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EXISTENCE OF SOLUTIONS IN QUASI-BANACH SPACES

FOR EVOLUTIONARY SOBOLEV TYPE EQUATIONS

IN RELATIVELY RADIAL CASE
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Sobolev-type equations (equations not solved for the highest derivative) probably
first appeared in the late nineteenth century. The growing recent interest in Sobolev-type
equations motivates us to consider them in quasi-Banach spaces. Specifically, this study aims
at understanding non-classical models of mathematical physics in quasi-Banach spaces.

This paper carries over the theory of degenerate strongly continuous semigroups
obtained earlier in Banach spaces to quasi-Banach spaces. We prove an analogue of the
direct Hille–Yosida–Feller–Miyadera–Phillips theorem. As an application of abstract results,
we consider the Showalter–Sidorov problem for modified linear Chen–Gurtin equations in
quasi-Sobolev spaces.

Keywords: degenerate strong continuous semigroups; quasi-Banach spaces; Hille–

Iosida–Feller–Miadera–Phillips theorem; modified Chen–Gurtin equation; quasi-Sobolev
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Introduction

Given the space L(V) of bounded linear operators on a Banach space V, refer to a
mapping V • ∈ C(R;L(V)) as a semigroup of operators whenever for all s, t ∈ R+ we have

V sV t = V s+t. (1)

Usually a semigroup of operators is identified with its graph {V t : t ∈ R+}. Say that a
semigroup {V t : t ∈ R+} is of class C0 (or is a C0-semigroup) whenever it is strongly
continuous for t > 0, i.e. for arbitrary v ∈ V we have

lim
t→0+

V tv = v.

Constructions of this type arise as semigroups of solving operators of the equation

v̇ = Av (2)

on V with a closed densely defined linear operator A ∈ Cl(V).
A classical result on the solvability of (2) is the Hille–Yosida–Feller–Miyadera–Phillips

theorem [1] (the HYFMF theorem) establishing a bijection between the set of semigroups
of solving operators and the set of operators called the generators of these semigroups.
The conditions for A to be a generator of a semigroup of solving operators of (1), called
[2] the radiality of A, amount to certain requirements on the resolvent set ρ(A) and the
resolvent Rµ(A) of A. The theory of C0-semigroups was later extended to Fréchet spaces
[3, Ch. 9].
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A semigroup {V t : t ∈ R} is called degenerate whenever its identity element

P = s- lim
t→0+

V t

is a projection in V. Degenerate C0-semigroups of operators appeared for the first time in
[4] as semigroups of solving operators of linear evolutionary Sobolev-type equations

Lu̇ = Mu, (3)

where U and F are Banach spaces, L ∈ L(U;F) is a bounded linear operator, and
M ∈ Cl(U;F) is a closed and densely defined linear operator. The complete theory of
these semigroups is presented in [5, Ch. 2] and extended to Fréchet spaces in [6].

The equations of the form (3) appeared for the first time at the end of 19th century in
Poincaré’s works, and in the second half of the 20th century Sobolev began their systematic
study (see [7] for a great survey). Since the interest in Sobolev-type equations is growing
fast recently (see [8] – [11] for instance), it becomes necessary to consider them in quasi-
Banach spaces. This is forced not as much by the desire to expand the theory as by the
intention to interpret the nonclassical models of mathematical physics [12] in quasi-Banach
spaces [13].

The Sobolev-type equations (2) are called dynamical when their solutions extend to
the whole of R and evolutionary when their solutions exist only on R+ [14]. The existence
of solutions for the dynamical Sobolev-type equations is proved in article [15].

Aside from the introduction and bibliography, this article consists of three sections.
In the auxiliary first section we consider quasi-Banach spaces and closed bounded linear
operators on them. We also introduce quasi-Sobolev spaces and construct in them the
powers of the Laplace quasi-operator. The second section we find conditions on the
operators L and M leading to strongly continuous degenerate semigroups of operators
in quasi-Banach spaces U and F. In other words, we prove the direct assertion of the
generalization of the HYFMF theorem to quasi-Banach spaces. In the last section we
consider evolutionary Sobolev-type equations with a relatively radial operator in quasi-
Banach spaces and, as an example, mention the “quasi-Banach” analog of the homogeneous
Dirichlet problem in a bounded region with smooth boundary for the modified linear Chen–
Gurtin equation (see [5], [11], [16] for instance)

(λ−∆)ut = β∆u− α∆2u+ f

with the Showalter–Sidorov initial condition [17]. The bibliography, not intended to be
complete, reflects the authors’ tastes and preferences.

1. Closed Linear Operators in Quasi-Sobolev Spaces

Quasi-Banach spaces are metrizable complete quasi-normed spaces. The spaces ℓq of
sequences for q ∈ (0, 1) are well-known examples of quasi-Banach spaces (for q ∈ [1,+∞)
they are Banach spaces). Henceforth denote by {λk} ⊂ R+ a monotone sequence with

lim
k→∞

λk = +∞.

Refer as a quasi-Sobolev space to the quasi-Banach space

ℓmq =

{
u = {uk} :

∞∑

k=1

(
λ

m

2

k |uk|
)q

< +∞

}
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equipped with the quasi-norm

m
q ‖u‖ =

(
∞∑

k=1

(
λ

m

2

k |uk|
)q
)1/q

, m ∈ R.

It is obvious that ℓmq is a Banach space for q ∈ [1,+∞) and ℓ0q = ℓq; moreover, we have
continuous dense embeddings ℓnq →֒ ℓmq for n ≥ m and q ∈ R+.

Given two quasi-Banach spaces U and F, a linear operator L : U → F is called
continuous whenever

lim
k→∞

Luk = L
(
lim
k→∞

uk

)

for every sequence {uk} ⊂ U converging in U. It is not difficult to show that a linear
operator L : U → F is continuous precisely when it is bounded (that is, maps bounded
sets into bounded sets). The linear space L(U;F) of bounded linear operators equipped
with the quasi-norm

L(U;F)‖L‖ = sup
U‖u‖=1

F‖Lu‖,

where U‖ · ‖ and F‖ · ‖ are quasi-norms in U and F, is a quasi-Banach space. A sequence
{Lk} ⊂ L(U;F) is called strongly converging to L ∈ L(U;F) whenever F‖Lku−Lu‖ → 0 as
k → ∞ for every u ∈ U and uniformly converging whenever L(U;F)‖Lk−L‖ → 0 as k → ∞.

Theorem 1. (Analog of the Banach–Steinhaus theorem) A sequence
{Lk} ⊂ L(U;F) uniformly converges to an operator L ∈ L(U;F) on some dense linear

space
◦

U of U precisely when
(i) the sequence {Lk} is bounded;

(ii) the sequence {Lk} strongly converges to L on
◦

U.

A linear operator L : U → F is called closed whenever its graph

graphL = {(u, f) ∈ U× F : f = Lu}

is closed in the quasi-norm graphL‖u‖ =U ‖u‖+F ‖Lu‖.

Theorem 2. If L ∈ L(U;F) then L is a closed operator.

Theorem 3. If L : U → F is a closed linear operator with the domain domL = U then
L ∈ L(U;F).

Theorem 4. If L : U → F is a closed operator and L−1 : F → U exists then L−1 is
a closed operator.

A linear operator L : U → F is called densely defined whenever the closure of the linear
space domL = U. Denote the linear space of closed densely defined operators by Cl(U;F).

Example 1. Taking U = ℓm+2
q and F = ℓmq , consider the operator Λnu = {λn

kuk} with
n ∈ N, where {uk} ⊂ U, and a monotone sequence {λk} ⊂ R+ with

lim
k→∞

λk = +∞.
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It is not difficult to see that Λn ∈ Cl(U;F) with domΛn = ℓm+2n
q ; furthermore,

Λn : ℓm+2n
q → ℓmq is a top-linear isomorphism.

Theorem 5. If an operator L̃ : U → F is densely defined and its quasi-norm satisfies

‖L̃‖ = sup
u∈domM\{0}

F‖L̃u‖

U‖u‖
< +∞,

then it extends uniquely to an operator L ∈ L(U;F); moreover, L(U;F)‖L‖ = ‖L̃‖.

Proofs of Theorems 1–5 are similar to the case of Banach spaces, and so we omit them.

2. Degenerate C0-Semigroups of Operators

Consider two quasi-Banach spaces U and F, as well as two operators L ∈ L(U;F) and
M ∈ Cl(U;F). Following [2], [4], and [5], introduce the L-resolvent set

ρL(M)={µ∈C : (µL−M)−1 ∈ L(F;U)}

and the L-spectrum σL(M) = C \ ρL(M) of the operator M . It is not difficult to see that
ρL(M) is always open, and so the L-spectrum of M is always closed (see [15]).

Example 2. Take U = ℓm+2
q and F = ℓmq with m ∈ R and q ∈ R+. Construct the operators

L = λ − Λ and M = αΛ2 + βΛ with Λ and Λ2 of Example 1. It is not difficult to show
that the L-spectrum σL(M) of M consists of the points µk = (αλ2

k + βλk)(λ− λk)
−1 for

k ∈ N, taking their multiplicities into account.

Definition 1. An operator M is called p-radial with respect to an operator L (or, briefly,
(L, p)-radial) whenever

(i) ∃a∈ R ∀µ > a µ∈ ρL(M);
(ii) ∃K > 0 ∀µk > a, k = 0, p, ∀n∈ N

max
{
L(U)‖(R

L
(µ,p)(M))n‖, L(F)‖(L

L
(µ,p)(M))n‖

}
≤

K
p∏

k=0

(µk − a)n
.

Here

RL
(µ,p)(M) =

p∏

k=0

RL
µk
(M) and LL

(µ,p)(M) =

p∏

k=0

LL
µk
(M)

are the right and left (L, p)-resolvents of M , while in turn, RL
µ(M) = (µL −M)−1L and

LL
µ(M) = L(µL−M)−1 are the right and left L-resolvents of M .

Example 3. For the spaces U and F as well as the operators L and M of Example 2 verify
that for arbitrary λ, β ∈ R and α ∈ R+ the operator M is (L, 0)-radial. Indeed, for all
k ∈ N, λk 6= λ, the points σL(M) lie in R; moreover,

lim
k→∞

µk = −∞,
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which ensures the fulfillment of conditions (i) in Definition 1. Furthermore,

RL
µ(M) =





∞∑

k=1

(µ− µk)
−1ek if λk 6= λ for all k ∈ N,

∑

k∈N:k 6=ℓ

(µ− µk)
−1ek if λℓ = λ for some ℓ ∈ N.

Here ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 in slot k. For a > max{µk} the fulfillment of (ii)
in Definition 1 is obvious. For the left L-resolvent LL

µ(M) of M we verify this condition
similarly.

Given the space L(V) of bounded linear operators on a quasi-Banach space V, a
mapping V •∈C∞(R+;L(V)) is called a semigroup of operators whenever

V sV t = V s+t for all s, t ∈ R+.

As above, identify a semigroup with its graph {V t : t ∈ R+} and call it strongly
continuous (or a C0-semigroup) whenever it is strongly continuous for t > 0, i.e.

lim
t→0+

V tv = v

for every v ∈ V.
Denote by U0 and F0 the kernels kerRL

(µ,p)(M) and kerLL
(µ,p)(M), which clearly are

linear subspaces. Denote by U1 and F1 the closures of imRL
(µ,p)(M) and imLL

(µ,p)(M), while

by Ũ and F̃ the closures of the linear spaces U0+̇imRL
(µ,p)(M) and F0+̇imLL

(µ,p)(M) in the
quasi-norms of U and F.

Theorem 6. If M is an (L, p)-radial operator with p ∈ {0} ∪ N then L and M together
generate a semigroup of operators of class C0 defined on the subspace Ũ (F̃).

Remark 1. We can obtain the form of operators in the semigroup using the Hille–
Widder–Post approximation [18]

U t = s- lim
k→∞

((
L−

t

k
M

)−1

L

)k

= s- lim
k→∞

(
k

t
RL

k

t

(M)

)k

,

F t = s- lim
k→∞

(
L

(
L−

t

k
M

)−1
)k

= s- lim
k→∞

(
k

t
LL

k

t

(M)

)k

.

(4)

The proof of this theorem is quite bulky, but analogous to the case of Banach spaces
(see [4], [5, Ch. 3], and [18] for instance). Therefore, we omit it.

Example 4. Take U, F, L, and M of Example 2. By Example 3, Theorem 6 yields

U t =





∞∑

k=1

eµktek if λk 6= λ for all k ∈ N,

∑

k∈N:k 6=ℓ

eµktek if λℓ = λ for some ℓ ∈ N.
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We can construct a strongly continuous semigroup {F t : t ∈ R+} similarly.

Refer to a strongly continuous semigroup {V t : t ∈ R+} as degenerate whenever its
identity element

V 0 = s- lim
t→0+

V t

is a projection in V. Observe in addition that in Definition 1 we can put a = 0 in view of
the change of variables u(t) = eatv(t) in (2) and notation M := M − aL. Assuming that,
put SL

a,θ(M) = SL
θ (M).

Definition 2. An operator M is called strongly (L, p)-radial on the right (left) whenever
it is (L, p)-radial and

U‖R
L
(µ,p)(M)(λL−M)−1Mu‖ ≤

const(u)

(λ− a)
p∏

k=0

(µk − a)

, ∀u ∈ domM

(
there exists a dense linear space

◦

F of F such that

F‖M(λL−M)−1LL
(µ,p)(M)f‖ ≤

const(f)

(λ− a)
p∏

k=0

(µk − a)

∀f ∈
◦

F

)

for arbitrary λ, µ0, µ1, ..., µp > a.

Theorem 7. For p ∈ {0}∪N, if an operator M is strongly (L, p)-radial on the right (left)
then the strongly continuous semigroup {U t : t ∈ R+} ({F t : t ∈ R+}) is degenerate.

Proof is similar to the case of Banach spaces, but quite laborious (see [5, Ch. 2] for
instance). Therefore, we only sketch it. Firstly, basing on the (L, p)-radiality of M , we

show that the kernel kerRL
(µ,p)(M) = U0 and closure of the image imRL

(µ,p)(M) = U1 are

independent of µ = (µ0, µ1, . . . , µp) with µk ∈ ρL(M). Then we show that U0 = kerU t for
all t ∈ R+ and

u = lim
t→0+

U tu

for all u ∈ U1. Therefore, under the condition that M is strongly (L, p)-radial on the right
we infer that the projection

P = s- lim
t→0+

U t

exists. Observe also that Theorem 1 is crucial here and at the previous stage. Similarly we
establish the existence of the projection

Q = s- lim
t→0+

F t.

The main corollary of the strong (L, p)-radiality of M on the right (left) is the splitting

U = Ũ = U0 ⊕ U1 (F = F̃ = F0 ⊕ F1), (5)
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where U0 and F0 are the kernels of the projections P = s- lim
t→0+

U t and Q = s- lim
t→0+

F t,

while U1 and F1 are their images. For k = 0, 1, denote by Lk and Mk the restrictions of
L and M to Uk and domM ∩ Uk.

Corollary 1. For p ∈ {0} ∪ N, if M is strongly (L, p)-radial on both right and left
then Lk ∈ L(Uk;Fk) and Mk ∈ Cl(Uk;Fk) for k = 0, 1; furthermore, the operator
M−1

0 ∈ L(F0;U0) exists.

Put H = M−1
0 L0 and G = L0M

−1
0 . Obviously, H ∈ L(U0) and G ∈ L(F0).

Corollary 2. Under the assumptions of Corollary 1, the operators H and G are nilpotent
of degree at most p.

Definition 3. An operator M is called strongly (L, p)-radial whenever it is strongly (L, p)-
radial on the left and

L(F;U)‖R
L
(µ,p)(M)(λL−M)−1‖ ≤

K

(λ− a)
p∏

k=0

(µk − a)

for arbitrary λ, µ0, ..., µp > a.

Observe that a strongly (L, p)-radial operator M is obviously strongly (L, p)-radial on
the right.

Theorem 8. For p∈{0} ∪ N, if M is a strongly (L, p)-radial operator then the operator
L−1
1 ∈ L(F1;U1) exists.

Proof is similar to the case of Banach spaces (see [5, Ch. 2] for instance), and so we
omit it.

Construct the operators

S = L−1
1 M1 : domM ∩ U1 → U1,

T = M1L
−1
1 : M [domM ] ∩ F1 → F1.

It is not difficult to show that S ∈ Cl(U1) and T ∈ Cl(F1).

Corollary 3. Under the assumptions of Theorem 8, the operators S and T are radial.

Remark 2. We emphasize that the strong (L, p)-radiality of M implies:
1) the existence of degenerate C0-semigroups {U t : t ∈ R+} and {F t : t ∈ R+} of (4);
2) the existence of their identity elements, the projections P ∈ L(U) and Q ∈ L(F),

thanks to which the quasi-Banach spaces U and F split in the direct sums (5);
3) the splitting of the actions of the operators Lk ∈L(Uk;Fk) and Mk ∈Cl(Uk;Fk) for

k = 0, 1 and the existence of the operators M−1
0 ∈L(F0;U0) and L−1

1 ∈L(F1;U1);
4) the nilpotency of the operators H and G and the radiality of the operators S and T .
We call precisely these statements the generalization of the direct HYFMF theorem to

quasi-Banach spaces.
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3. Evolutionary Sobolev-Type Equations in Quasi-Sobolev Spaces

Given two quasi-Banach spaces U and F as well as two operators L ∈ L(U;F) and
M ∈ Cl(U;F), consider the linear evolutionary Sobolev-type equation

Lu̇ = Mu. (6)

Refer to a vector function u ∈ C∞(R+;U) satisfying (6) pointwise as a (classical)
solution to this equation. Refer to a solution u = u(t) to (6) as a solution to a weak initial
value problem (in the sense of Krein) whenever in addition

lim
t→0+

u(t) = u0 (7)

for some u0 ∈ U.

Definition 4. A set P ⊂ U is called a phase space of (6) whenever
(i) every solution u = u(t) to (6) lies in P pointwise, that is, u(t) ∈ P for arbitrary

t ∈ R+;
(ii) for every u0 ∈ P there exists a unique solution to the problem (6), (7).

Theorem 9. For p ∈ {0}∪N, if the operator M is strongly (L, p)-radial then the subspace
U1 is the phase space of (6).

Proof.
Firstly, Remark 2 reduces (6) to the equivalent system

Hu̇0= u0, u̇1= Su1, u1= Pu, u0= u− u1. (8)

Differentiating the first equation with respect to t and multiplying successively on H on
the left, we obtain

0 = Hp+1(u0)(p+1) = Hp(u0)(p) = . . . = Hu̇0 = u0.

Secondly, for the second equation in (8) for arbitrary u1
0 ∈ U1 there exists a unique solution

u1(t) = V tu1
0 to the problem

lim
t→0+

u1(t) = u1
0,

where V t is the semigroup of the form

V t = s- lim
k→∞

((
I−

t

k
S

)−1
)k

= s- lim
k→∞

(
k

t
Rk

t

(S)

)k

, t ∈ R+.

✷

Example 5. Take U, F, L, and M as in Example 2. For arbitrary m, λ, β ∈ R and
q, α ∈ R+ the phase space of (6) is the subspace

U1 =

{
U if λk 6= λ for all k ∈ N,

{u ∈ U : uk = 0, λk = λ}.

Suppose as above that U and F are quasi-Banach spaces and take two operators L ∈
L(U;F) and M ∈ Cl(U;F) so that M is strongly (L, p)-radial with p ∈ {0} ∪ N. Consider
the weak (in the sense of Krein) Showalter–Sidorov problem

lim
t→0+

P (u(t)− u0) = 0 (9)
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for the linear inhomogeneous evolutionary Sobolev-type equation

Lu̇ = Mu+ f, (10)

where the vector function f : [0, τ ] → U with τ ∈ R+ is defined below. Put f = f 0 + f 1,
f 1 = Qf and f 0 = f − f 1.

Theorem 10. For p ∈ {0} ∪ N, if M is a strongly (L, p)-radial operator then, given
a vector function f = f(t) with f 0 ∈ Cp+1((0, τ);F0) and f 1 ∈ C((0, τ);F1) as well
as a vector u0 ∈ U, there exists a unique solution u ∈ C1((0, τ);U) to problem (9) for
equation (10), which in addition is of the form

u(t) = −

p∑

k=0

HkM−1
0 f 0(k)(t) + U tu0 +

t∫

0

U t−sL−1
1 f 1(s) ds.

Indeed, a straightforward verification shows that u = u(t) satisfies (10) and (9). The
uniqueness follows from Theorem 10.

As an illustration, consider the modified Chen–Gurtin equation [5],[11],[16]

(λ− Λ)ut = (αΛ2 + βΛ)u+ f, λ, β ∈ R, α ∈ R+, (11)

in the quasi-Sobolev spaces U = ℓm+2
q and F = ℓmq with m ∈ R and q ∈ R+. Specify the

domain dom(αΛ2 + βΛ) = ℓm+4
q . Taking the operators L and M as in Example 2, we

reduce (11) to the form (10). Example 3 shows that M is an (L, 0)-radial operator. It is
obvious that the estimates in Definition 2 hold.

In order to pose the Showalter–Sidorov problem, construct the projection P . To this
end, consider the degenerate C0-semigroup constructed in Example 4. We obtain

P = s- lim
t→0+

U t =






I if λk 6= λ for all k ∈ N,

I−
∑

k∈N:k=ℓ

ek if λℓ = λ for some ℓ ∈ N

and similarly for the projection
Q = s- lim

t→0+
F t.

It is not difficult to construct the operator

L−1
1 =





∞∑

k=1

(λ− λk)
−1ek if λk 6= λ for all k ∈ N,

∑

k∈N:k 6=ℓ

(λ− λk)
−1ek if λℓ = λ for some ℓ ∈ N.

By Theorem 10, for the Showalter–Sidorov problem (9) (11) we have

Corollary 4. Given m, λ, β ∈ R, τ, q, α ∈ R+, u0 ∈ U, f 0 ∈ C1((0, τ);F0), and
f 1 ∈ C((0, τ);F1), there exists a unique solution u ∈ C1((0, τ);U) to problem (9), (11);
moreover, it is of the form

u(t) = −M−1
0 f 0(t) + U tu0 +

t∫

0

U t−sL−1
1 f 1(s) ds,
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here

F0 =

{
{0}, if λk 6= λ for all k ∈ N;
{f ∈ F : fk = 0, k ∈ N \ {ℓ : λℓ = λ}} ;

F1 =

{
F, if λk 6= λ for all k ∈ N;
{f ∈ F : fk = 0, λk = λ};

M−1
0 =






O, if λk 6= λ for all k ∈ N;∑

k∈N:λk=λ

(αλ2
k + βλk)

−1ek.
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