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The article is of a review nature and contains results on the study of the stability of
Sobolev type stochastic linear equations in terms of stable and unstable invariant spaces
and exponential dichotomies. The article considers stochastic analogues of the Barenblatt —
Zheltov — Kochina equation for the pressure of a fluid filtering in a fractured porous medium,
the Oskolkov linear equation of plane-parallel flows of a viscoelastic fluid, the Dzektser
equation describing the evolution of the free surface of a filtering liquid, the Ginzburg —
Landau equation, which models the conductivity in a magnetic field. These equations can
be considered as special cases of the stochastic Sobolev-type equations, where the stochastic
K-process acts as the required quantity, and its derivative is understood as the Nelson —
Glicklich derivative. The paper presents results on the existence of stable and unstable
invariant spaces of stochastic equations that are Barenblatt — Zheltov — Kochina, Oskolkov,
Dzektser and Ginzburg — Landau equations. The general scheme of a numerical algorithm
for finding stable and unstable solutions to these equations is described, and the results of
computational experiments are presented.
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Introduction

A large number of models emerging recently in natural science and physics can be
considered in the form
Li = Mu, (1)

where the operators L, M are linear and continuous. Equations of the form (1), where the
operator L is an irreversible operator, are usually called Sobolev type equations [19]. At
present, the number of papers devoted to the issues of solvability, stability of the equation
(1), numerical studies of the equation (1) is constantly growing. Therefore, it is not possible
to consider them all in this review.

In this review, we consider several stochastic analogues of such equations. The
Barenblatt — Zheltov — Kochina equation

(A= A)uy = aAu (2)

simulates the dynamics of the pressure of a fluid filtered in a fractured porous medium
[1]. The real parameters a and A\ characterize the medium and properties of the fluid,
respectively. In [19], in order to study the initial — boundary value problems for the
Barenblatt — Zheltov — Kochina equation, equation (7) is reduced to the Cauchy problem
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for the linear Sobolev type equation in the suitable function spaces. The paper [24] was
the first to consider dichotomies of solutions to homogeneous Sobolev type equation
(2), where the operator M is relatively spectrally bounded. The paper [13] proves the
existence of invariant spaces of equation (2) in spaces of differential forms defined on
smooth Riemannian manifolds without boundary. The numerical solution of equation (2)
was started in [26]. The paper [25] considers equation (2) on graphs. The paper [10] is
devoted to the study of the asymptotic stability of the Barenblatt — Zheltov — Kochina
equation in the sense of Lyapunov. Here the Lyapunov function method is applied, and a
computational experiment based on the Galerkin method is constructed.
The Oskolkov equation

O(u, Au)

A= A)Au; = vAZy + D20
( JAu, = v u+(9(:1:1,:1:2)

(3)

is a model of a multipurpose flow of a high-performance, non-essential liquid [9]. Here the
coefficients «r, v € R characterize the parameters of the fluid. Consider the equation

(A — A)Aa; = vA%a. (4)

Equations (3), (4) were previously considered in different aspects of [22], [23], [20].
The equation
(A — A)uy = aAu — fA?u, (5)

where o, f € R, and A € R, simulates the evolution of the free surface of a filtered
fluid [3]. Here the parameters «, 3, A characterize the environment. The solvability of
the initial-boundary value problem for equation (5) is considered, for example, in [21].
The paper [12] shows the existence of a unique solution to equation (5) in the spaces of
differential forms defined on a compact smooth oriented manifold without boundary.
The equation
(A —A)ay = vAa — idA« (6)

describes weakly linear effects in hydrodynamics in a particular case. Here the coefficients
v € Ry, A, d € Rdescribe the parameters of the system [2]. The work [11] proves solvability
of equation (7) in the case when the right-hand side contains nonlinearity. The paper [28§|
considers the question of the stability of solutions and shows the existence of stable and
unstable invariant spaces of the linear Ginzburg — Landau equation.

This article presents the author’s results on numerical stable and unstable solutions of
stochastic analogues of the equations (2)—(6). For this, these equations will be considered
in the form of a linear stochastic Sobolev type equation

L= My, (7)

where 7 is a stochastic K-process, 1 is a Nelson — Clicklikh derivative [8]. At present, a
large number of works are devoted to the study of the Cauchy and Showalter — Sidorov
problems for stochastic Sobolev type equations [4-7], [27] and etc. In [27], the question of
the solvability of the Cauchy and Showalter — Sidorov problems for the equation (7) was
studied in the case when the operator M is a (L, p)-bounded operator. In [4] the case of
the relative sectoriality of the operator L was considered, and in the paper [5] the case of
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the relative radiality of the operator L was considered. The papers [14, 29,31, 35| study
the solvability and stability of the equation (7) in spaces of differential forms given on
a smooth Riemannian manifold without boundary. [15-18| are devoted to the numerical
study of Sobolev type stochastic linear equations on manifolds.

In this review article, we present the results of the author [30,31,33,34| which present
numerical experiments on the stability of stochastic analogs of the equations (2), (4), (5),
(6). The article consists of Introduction, five sections and References. The first section
defines the concepts of a random variable, a stochastic process, the Nelson—Glicklikh
derivative, random K-variables, and K-<noise> spaces, establishes the existence of stable
and unstable invariant spaces. The next four sections are devoted to applications of the
results of Section 1. Namely, results on the existence of stable and unstable invariant spaces
of the Barenblatt — Zheltov — Kochina equation are presented in Section 2; of the Oskolkov
— in Section 3; of the Dzektser equation — in Section 4; of the Ginzburg — Landau — in
Section 5.

Construct the spaces of K-variables and K-<noises>. Let i (§) be a real separable

Hilbert space with a basis {¢r} ({#x}) orthonormal with respect to the scalar product

< - >y (< -+ >3). Choose the sequence K = {\;} C R such that > A\? < oo, and the
k=1

sequence {&} C La ({¢x} C Lg) uniformly bounded random variables. Next, we construct

random K-value
E=) Mbror (c => M@%) :
k=1 k=1

The completion of the linear shell with random K-values according to the norm

Il r, = D AiDéx <H<H%Kh =2 A2D<k>
k=1 k=1

is a Hilbert space. We it denote the symbol UkLs (FxLs) and call space of random
K-values.
The stochastic process 7 : (¢,7) — UgkLy define by formula

n(t) = Méilt)or, (8)
k=1

here {¢x} be some sequence from CL, and J = (e,7) C R. It is called a stochastic
continuous K-process, if the number of the right side converges uniformly on any compact
set in J with the norm || - ||ukL,, and the trajectory of the process n = n(t) almost
surely continuously. A continuous stochastic K-process n = n(t) is called a continuously
differentiable process by Nelson — Gliklikh on [J, if the series

D) =3 M & (D (9)

converges on any compact in J according to the norm | - ||y and the trajectories of the

process =" (t) are almost certainly continuous. The symbol C(J,UkLs) denote the
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space of continuous stochastic K-processes and symbol C!(J, UkLs) denote the space of
continuously differentiable up to order [ € N of the stochastic K-processes.

Let the operators L, M € L(UkLy; FkLy), consider the equation (7). Let J = {0} U
R, . Stochastic K-process n € C'(J; UkLy) is called a solution of the equation (7), if
all its trajectories satisfy the equation (7) for all ¢ € J. The solution of n = n(t) of the
equation (7) is called a solution of the Cauchy problem

n(0) = o, (10)
if the equality (7) holds for some random K-value 7y € UkLs.

Definition 1. The set PxLy C ULy is called a stochastic phase space of equation (7),
if

(i) probably almost every solution path n = n(t) of the equation (7) lies in PxLy, i.e.
n(t) € PxLo,t € R, for almost all trajectories;

(i) for almost all ny € PxLy exists a solution to the problem (7), (10).

Suppose the operator M is (L, p)-bounded, then there is an analytic group of operators

1
Ut = o (uL — M)t Metdp, (11)
r

where the contour I' limits the region containing the L-spectrum of the operator M.

Theorem 1. Suppose that the operator M is (L, p)-bounded, then phase space B of the
equation (7) is the image imU® of the group (11).

Definition 2. The subspace I C Hiy is called an invariant space of the equation (7), if
the solution to problem (7), (10) n € CY(R;I) for any ny € 1.

Remark 1. For the existence of invariant spaces of equation (7), it is sufficient for the
equation (7) to represent the L-spectrum of the operator M in the form of two disjoint
parts, and at least one of these parts is closed.

Definition 3. If the phase space P = I' © 12, and there exist constants N, € Ry, v, €
R,, k=1, 2, such that

In*()llu < Niem*DIn(s) o for s>t
I?(O)llu < Nae™2n(s) o for t >,

where Nt = n*(t) € I* for allt € R, and I¥, k = 1, 2, is invariant space of equation (7),
then solutions n = n(t) to the equation (7) have exponential dichotomy. The space T* (12
is called a stable (unstable) invariant space of equation (7).

Theorem 2. [29] Suppose that the operator M is (L, p)-bounded, and the L-spectrum of the
operator M ot (M) = o¥(M) & o=(M), where o2 (M) = { € c*(M) : Re p > 0} # @,
ol (M) = {u € o¥(M) : Repu < 0} # @. Then solutions of the equation (7) have
exponential dichotomy.

Remark 2. Similar results were obtained in the case when the operator M is (L,p)-
sectorial operator [31], the operator M is (L, p)-radial operator [33].
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Let us describe a general algorithm for finding stable and unstable numerical solutions
of linear stochastic equations, which can be considered as an equation (7).

Step 1. Input coefficients of the equation.

Step 2. Subroutine for calculating the eigenvalues of the Laplace operator.

Step 3. Subroutine for computing functions of the basis {¢} in the space 4.
K
Step 5. Construct the vector (y = ) k—lgé‘k(pk, where & is a random variable «~ N (0, 1)
k=1
(i.e., & is a random variable with normal distribution, zero mathematical expectation, and

dispersion equal to unity).

Step 6. Checking the invertibility of the operator L. Calculation of the number N,
under which the operator L is irreversible.

Step 7. Relative spectrum calculation.

Step 8. Calculation of numbers N, and N, for which the relative spectrum is positive
and negative.

Step 9. If N, # 0, then the subroutine for finding a stable solution to the equation.
Implementation of the Galerkin method for finding a stable solution to the equation.
Derivation of Galerkin coefficients, solutions, solution graph.

Step 10. If N, # 0, then the subroutine for finding an unstable solution to the
equation. stable solution of the equation. Implementation of the Galerkin method for
finding an unstable solution to an equation. Derivation of Galerkin coefficients, solutions,
solution graph.

Step 11. If Ny # 0, then finding a stationary solution.

Finally, consider the space of random K-variables and spaces of K-<noises> defined
on Riemannian manifolds. Let M be a connected oriented compact Riemannian manifold
without boundary having class C'*° and dimension d. Similarly to the reasoning above,
consider spaces of random K-variables defined on the manifold M: Hig L, and Hjj Lo,

o0
where K = {\;} is a monotone sequence such that Y A? < +oo. The elements of these
k=1

spaces are vectors o = Z Meror and 8 = Z M€, respectively, where {¢r} and {4}

are the operator elgenvectors which are orthonormal with respect to < -, >pand < -, - >,.

1. Exponential Dichotomies in «<Noise> Spaces

2. The Stochastic Barenblatt — Zheltov — Kochina Equation
Consider the question on the stability of equation (2) in the spaces H{yLs. Denote

L=(\+A), M=aA, (12)

where A is the Laplace — Beltrami operator. Consider the stochastic equation with
differential forms

L (= M( (13)

with the Cauchy condition

X(0) = Go. (14)
Theorem 3. [30] The solutions n = n(t) to problem (13), (14) have exponential
dichotomies for any o € R, A € R_, ny € HixLo.
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Fig. 1. Exponential dichotomies of the stochastic Barenblatt — Zheltov — Kochina equation
for A\ = —4, « = 0.5, t € [0, 3] in the section y = 0.5.

(ii) The phase space of problem (13), (14) coincides with a stable invariant space for
any o € R_ and A € Ry, and the phase space of problem (13), (14) coincides with an
unstable invariant space for any a, A € R,.

On the two-dimensional torus 7% = [0,1] x [0,1], consider the map ¢ : Sq¢ — U,
where U C T?, and Sq is the inside of the square with vertices at the points (0,0), (0,1),
(1,0), and (1,1). If u = wu(¢) is a solution to this differential equation on the torus, then
z = z(t) = 6(u(t)) is a solution to this differential equation on the map. Then if the
solution to the differential equation is stable on the torus 72, then the solution is stable
on the map Sq. The converse is also true. Due to the smoothness of the solutions, the
nature of stability does not change at the places where the maps are <glueds. Therefore,
we reduce consideration of the question of stability of solutions to equation (13) on the
torus 12 to consideration of the same question on one of the maps 9q.

The solutions to problem (13), (14) have exponential dichotomy for A = —4, a = —0.5.

The solutions B y
C(t) =) et (Z el (P 901)L2901> (15)

=1 k=1
belong to an unstable invariant space, and the solutions

Cr(t) =D et (Z Akfk(@ka@l)Lz‘Pl) (16)

l=n+1 k=1

belong to a stable invariant space. Fig. 1 shows the graph of the solution for ¢ € [0, 7] in
the section y = 0.5.
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3. The Stochastic Oskolkov Equation

We will study the stochastic analogue of the equation (4). Define the operators L and
M by the formulas
L=A\+A)A M=—-vA* (17)

Then the stochastic equation (4) can be considered as the equation
L S= M, (18)

where operators L, M € L(H{, Hi), and the operator M is (L, 0)-bounded operator. The
phase space of the stochastic Oskolkov equation has the form

— H?)? ﬁl#)V
CGH82<§,Q01>0:O, 791:)\,

where o(A) = {9;}.

Theorem 4. [35] For any A € R_, v € R solutions of the equation (18) have exponential
dichotomy.

Fig. 2. Stable solutions of the stochastic Oskolkov equation (red color for ¢t = 0.1, blue
color for t = 0.5) for A = —3.6, v = 0.5 on a two-dimensional sphere (black).

Consider the space of O-form on a single sphere with a center in the initial order. The
Laplace — Beltrami operator in the spheral system of coordinates (0, ¢) is assigned with
the formula

2 a

0
Ag2 = (sin gp)_l% (sin pdyp) + (sing)~ 6"
If 19, are eigenvalues of the Laplace operator, then

P (cos©) cosmp, m=0,1,....1;

1
cos ©)sin|mlp, m=—1,—(1+1),...,—1 (19)

V(0. ) = { i
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are corresponding eigenfunctions, orthonormal with respect to a scalar product. Here

1 d

_ 2 1
= onart Y

Pi(t)
is a Lagrange polynomial of degree [, and

Iml dm

Pty = (1) (20)

are associated Lagrange polynomials. The scalar product is calculated by the formula

27 1
g2 = [ cosmupcosmapds [ PP 0t @
0 -1

Find a stable solution

a(t)y= ) e (Z(ﬁk)l&c > D (Eml,Ykm)iﬁm) (22)

=M, k=1 mi1=1mo=1

and an unstable solution

alt) = 3o (zm)—l@ Sy mmmmmml) 3)

=1 k=1 mi=1meo=1

to the equation (18). Fig. 2 shows a graph of a stable solution of the equation (18) on a
sphere.

4. The Stochastic Dzektser Equation

In order to study the existence of stable and unstable invariant spaces of equation (5)
in the spaces H{, consider

L=(\+A), M=—aA+ BA% (24)

where A is the Laplace — Beltrami operator.

Theorem 5. (31| Let A\ # 5 and o, B, Xe€ Ry. Then
(i) if § > h, then the solutions to equation (7) have an exponential dichotomy;
(it) if § < U1, then there exists only a stable invariant space of equation (4).

Consider the 3-torus 7% = [0, 27] x [0, 27] x [0, 27]. As a map, consider the cube with
the side equal to 2. If the solutions to equation (1) are stable on the map of the manifold,
then the solutions are also stable on the manifold. The converse is also true. In view of the
foregoing, we consider a computational experiment on the map. The <gluing> conditions
are satisfied due to the choice of the functions p(z,y, z). Fig. 3 shows the dichotomies of

solutions of the stochastic equation (5) in the section z, y, z = 3.1 at ¢t from 0 to 1.22.
10 Journal of Computational and Engineering Mathematics
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Fig. 3. Exponential dichotomies of the stochastic Dzektser for A = 0.2, a = 8, 8 = 2,
z,y, z=31,t=0..3

5. The Stochastic Ginzburg — Landau Equation

In the spaces HY, ¢ = 0,1, 2, consider equation (6) as the stochastic linear Sobolev-
type equation

L o= Mo, (25)

where the operators L, M : HY — HY are defined by the following formulas:
L=XA+A, M= —vA —idA2.

For any A, d € R and v € R, the operator M is strongly (L, 0)-radial. Due to the fact
that the relative spectrum has the form

(26)

L . . _—Vﬁk—idﬁ%
o <M>—{uec.uk——A+ﬁk

the following theorem is true.

Theorem 6. (33| (i) Let A\, v € Ry and d € R. Then the solutions to equation (25) are
exponentially stable.

(ii)) Let A € R_, v € Ry and d € R. Then for —\ > Ay the solutions to equation
(25) have exponential dichotomy, and for —\ < A; the solutions to equation (25) are
exponentially stable.
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The torus T? = [0, 7] x [0, 7] can be represented as a direct product 7% = S* @ S,
where S! is a circle of the radius m. Choose a square Sq¢ = {(z,y) : 0 <2 < 7,0 <y < 7},
which is one of the maps of the torus 72. The two-dimensional torus 72 can be represented
as <gluing> opposite sides of the square Sgq.

Let’s apply the algorithm described in paragraph 1, construct graphs of a stable

]\J1 ™ s
m(t)=> e / / nopidzdy | ¢
=1 0 0

and unstable

l=M>

K ™ ™
m(t) =) et / / nogidzdy | o
0 0

solutions of the stochastic equation (6), where M; = max{l: \; < —A} and My = min{/ :
A > —)\}

Fig. 4 shows a graph of the real part of the stable solution Re 7(t) to equation (25)
for A =42, v =5 d = 2 at times t = 9, 9.1, 9.263. Fig. 5 shows the exponentially
dichotomous behavior of the real part of the solution to equation (25) for A\ = —4.2,
v =0.2,d=2in the section v = 7, y = 7.

N

Fig. 4. Stable solutions of the stochastic Ginzburg — Landau equation for ¢ = 9 (green),
t =9.1 (blue) and ¢t = 9.263 (red)

Conclusion

In the future, it is planned to extend the results of [38] to semilinear Sobolev type
equations. It is also planned to carry out numerical experiments for the semilinear
stochastic equations of Hoff and Benjamin — Bonn — Mahoney, analytical studies of which
were presented in [36,37].
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400+

4001

Fig. 5. Exponential dichotomies of the stochastic Ginzburg — Landau equation for A =
_4-27V:O‘27d:27$:%ay:g
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QKCITOHEHIINMAJIBHBIE TNXOTOMNN
CTOXACTUYECKUX YPABHEHUII COBOJIEBCKOI'O
TUIIA

O. I Kumaesa

Crarbst HOCHUT 0030pHBIH xapakTep. OHA CONEPKUT PE3YILTATHI M0 HCCJIEIOBAHUIO
YCTOMYMBOCTU CTOXACTUYECKUX JIMHEHHBIX YpPaBHEHUI COOOJIEBCKOTO THIIA B TEPMUHAX
YCTOMYMBOTO M HEYCTOWYMBOIO MHBAPUAHTHBIX IIPOCTPAHCTB U SKCIIOHEHIUAJIBHBIX JIAXO-
ToMuii. PaccMoTpenb! croxacTrueckue aHAJIOrN ypaBHenus: bapenOsarta — 2Kenrosa — Ko-
IUHON JABJIEHUS KUIKOCTH, (DUIHTPYIOMIEHCS B TPEITUHOBATO-TIOPUCTON Cpeie, JMHEHHOTO
ypasaenust OCKOJIKOBA IJIOCKOMAPAJUIETbHBIX TEUEHUN BA3ZKOYIPYTOil KUJIKOCTH, YpPaBHe-
nus J[3exnepa, OMMChIBAIOIIETO IBOJIIONNIO0 CBOOOTHOM MOBEPXHOCTU (PUIBLTPYIONIENHCST KU I-
KOCTH, ypaBHenus: | ma30ypra — Jlangay, MOJIEIUPYIOIIEro IPOBOJIUMOCTD B MATHUTHOM I10-
Jie. JlaHHbIe ypaBHEHUsI MOXKHO PACCMATPUBATH KAK YaCTHBIE CJIy9and CTOXaCTHIECKOTO YPaB-
HeHusi CODOJIEBCKOIO TUIA, TJ/i€ B KAYECTBE NCKOMOI BEJIMYIMHBI BHICTYIIAET CTOXACTUIECKUI
K-mporiece, a moa ero mpousBoaHoil nmonnMmaercsa mpousdBoaHas Henbcoma — Imuknnxa. B
CTaTbe MPEJICTABJIEHBI PE3YIBTATHI O CYIECTBOBAHUU YCTOWYNUBBIX U HEYCTONIMBBHIX UHBA-
PUAHTHBIX IIPOCTPAHCTB CTOXACTHYECKUX ypapHeHuit bapenbiiarra — 2Kesrropa — Kounnoit,
OckonkoBa, JIzeknepa u ['nazdypra — Jlangay. Onucana ob1mast cxema 9uCJIeHHOTO aJITOPUT-
Ma JIJIsl HAXOXKJIEHUsI yCTOMYIMBOIO ¥ HEYCTONYNBOIO PEIIeHUIT 3TUX yPABHEHUIA, IIPUBEIEHBI
Pe3yJIbTATHl BEIYUC/IUTEIbHBIX IKCIEPUMEHTOB.

Karouesvie cao6a: cmoracmuveckue YpasHenus coO0AEBCK020 TMUNG; UHBADUAHITHBLE

npocmparHcmea, IKXCNOHEHYUUANDHDLE duzomomuu.
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