
COMPUTATIONAL MATHEMATICS

MSC 15B99 + 05C50 DOI: 10.14529/jcem220304

OPERATIONS ON GRAPH FUNCTIONS AND SPECTRAL
PROPERTIES OF COMPOSITIONS OF REFLECTIONS

E. V. Kolmykova, Voronezh State University, Voronezh, Russian Federation,
kolmykova_kate@bk.ru.

The article deals with operators acting on spaces of graph functions. Graph-theoretic

methods are used to find the properties of the introduced operators. These properties

show that the introduced operators are discrete analogues of differentiation and integration.

The values of operators on some important graph functions are found. A method of using

operators to study graph functions and methods of expressing some functions through others

are developed. The characteristic polynomials of the Coxeter transformation is considered.

Its coefficients can be expressed in terms of simple graph functions. With the help of the

developed methodology a method of finding such expressions is proposed. The results of

the article can be used to find spectral characteristics of compositions of reflections. These

methods are simple and convenient to use.
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Introduction

The binding energy of a physical system is the difference between the energy of the
state in which the components of the system are removed from each other and the total
energy of the bound state of the system:

∆E =
N
∑

i=1

Ei − E,

where Ei is total energy of i-th component in an unbound state, and E is the total energy
of the bound system. For example suppose there is some tree-like molecule and some two
atoms in it which are connected by a covalent bond. The energy of this bond is defined
as follows. Two molecules obtained from the original molecule by breaking this bond are
considered. The binding energy is the difference between the sum of the total energies of
these two molecules and the total energy of the original molecule.

In this article we introduce the following construction. We take an arbitrary function
defined on a set of trees, an arbitrary tree and an arbitrary edge in it. The sum of
the function values on each of the two trees obtained by removing the taken edge is
subtracted from the value of the function on the tree. We call this number the increment
of the function on the edge of the tree. The operation of an increment considered by
us as some linear operator ∆ acting on functional spaces resembles the differentiation
operator, and the inverse multivalued transformation I has properties similar to those of
an indefinite integral. We obtain a convenient model that can be used to determine the
binding energy between two atoms of tree-like molecules. However we apply this model
in another area. Also, we analyze the constructed model and apply it to obtaining some
spectral characteristics of compositions of reflections.
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1. Graphs and Graph Functions

Consider finite undirected graphs without loops and multiple edges. Formal definition:
a graph is a pair (V0, V1) of sets, where V0 is a finite nonempty set (its elements are called
vertices), V1 is some set of two-element subsets of the set V0 (elements of the set V1 are
called edges). The concept of a forest is a graph without cycles, and a tree is a connected
graph without cycles is defined naturally ( [1], Chapter IV, Supplement). We are interested
in some operations on graphs and on graph functions.

Deleting an edge in a graph is an operation in which all vertices of the graph and all
edges except one edge are preserved. Formal definition: let l be some edge of the graph
G = (V0, V1); the graph obtained by removing the edge l, is called the graph (V0, V1\{l}),
which is denoted by G\l. For example, if an edge is removed from a tree, a forest consisting
of two trees is obtained.

A graph function is a function whose argument (or arguments) is a graph (or graphs,
their subgraphs, vertices, edges, etc.).

For n = 0, 1, 2, 3, ... in [2] on the set of all graphs, the functions θn were introduced as
follows: θn(G) is the sum of the n-th degrees of the degrees of the vertices of the graph G
(the degree of a vertex is the number of edges containing this vertex). For example, θ0(G)
is the number of vertices of the graph G, and θ1(G) is twice the number of its edges.

We use constrictions of various graph functions defined on the set of all forests or on
some sets of trees (without specifying this specifically, if it is clear which constriction is
meant).

2. Construction of Model

First, let us consider one construction in which graph functions, graphs and their edges
are used. The set of all trees is denoted by T . And by T∗ we denote the set of all trees,
except for a tree consisting of one vertex.

Let us take some function f0 : T → R, some tree T0 ∈ T∗ and some edge l0 of the tree
T0. Remove the edge l0 from the tree T0, we get a forest consisting of two trees. Let us
denote one of them T−

0 , and the other T+
0 (relatively speaking, the left and right trees).

Consider the number
f0(T0)− (f0(T

−
0 ) + f0(T

+
0 )).

It does not depend on which of the trees is chosen by the left and which by the right. This
number is denoted by [f0, T0, l0] and is called the increment of the function f0 on the edge
l0 of the tree T0.

Example 1. Consider the graph shown in Figure 1. And consider horizontally edge. Figure
2 shows the graph obtained by removing this edge. For the tree H shown in Figure 1, we
have θ2(H) = 12 + 12 + 12 + 32 + 32 + 22 + 42 + 12 + 12 + 12 = 44. For the trees shown in
Figure 2 the values of the function θ2 are equal to 16 and 20 respectively.

If f0 = θ2, T0 = H , and l0 is the horizontal edge, then:

[f0, T0, l0] = 44− (16 + 20) = 8.

Example 2. Let M be some set of tree-like molecules. Each such molecule corresponds
to a certain tree. Let the set M be closed with respect to the breaking of bonds (i.e., for
any molecule and any bond, if you remove the bond, then both resulting molecules belong
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Fig. 1

Fig. 2

to the set M). Consider the function E : T → R, defined as follows. If T is a tree that
does not correspond to any of the molecules under consideration, then E(T ) = 0. If T is
a tree corresponding to some molecule, then by E(T ) we denote the total binding energy
of the electronic structure of this molecule. Note that this is a rather crude model, since
we do not take into account the energy caused by vibrations, rotational movements, etc.
If the graph of a molecule is some tree T0, and the bond between two atoms corresponds
to some edge l0, then the energy of this bond is −[E, T0, l0].

Let us introduce the linear spaces L1 and L2. The space L1 consists of all possible real
functions f(X), where the variable X runs through the set T . The space L2 consists of
all possible real functions g(X, l), where the variable X runs through the set T∗, and the
variable l runs through the set of edges of the tree X.

Define the operator ∆ : L1 → L2. For f ∈ L1, we define the function ∆(f) ∈ L2 as
follows:

∆(f)(X, l) = [f,X, l].

Example 3. Let us define γ1 ∈ L2 as follows: γ1(T, l) is the number of edges of the tree
T which are incidented to the edge l (two edges are called incident if they have a common
vertex). Let us show ∆(θ2) = 2γ1 + 2. Let T be an arbitrary tree of T∗, l be its arbitrary
edge, the ends of this edge denote u and v. Remove the edge l. The tree containing the
vertex u is denoted by T−, the other is denoted by T+. The degree of the vertex u (or v)
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in the tree T− (or T+) we denote by p (or q). Let a1 (or a2) be the sum of the squares of
the degrees of the vertices of the tree T− (or T+), which are different from u (or v ). Then
θ2(T ) = a1 + (p+ 1)2 + (q + 1)2 + a2, θ2(T

−) = a1 + p2, θ2(T
+) = q2 + a2. And

∆(θ2)(T, l) = [θ2, T, l] = θ2(T )− (θ2(T
−) + θ2(T

+)) = 2(p+ q) + 2 = 2γ1(T, l) + 2.

Example 4. Let M1,M2, ... be arbitrary sets of tree-like molecules closed with respect
to bond breaking. Let us define the functions EMi

: T → R similarly as in Example 4.
Different sets Mi define different functions from the space L1, since the considered sets of
molecules may differ in the atoms of which elements the molecules consist of. If the graph
of a molecule from the set Mi is some tree T , and the bond between two atoms corresponds
to some edge l, then the binding energy is Ebin = −∆(EMi

)(T, l). Thus, the operator ∆
models a general scheme for determining the total binding energy of molecules.

3. Properties of the Model

The operator ∆ is linear. Sometimes we write ∆f instead of ∆(f). The operator ∆
acts on functions defined on the set T . If the function f is defined on some wider set,
then by ∆f we denote the value of the operator ∆ on the restriction of the function f
on the set T . By C we denote the set of all real constant functions defined on T . The
product Cθ0 is the set of all products fθ0, where f ∈ C. The operator ∆ : L1 → L2 is not
injective. Inverse mapping (defined on the image of the operator ∆)is multi-valued one, we
denote that by I, its domain of definition D(I) is ∆(L1). Let us formulate the properties
of mappings ∆ and I (they resemble of some properties of differentiation and integration
from classical analysis).

Theorem 1. The general solution of the equation ∆y = 0 is y = Cθ0.

Proof.
1) Let f be a solution of the equation ∆y = 0, then

f(T ) = f(T−) + f(T+), ∀T, l. (1)

Let us number all edges of the graph T : l1, l2, ..., lr. We apply the statement (1) to
the tree T and the edge l1. Then, to the one of the obtained trees that contains the edge
l2, we similarly apply the statement (1). And so we do r once. At the rth step we get
f(T ) = f(A1) + f(A1) + ... + f(A1), where A1 is a one-vertex tree, and the number of
terms is equal to the number of vertices of the tree T . In other words: f(T ) = f(A1)θ0(T ),
hence f ∈ Cθ0.

2) Let f ∈ Cθ0, then f = c · θ0 for some c ∈ R, so ∆(f) = ∆(c · θ0) = c∆(θ0) = 0.

2

Theorem 2. If ∆F = f , then I(f) = F + Cθ0.

Proof.
If A is a linear operator acting from one linear space to another, then the general

solution of the equation Ax = b is x0 + kerA, where x0 is some particular solution ( [3],
Chapter 2, §3, Theorem 1). In our case, A = ∆ and (by Theorem 1) kerA = Cθ0.

2
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Theorem 3. 1) If f, g ∈ D(I) then I(f + g) = I(f) + I(g).
2) If f ∈ D(I) and α ∈ R\{0} then I(αf) = αI(f).

Proof.
This statement is a special case of the following one: let A be a linear operator acting

from one linear space to another, A−1 be the inverse (possibly multi-valued) map defined
on the image of the operator A. Then A−1(b+c) = A−1(b)+A−1(c) and A−1(αb) = αA−1(b)
for any nonzero scalar α. Really, αA−1(b) = α{x|Ax = b} = {αx|Ax = b} = {αx|αAx =
αb} = {αx|A(αx) = αb} = {z|Az = αb} = A−1(αb).

Further: A−1(b) + A−1(c) = {x|Ax = b} + {y|Ay = c} = {x+ y|Ax = b ∧ Ay = c} ⊆
{x+ y|Ax+ Ay = b+ c} = {x+ y|A(x+ y) = b+ c} = {z|Az = b+ c} = A−1(b+ c).

Let us prove the inclusion A−1(b+c) ⊆ A−1(b)+A−1(c). Take arbitrarily x ∈ A−1(b+c)
and x1 ∈ A−1(b), put x2 = x− x1. Then Ax2 = A(x− x1) = Ax− Ax1 = (b+ c)− b = c,
i.e. x2 ∈ A−1(c). So, x = x1 + x2 ∈ A−1(b) + A−1(c).

2

An edge and a vertex of a graph are called incident to each other if the vertex is one
of the ends of the edge.

Let e = {u, v} be an edge of the graph. Via eu (resp. ev) denote the number of edges
incident to the vertex u (resp. v), except for the edge e. The numbers eu and ev are called
the degrees of the edge e.

On the set of all graphs we define the function τ as follows: τ(G) is the sum of the
products of the degrees of the vertices of the edges of the graph G. Let us define ρ, ξ ∈ L2

as follows: ρ(T, l) is the product of the degrees of the edge l, and ξ(T, l) is the sum of the
degrees of the vertices of the forest T\l adjacent to at least one end of the edge l.

For n ∈ N0, we define γn ∈ L2 as follows: γn(T, l) is the sum of the nth degrees of the
degrees of the edge l.

Lemma 1. The following equalities are true:

∆(θn) =
n−1
∑

i=0

C i
nγi, n ∈ N,

∆(τ) = ξ + ρ+ γ1 + 1.

Proof.
Let T be an arbitrary tree, l be its arbitrary edge, the ends of this edge are denoted

by u and v. Remove the edge l. The tree containing the vertex u is denoted by T−, the
other is denoted by T+. Via p (resp. q) we denote the degree of the vertex u (resp.v) in
the tree T− (resp. T+).

Let a1 (resp. a2) be the sum of n-th degrees of the degrees of the vertices of the tree T−

(resp. T+) exept by u (resp. v ). Then θn(T ) = a1+(p+1)n+(q+1)n+a2, θn(T
−) = a1+pn,

θn(T
+) = qn + a2. Then ∆(θn)(T, l) = [θn, T, l] = θn(T )− (θn(T

−) + θn(T
+)) = (p+ 1)n −

pn + (q + 1)n − qn =
n
∑

i=1

C i
n(p

n−i + qn−i) =
n
∑

i=1

C i
nγn−i =

n−1
∑

i=0

C i
nγi.

Let b1 (resp. b2) be the sum of the products of the degrees of the vertices of the
edges of the tree T− (resp. T+) which are incident to the vertex u (resp. v). Let su
(resp. sv) be the sum of the degrees of the vertices of the tree T− (resp. T+) adjacent
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to the vertex u (resp. v). Then τ(T ) = b1 + su(p + 1) + (p + 1)(q + 1) + sv(q + 1) + b2,
τ(T−) = b1+sup, τ(T

+) = svq+b2. Then ∆(τ)(T, l) = [τ, T, l] = τ(T )−(τ(T−)+τ(T+)) =
su + (p+ 1)(q + 1) + sv = (su + sv) + pq + (p+ q) + 1 = ξ(T, l) + ρ(T, l) + γ1(T, l) + 1.

2

Example 5. 1) We have: ∆(θ3) = 3γ2+3γ1+γ0 = 3γ2+3γ1+2, ∆(θ2) = 2γ1+γ0 = 2γ1+2,
∆(θ1) = γ0 = 2. From Theorem 1 follows ∆(θ0) = 0.

2) Using the previous lemma and theorems 1–3 we find I(0) = Cθ0, I(1) = I(0, 5γ0) =
0, 5θ1 + Cθ0, I(γ1) = 0, 5θ2 − 0, 5θ1 + Cθ0, I(γ2) = 1

3
θ3 −

1
2
θ2 +

1
6
θ1 + Cθ0 I(ξ + ρ) =

τ − I(γ1)− I(1) = τ − (0, 5θ2 − 0, 5θ1)− 0, 5θ1 + Cθ0 = τ − 0, 5θ2 + Cθ0

4. Reflections, Coxeter Transformations and Trees

We use the constructed model to study the spectral characteristics of some
compositions of reflections.

Let G be some graph with n vertices. Its vertices denote by 1, 2, ..., n. The set of
all vertices adjacent to the vertex i we denote by S1(i). For i ∈ {1, 2, ..., n} and x =
(x1, x2, ..., xn) ∈ R

n we denote

si(x) = −xi +
∑

j∈S1(i)

xj ,

σi(x) = (x1, x2, ..., xi−1, si(x), xi+1, ..., xn).

Thus the linear operators σi : R
n → R

n are defined. These operators are reflections
with respect to some hyperplanes ( [1], Chapter V).

The composition of operators
σnσn−1...σ1

is called the Coxeter transformation.
The monograph [4] is devoted to the Coxeter transformation. The most important

problem associated with Coxeter transformations is to find their spectral properties.
Since the vertices of the graph G can be denoted by the numbers 1, 2, ..., n in several

ways, several Coxeter transformations are associated with the graph G. It is shown
in [5] and [6] that if a graph has cycles then the spectral properties of various Coxeter
transformations associated with such a graph can significantly differ among themselves.
Therefore in this case the graph itself is not a convenient enough tool for spectral
investigation of the Coxeter transformation.

The situation strongly changes when there are no cycles in the graph. It is proved
in [7] that if a graph is a forest then all Coxeter transformations associated with it are
conjugated to each other and therefore have the same characteristic polynomial. In [8] it
is proved that the Jordan form of the Coxeter transformation associated with a tree is
uniquely determined by the spectrum of this transformation. Therefore in the case of a
tree all spectral properties of the Coxeter transformation (including the sizes of the Jordan
cells and the features of the iterative process) are uniquely determined by its characteristic
polynomial.

The characteristic polynomial of the forest G is denoted by HG(λ). The coefficient for
λi in the polynomial HG(λ) we denote by hi(G). This sets the functions hi defined on the
set F of all forests.
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The functions hi can be represented in terms of some other functions defined on the
set F of all forests. In [2] such expressions are obtained for h0, h1, h2 and h3. The proof
for these statements is quite cumbersome. In section 6 we show how shorter proofs can be
obtained using the constructed model.

5. Properties of Characteristic Polynomial of the Coxeter
Transformation

The n-vertex graph-chain has V0 = {v1, v2, ..., vn}, V1 =
{{v1, v2}, {v2, v3}, ..., {vn−1, vn}} for n ≥ 2; and V0 = {v1}, V1 = ∅ when n = 1.
We denote this graph by An. It is well known that HAn

(λ) = λn + λn−1 + ... + λ + 1, i.e.
hi(An) = 1 for i ≤ n; hi(An) = 0 for i > n.

If l is an edge of the graph G then the graph obtained from G by removing the vertices
of the edge l we denote by G\[l]. Formal definition: if G = (V0, V1) and l = {u, v} then
G\[l] = (V ′

0 , V
′
1), where V ′

0 = V0\l, and V ′
1 is obtained from V1 by removing all edges

containing the vertex u or v. The following result is proved in [8].

Proposition 1. (The splitting formula). If T ∈ T \{A1, A2} and l is edge of T then:

HT (λ) = HT\l(λ)− λHT\[l](λ).

The namber of trees of forest F is denoted by k(F ). Thus we inrtoduce the map k
defined on set of all forests.

If F is an arbitrary forest consisting of trees T1, ..., Tk(F ) then

HF (λ) =
∏

HTi
(λ). (2)

The following result is proved in [2].

Proposition 2. The equalities: h0 = 1, h1 = k, h2 = 2(θ0 − 1) −
θ2
2

+
k2 − 5k + 4

2
,

h3 =
5

2
θ2 −

10

3
(θ0 − 1)−

1

3
θ3 − τ + (k − 1)(2(θ0 − 1)−

θ2
2
) +

(k − 1)(k2 − 14k + 32)

6
are

true.

Let us rewrite this proposition by using forula θ0 = 0.5θ1 + k.

Proposition 3. The equalities: h0 = 1, h1 = k, h2 = θ1 −
θ2
2

+
k(k − 1)

2
, h3 = −

5

3
θ1 +

5

2
θ2 −

1

3
θ3 − τ + (k − 1)(

θ1
2
−

θ2
2
) +

k(k − 1)(k − 2)

6
are true.

6. Another Way to Get the Formula for h3

1) Let us take an arbitrary tree T /∈ {A1, A2} and its arbitrary edge l. Using the
proposition 1 we obtain: HT (λ) = HT−(λ)HT+(λ)− λHT\[l](λ).

In more detail, given that h1(T
−) = h1(T

+) = 1, we get:

HT (λ) = (...+h3(T
−)λ3+h2(T

−)λ2+λ+1)(...+h3(T
+)λ3+h2(T

+)λ2+λ+1)−λHT\[l](λ).

Comparing the coefficients for λ3 we get:

h3(T ) = h3(T
−) + h2(T

−) + h2(T
+) + h3(T

+)− h2(T\[l]),
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∆h3(T, l) = h2(T
−) + h2(T

+)− h2(T\[l]),

∆h3(T, l) + ∆h2(T, l) = h2(T )− h2(T\[l]).

Using the formula for h2 from proposition 3 and the equality k(T\[l]) = γ1(T, l) we
get:

∆h3(T, l) + ∆h2(T, l) = θ1(T )−
θ2(T )

2
− θ1(T\[l]) +

θ2(T\[l])

2
−

γ1(T, l)(γ1(T, l)− 1)

2
,

∆h3(T, l) + ∆h2(T, l) = (θ1(T )− θ1(T\[l]))−
θ2(T )− θ2(T\[l])

2
−

γ1(T, l)(γ1(T, l)− 1)

2
,

∆h3(T, l) + ∆h2(T, l) = 2(γ1(T, l) + 1)−
2ξ(T, l)− γ1(T, l) + γ2(T, l) + 2γ1(T, l) + 2

2
−

−
γ2(T, l) + 2ρ(T, l)− γ1(T, l)

2
.

This equality is true for any tree T /∈ {A1, A2}. Direct substitution checks that it is
also true for T = A2. So it is true for any T of T∗. We get the equality of functions:

∆h3 +∆h2 = 2(γ1 + 1)−
2ξ − γ1 + γ2 + 2γ1 + 2

2
−

γ2 + 2ρ− γ1
2

.

Hence ∆h3 + ∆h2 = 2γ1 + 1 − ξ − ρ − γ2. Hence h3 + h2 ∈ I(2γ1 + 1 − ξ − ρ − γ2),
h3 ∈ −h2+ I(2γ1+1− ξ−ρ−γ2). Using Theorem 2, Theorem 3, equalities from Example
5 and the expression for h2 from Proposition 3 we obtain

h3 ∈ −
5

3
θ1 +

5

2
θ2 −

1

3
θ3 − τ + Cθ0.

Hence we get, because h3(A1) = 0, that

h3 = −
5

3
θ1 +

5

2
θ2 −

1

3
θ3 − τ.

2) Let F be an arbitrary forest consisting of trees T1, ..., Tk(F ). Comparing the coefficient
at λ3 in equality (2) we get:

h3(F ) =
∑

h3(Ti) + (k(F )− 1)
∑

h2(Ti) + C3
k(F ) =

=
∑

(

−
5

3
θ1(Ti) +

5

2
θ2(Ti)−

1

3
θ3(Ti)− τ(Ti)

)

+(k(F )−1)
∑

(

θ1(Ti)−
θ2(Ti)

2

)

+C3
k(F ) =

= −
5

3
θ1(F ) +

5

2
θ2(F )−

1

3
θ3(F )− τ(F ) + (k(F )− 1)

(

θ1(F )−
θ2(F )

2

)

+ C3
k(F ).
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ОПЕРАЦИИ НАД ГРАФОВЫМИ ФУНКЦИЯМИ
И СПЕКТРАЛЬНЫЕ СВОЙСТВА КОМПОЗИЦИЙ
ОТРАЖЕНИЙ

Е. В. Колмыкова

В статье вводятся операторы, действующие на пространствах графовых функций.

С помощью теоретико-графовых методов находятся свойства введенных операторов.

Эти свойства показывают, что введенные операторы являются дискретными аналогами

дифференцирования и интегрирования. Найдены значения операторов на некоторых

важных графовых функциях. Разработана методика использования операторов для

исследования графовых функций и способов выражения одних функций через дру-

гие. Рассматриваются характеристические многочлены преобразований Кокстера. Их

коэффициенты могут быть выражены через простые графовые функции. С помощью

разработанной методики предложен способ нахождения таких выражений. Результаты

статьи можно использовать для нахождения спектральных характеристик композиций

отражений. Эти способы являются простыми и удобными для применения.

Ключевые слова: граф; дерево; отражение; преобразование Кокстера.
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