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The article presents the rationale of a new algorithm for solving the problem of
optimal dynamic measurements. The authors named the algorithm the spline method with
simple averaging. The algorithm is based on the application of the Kotelnikov theorem.
The discussed algorithm is one of the numerical methods used in the theory of optimal
dynamic measurements, which allow to find the input signal from a known output signal
(or observation) and a known transfer function of the measuring device. In all formulations
of the problem, it is assumed that the inertia of the measuring device is taken into account,
and the differences are due to the inclusion of interferences of various natures in the
mathematical model. Consideration of interference as «white noise> led to the development
of analytical and numerical methods for solving the problem under discussion. In recent
years, one of the areas of numerical research is the work with the observed signal. The
article provides brief necessary theoretical information, an overview of numerical methods
for using digital filters to process observation results with subsequent application of the
spline method, and uses the results of an experiment to show the advantages of the spline
method with simple averaging in the work with observation.
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Introduction

The theory of optimal dynamic measurements originates from a mathematical model
of restoring a dynamically distorted signal from a known observed output signal and
parameters of a measuring device (MD), which is based on the problem of optimal control
for a Leontief type system [1]. The measuring device is modeled by a Leontief type system
(or a description system)

(1)

where L and A are matrices that characterize the structure of the MD, in some cases it
is possible that det L = 0 [2]; x(t) and #(t) are vector-functions of the state of the MD
and the velocity of the state change, respectively; y(t) is a vector-function of observation;
C' is a rectangular matrix characterizing the interrelation between the system state and
observation; u(t) is a vector-function of measurements; B is a matrix characterizing
interrelation between the system state and measurement. If L is not degenerate then
system (1) can be reduced to

Lz = Az + Bu,
y=Cr,

= Mx+ Fu,
y=Cu,
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where M = L7'A, F = L7'B.
The initial Showalter — Sidorov condition

[(@L — A" L]" (2(0) — 29) = 0 (2)

reflects initial state of the MD for some zy € R", a € p"(M). The initial Showalter —
Sidorov condition is equivalent to the initial Cauchy condition x (0) = z( in the case of
det L # 0.

The unknown input signal is found as a solution to the optimal control problem in
which we minimize the penalty functional

J(v) = min J(x(u),u)

u€Uy

of the form
2

Cx® () -y ()| dt. (3)

Jw;mwzzf

The form of functional (3) determines the main idea of the mathematical model of optimal
dynamic measurements that is minimizing the discrepancy between the output signal
y(t) = Cz(t) modelled by system (1) and the observed output signal yo(t) (or observation)
according to the readings of MD and their derivatives [3]. The function v(t), at which the
minimum of the penalty functional is reached, is called the optimal dynamic measurement.

Assuming that the input signal is distorted by interferences of the <white noises
type, it is necessary to consider the stochastic model of dynamic measurements, which is
presented in Section 1 of the article. In Section 2, we give a brief overview of the proposed
approaches to <purifications of observation [4] with the transition to a deterministic model
of optimal dynamic measurements. In Section 3, we discuss the advantages of using the
Kotelnikov sampling theorem for observations, and present the results of computational
experiments.

1. Stochastic Model of Optimal Dynamic Measurements

Let Q = (Q2,A, P) be a complete probability space, R be a set of real numbers
endowed with the Boreal g-algebra. The measurable mapping £ : 2 — R is called a
random variable. The set of random variables with F¢ = 0 and finite variance forms a
Hilbert space L with an inner product < &;,& >= E(£&). Let I C R be some interval.
The mapping 7 : I xQ — R of the form n = n(t,w) is called an (one-dimensional) stochastic
process, therefore the value of the mapping n = (¢, -) is a random variable for every fixed
t €l ie. n=nmn(t )€ Ly and the value of a stochastic process n = n( -,w) is called a
(sample) trajectory for every fixed w € €. The random process 7 is called continuous, if
almost surely all its trajectories are continuous. Denote by CLs the space of continuous
random processes. A continuous random process, which independent random variables
are Gaussian, is called Gaussian. Denote by 1® the (-th Nelson — Gliklikh derivative of
the stochastic process 71 [5]. The set of continuous stochastic processes having continuous

Nelson — Gliklikh derivatives up to order k& € N at each point of the set I forms a space,
which is denoted by C*Ls,.
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Consider the stochastic model of the MD

{ L§:A£+B(u+¢), (4)
n=C{+v,
[(aL — A7 L]"" (£(0) — &) = 0. (5)

Here the matrices L, A, B, C' have the same sense as in (1). Random processes ¢ and v
determine noises in the circuits and at the output of the MD, respectively.

Similarly to the deterministic case, when investigating the problem on restoration of
a dynamically distorted signal by random interference in the circuits and at the output of
the MD, we consider the control problem

J(v) = min J(u), (6)

u€Uy

where the functional

Iy = Tty =3 [ B

reflects the closeness of the real observation 7y (t) and the virtual observation 7(t) obtained
on the basis of a mathematical model of the MD.

The minimum point v(¢) of functional on the set Us that is a solution to optimal
control problem (4) — (7) is called an optimal dynamic measurement. In practice, there is
only indirect information about v(t).

100 - ()

dt (7)

2. Digital Filters and Observation

One of the developed directions in the theory of optimal measurements is the
application of various methods to filtering the observation in order to obtain a smoothed
observation function 7, (t) with a subsequent transition from stochastic model of optimal
dynamic measurements (4) — (7) to the deterministic model

{ Lz = AT + B,

y = (T,
[(aL — A L]"™ (®(0) — 20) = 0, (9)
J(0) = gelgé J(z(u),u), (10)

cz® (1) — g (t)H2 dt. (11)

TORNCOES S

Note that the solution ¥ to problem (8) — (11) is an approximate solution to problem
(4) - (7).

To obtain a smoothed observation, the work [6] uses an algorithm for constructing a
smoothed one-dimensional observation signal under the condition that the signal shape is
convex upwards and has a single maximum point. To accept the assumption of similarity
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of an observation and a smoothed observation function, we test a statistical hypothesis of
normal distribution of the parameters for the cross sections of the process 7y. In addition,
in combination with the numerical algorithm described in [7], this approach allows to take
into account the condition of degradation of the MD.

To obtain a smoothed observation, the works [8] and [9] use a digital moving average
filter and the Savitsky — Golay digital filter, respectively. In both cases, for each experiment,
it is necessary to select the parameters of digital filters that are the value and shift of the
time window, data weights, which is a disadvantage of such methods. The advantage of
these methods is their simplicity and the insignificance of information about the numerical
characteristics of the noise. The work [10] uses an one-dimensional Kalman filter to obtain
a smoothed observation under the assumption that <«white noise> takes place only at the
output of the MD. Note that its application requires information about the noise variance.

Note that all numerical algorithms for solving problem (8) — (11) use the approaches
described in detail in [11,12].

3. Kotelnikov Sampling Theorem and Observation

In [13], it is proposed to use Kotelnikov sampling theorem [14] to filter an observation.
Its application allows to choose the discretization time interval A, which determines the
number of samples K = %, where § = t;11 — t; is the time interval, through which the
observation values are taken from the MD. Each of the samples has one discretization time
interval, but different initial times ¢o;;_1, where j = 1,3, ..., K is the number of the sample.

Then, for each sample, the optimal dynamic dimension v;(t),j = 1,..., K is found using
the spline method. This allows to determine v;(¢;),7 = 1,..., K for all ¢;,. Based on them,
for each nodal point ¢;, a simple arithmetic mean value V;,7 = 1,...,n is determined,

which is taken as the result of solving the problem.

In [13], the results of the computational experiment are given in part, and the algorithm
is presented without any rationale of its steps. When comparing the results of different
approaches to filtering observations, the work [4] also does not provide a rationale of the
advantages of this approach compared to standard digital filters. Let us pay attention to
these aspects in this section of the article.

Note the significant aspects and assumptions:

1) the characteristics of the MD are such that the discretization frequency allows to
restore the input signal u(¢) without loss in its frequency range;

2) the technical capabilities of the MD are such that the frequency of fixing observations
0 is less than the discretization frequency A;

3) the sum of the deterministic signal u and the <«white noise> ¢ is a random process,
therefore, the values of u + ¢ are independent at each moment of time, which allows us to
consider the obtained K samples as independent ones;

4) the array of data on n measurements is constructed within one experiment, which
is considered to be one implementation or trajectory, hence the deterministic part of the
input signal v is unchanged.
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Fig. 1. Input signal reconstructed from Fig. 2. Input signal reconstructed from
the results of the 1-st sample of observations; the results of the 2-nd sample of observations;

blue color — v(t), red color — v7(t).

0.8

0.6

044

blue color — v(t), red color — v(t).

I VAN
VOM 0.04 0.06 \W 012
Fig. 3. Input signal reconstructed from Fig. 4. Input signal reconstructed from

the results of the 3-rd sample of observations; the results of the 4-th sample of observations;

blue color — v(t), red color — v3(t).

blue color — v(t), red color — Tg(t).
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Fig. 5. Input signal reconstructed from Fig. 6. Input signal reconstructed from
the results of the 5-th sample of observations; the results of the 6-th sample of observations;

blue color — v(t), red color — T5(t).

blue color — v(t), red color — Tg(t).
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Fig. 7. Input signal reconstructed from Fig. 8. Input signal reconstructed from
the results of the 7-th sample of observations; the results of the 8-th sample of observations;
blue color — v(t), red color — T7(t). blue color — v(t), red color — vg(t).
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Fig. 9. Input signal reconstructed from Fig. 10. Input signal reconstructed from
the results of the 9-th sample of observations; the results of the 10-th sample of observations;
blue color — v(t), red color — Tg(t). blue color — v(t), red color — Tig(t).

Figs. 1 — 10 show the results of a computational experiment, in which n = 700, K = 10.

In the figures, the blue color denotes the input signal taken from the control sensor
and accepted as a <trues input signal v(t). The red color denotes the approximate input
signals 7;(t) obtained by one sample as a result of the numerical algorithm.

Note that during dynamic measurements, the value of the entire time interval T' is
small, and the value of § is extremely small, therefore, following item 4, based on the
results of each sample, we expect to obtain one reconstructed signal. But the results of K
samples show that the resulting approximate signals have not only different values, but
also different shapes in the time neighborhood, where the amplitude highest signal values
are achieved.

At the same time, it follows from item 3 that the independence of the samples makes
it possible to consider them to be <conditionally different> realizations of one signal and
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apply to them the statistical methods of processing. That is why the correct application of
the Kotelnikov sampling theorem to the observed signal allows to obtain a more accurate
approximate optimal dynamic measurement than the approximate optimal measurement
obtained after filtering the observed signal with standard digital filters.

Fig. 11 shows the result of simple averaging.

Fig. 11. Input signal after averaging; blue color — v(t), red color — V'(¢).

In addition, the average approximate measurement allows to calculate the variance
from the data of K samples. Taking into account that the resulting value includes not
only the noise variance, but also the error of the methods and calculations, the resulting
value can be used as an estimate of the noise variance.

Therefore, the algorithm proposed in [13] makes it possible to restore a dynamically
distorted signal with unknown noise parameters under the assumption of known frequency
characteristics of the useful signal and the sensor.

This work was supported by a grant from Ministry of Science and Higher Education of
the Russian Federation No. FENU-2020-0022 (2020072GZ).
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O HABJIFOJAEHUNN 11PN PEINIEHUN 3A/TAYN
OIITUMAJILHBIX JTUHAMMWYECKUX N3MEPEHUN

A. B. Keanep

B craTbe mpejicraBieno 060CHOBaHME HOBOTO aJTOPUTMA PENICHUs 381891 OMTUMAJIb-
HBIX JIMHAMUYECKUX U3MEPEHUll, HA3BAHHOTO ABTOPAMHU CILJIAHH METOJIOM C MMPOCTBIM YCPE/I-
HEHMEM, B €r0 OCHOBE JIEKUT npuMenenne teopeMbl KoreabaukoBa. O0CyKIaeMbIil ajro-
PUTM SIBJISIETCsI OJIHUM W3 WCIIOJIb3YEMbIX B TEOPHUHU OINTUMAJIBHBIX JIMHAMAYECKUX U3Me-
PEHUIi YUCIEHHBIX METOJMOB, HO3BOJISIONMX 110 U3BECTHOMY BBIXOJHOMY CUTHAJY (WJu Ha-
GJLIOJICHUIO) U U3BECTHOM I1€peJaTOYHOl (YHKIMU U3MEPUTEIHHOIO yCTPOICTBA HAXOAUTD
BXOJHOI curHaJ. Bo Bcex MOCTAHOBKAX 3a/1a49d MPEOJIaraeTcsl yuaer WHEPIUOHHOCTH U3~
MEPHUTEJIHLHOIO yCTPONCTBA, & pa3indus 00YCIOBJIEHBI BKIIIOYCHIEM B MATEMATHIECKYIO MO-
JleJIb Pa3JIMYHBIX 110 MIPUPOJE IOMeX. PaccMoTpeHme moMexu B KadecTBe <0OeJIoro mymas
[IPUBEJIO K PA3BUTHUIO AHAJUTHIECKAX U IUCJIEHHBIX METOOB PellleHusi 00CyKIaeMoil 3a1a-
qu. B mocjiegHue rogpl OHUM M3 HAIPaBJIEHWI YUC/IEHHBIX MCCIEJOBAHMIA cTaja pabora C
HADJIIOIAEMBIM CUTHAJIOM. B cTaThe IpUBeIeHbl KPATKO HEOOXOIMMbBIE TEOPETHIECKHE CBEIe-
HUsA, 0030p INUCTEHHBIX METOJOB M0 MCIIOJIb30BAHUIO MIMPOBBIX (PUILTPOB st 0OpabOTKI
Pe3yJIbTaTOB HAOJIIOJEHNS C IIOC/IeAYIOMUM IIPUMEHEHNeM CILIAiiH MeToa, TOKa3aHbI IIpe-
HUMYIIECTBA HOX0/1a B paboTe ¢ HAOJIIOACHNEM CIUIAH METO/Ia C IIPOCTHIM yCPEIHEHUEM Ha
OCHOBE PEe3yJIbTATOB OJ[HOI'O IKCIIEPUMEHTA.

Karouesvie caosa: onmumasvHble OUHAMUYECKUE USMEPEHUS, CNAATH MEMODJ, CUCTEME

AEOHMDBEBCKO20 MUNA, TMEOPEMQA Komeavruxosa.
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