−i, (i = −1, 0, 1, ..., k − 1, k) .

In the coordinate system T we can write the expression (3), (4) for polynomials of
second degree (k = 2)

un+1 = un + γ0∆un + γ1∆un−1, (16)

u̇n+1 = α−1∆un+1 + α0∆un, (17)

where

γ0 =
T0

T1 − T0
(1 +

T1

T2 − T0
); γ1 = −

T0T1

(T2 − T0)(T2 − T1)
;

α−1 =
1

T0
+

1

T1
; α0 = −

T0

T1(T1 − T0)
.

For determination ün+1 (10) we use polynomials of third degree (k = 3)

ün+1 = β−1∆un+1 + β0∆un + β1∆un−1, (18)

where

β−1 =
2(T0 + T1 + T2)

T0T1T2
;

β0 = −2
(T2 − T0)(T2 + T0) + T1(T2 + T1)

T1T2(T1 − T0)(T2 − T0)
;

β1 =
2(T0 + T1)

T2(T2 − T1)(T2 − T0)
.

If we use the interpolation polynomial of the second degree L1(τ), then the
approximation of the derivative of the second order becomes a constant, which reduces
the accuracy and stability of the method.

The value of the integration step was limited by the range of variation
T0min < T0 < T0max, where T0min, T0max respectively the minimum and maximum size
of discretization of τ , which selected experimentally in solving test tasks. To correct time
step in the algorithm we used Fowler procedure [5].

The algorithm 1 uses an iterative Newton’s scheme. At each iteration is required to
make nine integrations of Reynolds equation. The algorithm 2, due to the approximate
calculation of the Jacobian at each iteration of Newton’s method, requires only five
integrations of Reynolds equation. It significantly decreases time of calculation of
hydromechanical characteristics of tribosystems.
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3. Results and calculations

Studies, which performed for calculation of trajectories of movement parts of
connecting rod bearings for engines Ch 12/12 and ChN 21/21 by rapid BDF-method
shown that the computation time compared with the BDF method for equations of the
1st order twice decreased, while the number of integrations of Reynolds equation was
respectively: 1531 and 5931, (engine Ch 12/12); 1497 and 5621 (engine ChN 21/21).

Results of calculation of the connecting-rod bearing of "Ruston & Hornsby 6VEB-
X MK-III"engine as an international standard for testing [5] are presented in Table.
We analyzed main output hydromechanical characteristics of journal bearings for piston
engines, which include: the minimal (inf hmin) and average (h∗min) film thicknesses of
the loading cycle; the maximum (sup pmax) and average (p∗max) hydrodynamic pressures
in a lubricant film; the integrated average friction losses N∗ for a loading cycle.
These parameters indirectly characterize wear resistance, durability and reliability of
tribosystems of piston engines.

Table 1

Results of calculation

Algorithm Hydromechanical parameters The average number of
integrations of Reynolds
equation for calculation step

inf hmin sup pmax h∗min p∗max N∗

1 3.60 34.32 9.92 19.27 1359 13.81
2 3.60 34.42 9.92 19.22 1359 7.06

As can be seen from Table, algorithm 2 is the most efficient. Compared with the
classical algorithm 1 solution time is reduced more than two time, and the number of
integrations of Reynolds equation for calculation step – by 2.5 times.

This work was supported by a grant of the Ministry of Education and Science
of the Russian Federation for applied research, code 2014-14-579-0109. The unique
identifier for Applied Scientific Research (project) is RFMEFI57714X0102. Agreement
no. 14.577.21.0102.

References

1. Goryacheva I.G., Morozov A.V. Rozhdestvenskiy Y.V., Gavrilov K.V. Doykin A.A.
Development of Method for Calculating and Experimentally Evaluating Tribological
Parameters of "Piston-Cylinder" Tribosystem of Diesel Engine. Journal of Friction
and Wear, 2013, vol. 34, no. 5, pp. 339–348. doi: 10.3103/S106836661305005X

2. Zadorozhnaya E.A., Levanov I.G., Pyryev S.A. [Calculation of Efficiency Tribo-Unit
"Gudgeon Pin - the Little End" of Tractor Diesel]. Journal of Mechanical Engineering,
2013, no. 12, pp. 42–47. (in Russian)

2015, vol. 2, no. 1 9



K.V. Gavrilov, A.А. Asaulyak, I.L. Kopyrkin

3. Surkin V.I., Zadorozhnaya E.A., Niyazov H.M. [Calculation Heavy-Loaded Tribo-
Units of High Performance Diesel Engine]. Bulletin of the South Ural State University.
Series "Engineering", 2012, no. 12(271), pp. 97–102. (in Russian)

4. Prokop’ev V.N, Boyarshinova A.K., Gavrilov K.V. [Hydromechanical Characteristics
of Heavy-Loaded Bearings with the Non-Circular Journal and Bearing]. Problems of
Mechanical Engineering and Reliability of the Machines, 2009, no. 4, pp. 98–104. (in
Russian)

5. Gavrilov K.V. [Algorithm of Mass Conservation of Calculation of Hydromechanical
Characteristics and Optimization of Parameters of Heavy-Loaded Bearings].
Dis. . . . kand. tekhn. nauk, Chelyabinsk, 2006. (in Russian)

Konstantin V. Gavrilov, Candidate of Technical Sciences, Associate Professor,
Department of Motor Transports and Service of Automobiles, South Ural State University,
Chelyabinsk, Russian Federation, gavrilovkv1@rambler.ru.

Arseny A. Asaulyak, Postgraduate student, Department of Motor Transports and
Service of Automobiles, South Ural State University, Chelyabinsk, Russian Federation,
detroit_diesel@mail.ru.

Ilya L. Kopyrkin, Student, Department of Motor Transports and Service
of Automobiles, South Ural State University, Chelyabinsk, Russian Federation,
fypm_kins@mail.ru.

Received February 20, 2015

10 Journal of Computational and Engineering Mathematics


