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The machinery of integral operators with parallel translation is elaborated such that
for a T -periodic ordinary di�erential equation (i.e., a vector �eld) on a Lie group with
continuous right-hand side the �xed points of those operators are T -periodic solutions.
It is shown that under some natural conditions the second iteration of such operator is
completely continuous.
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Introduction

Up to the moment a lot of processes in technics and engineering are described
mathematically in terms of di�erential equations on non-linear manifolds. And very
often the important problem of �nding periodical solutions of those equations arises.
This problem is especially complicated when the right-hand side of the equation is only
continuous, i.e., there is no uniqueness of solution theorem for the Cauchy problem. In
the case of equations in linear spaces the method of integral operators is applied for
investigating the periodic solutions. Recall that an ordinary di�erential equation in a
vector space can be turned into equivalent Volterra type integral equation. For example,
one can turn the Cauchy problem ẋ = f

(
t, x(t)

)
, x(0) = x0 in Rn into the integral equation

x(t) = x0 +
∫ t

0
f
(
τ, x(τ)

)
dτ.

Unfortunately, the classical integral operators on manifolds are not covariant, i.e.
depend on the choice of a chart. Previously the so-called integral operators with parallel
translation were constructed (see details, e.g., in [1, 2]) that were covariant, allowed
one to deal with equations with continuous right-hand sides but were not applicable to
investigation of periodec solutions. In this paper we construct a new sort of those operators
on Lie groups such that their �xed points are periodic solutions of di�erential equations
with continuous periodic righ-hand sides.

The paper contains a short survey of the theory of integral operators with parallel
translation, the description of the class of such operators applicable in the problem of
periodic solutions and investigation of some their properties.

1. Integral operators with parallel translation

Everywhere below we deal with all objects given on a �nite interval [0, T ], T > 0.
Let M be a complete Riemannian manifold, m0 ∈ M and v : [0, T ] → Tm0M be a
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continuous curve in the tangent space Tm0M . Everywhere below we deal with the Levi-
Civita connection on M .

Theorem 1. There exists a unique C1-curve m : [0, T ] → M such that m(0) = m0 and
the tangent vector m′(t) is parallel along this curve to the vector v(t) ∈ Tm0M for every
t ∈ [0, T ].

The existence of the curve m(t) from Theorem 1 follows from some classical
constructions. Let m(t) be a C1-smooth curve in M , t ∈ [0, T ], m(0) = m0. Denote
by Γ the operator of parallel translation of vector �elds along m(·) to Tm0M . Recall that
the curve C(m(t)) =

∫ t

0
Γm′(s)ds is known as Cartan's development of m(t) at Tm0M .

Note the well-known fact that Cartan's development is convertible and it is obvious that
the curve m(t) from Theorem 1 is expressed via Cartan's development as C−1(

∫ t

0
v(s)ds).

We denote the operator that sends v(t) to m(t) in Theorem 1 by the symbol S. It is
easy to show that S is continuous.

Since the parallel translation preserves the norm of the vector, the following statement
is valid.

Theorem 2. Let UK be the ball of the radius K centered at the origin of the space
of continuous curves C0([0, T ], Tm0M). Then, at every point t ∈ [0, T ], the inequality∥∥m′(t)∥∥ ≤ K holds for all curves m(·) from the set SUK.

Lemma 1. (Compactness lemma). Let Ξ ⊂ C0([0, T ], TM) be such that πΞ ⊂
C1([0, T ],M), where π : TM → M is the natural projection. If Ξ is relatively compact
in C0([0, T ], TM), then so is ΓΞ.

The proof of Lemma 1 can be found, e.g., in [2, Lemma 3.51].
Let ΩK be the set of curves from C1([0, T ],M) satisfying the inequality ‖m′(t)‖ ≤ K,

where K > 0 is a real number, at every point t ∈ [0, T ] and such that the set
{
m(0)

∣∣
m(·) ∈ ΩK

}
is relatively compact in M .

Theorem 3. The set of curves Γ(ΩK) is relatively compact in C0([0, T ], TM).

Proof. Since ΩK is compact in C0([0, T ],M) and the �eld X(t,m) is continuous, the
set of curves

{
X
(
t,m(t)

) ∣∣ m(·) ∈ ΩK

}
is compact in C0([0, T ], TM). Then the aqssertion

follows from Lemma 1. 2
Let a continuous vector �eld X(t,m) be given onM . Consider the set C1

m0
([0, T ],M) ⊂

C1([0, T ],M) consisting of curves with initial value m(0) = m0. Introduce the composition
operator

S ◦ ΓX(t,m(t)) : C1
m0

([0, T ],M)→ C1
m0

([0, T ],M).

One can easily see that this operator is continuous since the parallel translation
continuously depends on the curves, along which it is carried out.

Theorem 4. The �xed point of S◦Γ is precisely the solution of equation m′(t) = X(t,m(t))
with the initial condition m(0) = m0.

Indeed, if m(t) is a �xed point, m′(t) is parallel along m(t) to ΓX(t,m(t)). But by
construction ΓX(t,m(t)) is parallel to X(t,m(t)). Hence m′(t) = X(t,m(t)).
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2. The case of Lie groups

Now let M be a Lie group being a �nite-dimensional manifold.

Remark 1. We denote the elements of the Lie group M as points of manifold M , i.e.,
by the symbol m, m(·) or m(t) are curves on M . But for simplicity of presentation, the
element considered as a di�eomorphism in M , is denoted by the symbol g. In particular
gm0,m1 denotes the unique di�eomorphsm that sends m0 to m1. Tgm0,m1 : Tm0M → Tm1M
is its tangent mapping.

Introduce an arbitrary complete Riemannian metric 〈·, ·〉 on M (not necessarily left or
right invariant). The corresponding norms in the tangent spaces are denoted by ‖ · ‖.

Consider the Banach manifold C1([0, T ],M) of C1-smooth curves in M . According to
Remark 1, for m(t) ∈ C1([0, T ],M) denote by gm(0),m(t) the element of Lie group (i.e., the
operator) that sends m(0) to m(t), and by Tgm(0),m(t) : Tm(0)M → Tm(t)M the tangent
map of this operator. For m(t) ∈ C1([0, T ],M) introduce the operator Bs by the formula

Bs(m(·)) = S ◦ Tgm(0),S◦ΓX (t,m(t))(s))ΓX(t,m(t)) (1)

that sends the vectors ΓX(t,m(t)) at m(0) to the points at time instant s of the curves
from S ◦ ΓX(t,m(t)). One can easily see that Bs is continuous.

Let also the vector �eld X(t,m) be T -periodic, i.e., for every m ∈ M the equality
X(t,m) = X(t+T,m) holds. In this case we will mainly deal with the operator BT (m(·)) =
S ◦ Tgm(0),S◦ΓX(t,m(t))(T ))ΓX(t,m(t)).

Theorem 5. Fixed points of operator BT and only they are T -periodic solutions of the
equation m′(t) = X(t,m(t)).

Proof. If m(t) is a T -periodic solution of the equation m′(t) = X(t,m(t)). Then
gm(0),S◦ΓX(m(·)(T ))m(0) = m(0) and so for X(t,m(t))

Tgm(0),m(T )S ◦ Tgm(0),S◦ΓX(t,m(t)))ΓX(t,m(t)) = ΓX(t,m(t)).

Then BT (m(·)) = S ◦ ΓX(t,m(t)). Recall that ΓX(t,m(t)) is parallel along m(·) to
X(t,m(t)). On the other hand, d

dt
S ◦ ΓX(t,m(t)) is parallel along m(·) to ΓX(t,m(t))

and so
d

dt
S ◦ ΓX(t,m(t)) = X(t,m(t)).

Thus m(t) is a �xed point of BT (m(·).
Now let m(t) be an arbitrary curve in C1([0, T ].M). If S ◦ ΓX(t,m(t))(T ) = m(0),

the above arguments are valid and so m(t) is both a �xed point of BT and a T -periodic
solution. If S ◦ ΓX(t,m(t))(T ) 6= m(0), m(t) is neither a �xed point of BT nor a periodic
solution. 2

3. Properties of operator Bs

Recall the following notion.

De�nition 1. A map from the topological space Y to the topological space Z is called
proper, if the preimage of every relatively compact set in Z is relatively compact in Y . In
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particular, a function ϕ : M → R is called proper if the preimage of every bounded subset
of R is relatively compact in M .

Let Ξ ⊂ M be a compact set. Denote by C ⊂ C1([0, T ],M) the set of curves
{m(t)|m(0) ∈ Ξ, t ∈ [0, T ]}. Since all curves from C are given on the closed interval
[0, T ] and M is complete, all the curves from C lie in another compact set Ξ1.

Theorem 6. Let for any compact set Ξ ⊂M

sup
m∈Ξ,t∈[0,T ]

‖X(t,m)‖ < sup
m∈Ξ

ϕ(m) (2)

where ϕ : M → R is a certain proper function. Then for all m(·) ∈ C ⊂ C1([0, T ],M),
all curves S ◦ ΓX(t,m(t)) are well-de�ned on [0, T ] and belong to another compact set
Ξ2 ⊂M .

Proof. From (2) it follows that the norms of all X(t,m(t)) for m(·) ∈ C are uniformly
bounded by sup

m∈Ξ1

ϕ(m). Since the parallel translation preserves the norms, all norms of

the corresponding curves ΓX(t,m(t)) are uniformly bounded by the same constant. Thus
all the C1-curves S ◦ ΓX(t,m) have bounded lengths. Since the metric is complete, those
curves lie in a compact set Ξ2. 2

Theorem 7. The set of curves BsC ⊂ C1([0, T ],M) is compact in C1([0, T ],M).

Proof. Since the set Ξ2 is compact and the operators gm(0),m(T ) and gm(0),S◦ΓX(m(t)(T ))

are smooth by the de�nition of the Lie group, the norms of operators

Tgm(0),m(T )S ◦ Tgm(0),S◦ΓX(t,m(t)))

are also uniformly bounded. Then the assertion follows from Theorem 6 and Theorem 3.
2

Thus, unlike the classical integral operators in Euclidean spaces, only the second
iteration of operator Bs is completely continuous.
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ÎÏÅÐÀÒÎÐÍÛÉ ÏÎÄÕÎÄ Ê ÏÅÐÈÎÄÈ×ÅÑÊÈÌ
ÐÅØÅÍÈßÌ ÄÈÔÔÅÐÅÍÖÈÀËÜÍÛÕ ÓÐÀÂÍÅÍÈÉ
ÍÀ ÃÐÓÏÏÀÕ ËÈ

Þ. Å. Ãëèêëèõ

Ðàçðàáîòàí àïïàðàò èíòåãðàëüíûõ îïåðàòîðîâ ñ ïàðàëëåëüíûì ïåðåíîñîì òàêîé,
÷òî äëÿ T -ïåðèîäè÷åñêîãî îáûêíîâåííîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ (ò.å., âåê-
òîðíîãî ïîëÿ) ñ íåïðåðûâíîé ïðàâîé ÷àñòüþ íà ãðóïïå Ëè íåïîäâèæíûå òî÷êè òàêèõ
îïåðàòîðîâ ÿâëÿþòñÿ T -ïåðèîäè÷åñêèìè ðåøåíèÿìè. Ïîêàçàíî, ÷òî ïðè íåêîòîðûõ
åñòåñòâåííûõ óñëîâèÿõ âòîðàÿ èòåðàöèÿ òàêîãî îïåðàòîðà âïîëíå íåïðåðûâíà.

Êëþ÷åâûå ñëîâà: ãðóïïû Ëè; îáûêíîâåííûå äèôôåðåíöèàëüíûå óðàâíåíèÿ; èíòå-

ãðàëüíûå îïåðàòîðû ñ ïàðàëëåëüíûì ïåðåíîñîì; ïåðèîäè÷åñêèå ðåøåíèÿ.

Ãëèêëèõ Þðèé Åâãåíüåâè÷, äîêòîð ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, ïðîôåññîð,
ôàêóëüòåò ïðèêëàäíîé ìàòåìàòèêè, èíôîðìàòèêè è ìåõàíèêè, Âîðîíåæñêèé ãî-
ñóäàðñòâåííûé óíèâåðñèòåò, (ã. Âîðîíåæ, Ðîññèéñêàÿ Ôåäåðàöèÿ); âåäóùèé íà-
ó÷íûé ñîòðóäíèê íàó÷íî-èññëåäîâàòåëüñêîé ëàáîðàòîðèè ¾Íåêëàññè÷åñêèå óðàâíå-
íèÿ ìàòåìàòè÷åñêîé ôèçèêè¿, Þæíî-Óðàëüñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò,
(ã. ×åëÿáèíñê, Ðîññèéñêàÿ Ôåäåðàöèÿ), ygliklikh@gmail.com
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