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Stability theory play an important role in systems theory and engineering sciences.
The stability of equilibrium points is usually considered within the framework of the
theory of stability developed by the Russian mathematician and mechanic A. M. Lyapunov
(1857-1918), who laid its foundations and gave it a name. At present, it has become very
routine view at stability as stability with respect to a perturbation of the input signal.
The research is based on the space-state approach for modeling nonlinear dynamic systems
and the alternative <input-output> approach. The concept of stability in terms of <input-
output> of a nonlinear system is based on the method of Lyapunov functions and its
generalization to the case of nonlinear dynamic systems. The interpretation of the problem
of the accumulation of perturbations is reduced to the problem of finding the norm of the
operator, which makes it possible to expand the range of models under research depending
on the space in which the input and output signals act.
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Introduction

The theory of stability play an important role in the analysis of the stability properties
of perturbed systems. We can formulate several problems that arise in the study of
dynamical systems. Recall that an equilibrium point is stable if all solutions starting near
this point remain in its vicinity; otherwise this point is unstable. An equilibrium point is
asymptotically stable if all solutions starting near it tend to this equilibrium point as time
tends to infinity. Consider the system

x" = f (tv l‘) +9g (t,l‘) (1>

where f :[0,00) x D — R" and g : [0,00) x D — R™ are piecewise continuous in t and
locally functions are Lipschitz in  on [0,00) x D and D C R" is an open region containing
the origin = 0. We will consider this system as a perturbation of the nominal system

2 = f(t x). (2)

The presence of the perturbation term ¢ (¢,z) may be due to errors in the definition of
the model, changes in parameters over time, or other uncertainties and perturbations that
always take place in real situations. Let us assume that the original system (2) has a
uniformly asymptotically stable equilibrium point at the origin. In order to determine the
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stability properties of the perturbed system, it is necessary to use the Lyapunov function
of the nominal system to analyze the perturbed system. It is this technique that was used
in the analysis of the linearization method. The novelty in this case lies in the fact that the
perturbation term can have a more general form compared to the perturbation term arising
in the investigation of a linearized system. The conclusion that can be reached in the course
of the analysis of the system essentially depends on the answer to the question about the
equality of the perturbation term at the origin of coordinates to zero. If g (£,0) = 0, then
the perturbed system (2) has an equilibrium point at the origin. If g (¢,0) # 0, then the
origin is not an equilibrium point of the perturbed system. In this case, it is possible to
investigate the perturbed system for the limiting boundedness of its solutions ([1] p. 339).

1. Perturbation Vanishing at the Origin

Consider the case when ¢ (t,0) = 0. Assume that z = 0 is an exponentially stable
equilibrium point of the nominal system (2) and let V (¢, =) be a Lyapunov function
satisfying the relations:

allz[I* <V, 2) < ez, (3)
ov. oV
T < _ 2
o S f () < el (W
ov
= < callal )

for all (¢,x) € [0,00) x D and some positive constants ¢y, ¢o, c3, and ¢4. The existence of
a Lyapunov function satisfying (3) — (5) is guaranteed by the theorem ([1] p. 162).
Example 1. Consider a second-order system

r
€Ty = Ta,
rh = —dxy — 219 + BT

with unknown constant 5 > 0. Consider this system as perturbed with

f(z) = Az = {_04 _12} {;21} and g (z) = [B(a):%}'

The eigenvalues of the matrix A are —1 4 j1/3. And, therefore, A is Hurwitz. The solution

of the Lyapunov equation
PA+A"P=-1

has a form
3 1
2 8
P—
1 5
8 16

The Lyapunov function V (z) = 27 Pz satisfies inequalities (3) — (4) with constants
c3 = 1 and ¢4 = 2 x 1.513 = 3.026. The perturbation term g(z) satisfies ||g(x)|2 =
Blza|® < Bk3|xa| < BE3||z||2 for all |z3| < ky. Using V ( x) as the Lyapunov function for
the perturbed system, we obtain

V' (2) < —|lzl3 + 3.0268k3||l2-
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Hence V' (x) will be negative definite if

1

< — .
b 3.026k2

In order to get the bound ks, we must let Q. = {z € R*/V(z) < c¢}. For any positive
constant ¢, the set €2, is closed and bounded. The boundary of the set €. is the Lyapunov

surface 5 ) 5
V(z) = 53:% + T+ 1—6:1:3 =c

The largest value of |z3| on the surface V' (x) = ¢ can be determined by differentiating the
surface equation with respect to x;. This leads to the following result

1
3.151 + ZxQ =0.
x
Then the extremum of x5 is reached at the point of intersection of the line x; = —22 with

12
a Lyapunov surface. It is easy to show that the maximum value of 23 on the Lyapunov

surface is 2—90 Thus, all points inside (2. satisfy the bound

96¢
29| < kg, where k3 = 59 -
Therefore if
29 0.1

< — ‘=
b 3.026 x 96 ¢ c

the derivative V’(z) will be negative definite on €2, and we can conclude that the origin
x = 0 is exponentially stable and €2, as an estimate of the attraction region. The inequality

B < — shows the interrelation between the estimate of the attraction region and the

¢
upper bound . The smaller the upper bound 3, the larger the estimate of the region of
attraction. The presence of a compromise interrelation between these two quantities seems
to be a natural fact. The change of variables

_ /38
21 = 21’2,
3 3
22:\/5 (4x1+2x2—ﬁx§):— gﬁxg, T =2t

transforms the equation of state to the following form

%:—zg, %:21—1—(2%—1),22.

In [1] (p. 344) was shown that the area of attraction of this system is limited
and surrounded by an unstable limit cycle. The region of attraction, represented in z-
coordinates, increases with decreasing # and decreases with increasing 5. Example 1 can
serve as an illustration of the regularity that any two-dimensional vector satisfying the
inequality

lg(t, 2)l, < BE3]I]l2.
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This class of perturbations seems to be more general in comparison with the
perturbation that takes place in the particular example under consideration and has a
structural feature — the first component of the perturbation vector ¢ is equal to zero. The
analysis carried out shows that it is possible to consider perturbations of a general form,
when all components of the vector g can change. The stability analysis of the perturbed
system becomes more complicated if the origin of the nominal system (2) is uniformly
asymptotically stable, but not exponential stability.

2. Perturbations That do not Vanishing at the Origin

Consider a more general case when the condition ¢ (¢,0) = 0 is not satisfied and,
consequently, the origin x = 0 is not an equilibrium point of the perturbed system (1). In
this case, one cannot investigate the stability of the origin of coordinates as an equilibrium
point of the system, and one cannot expect that the solution of the perturbed system will
tend to the origin of coordinates at ¢ — 0o.We can hope the solution x(t) to be limitingly
small if the perturbations ¢(t, x) is small in some sense. Let’s start with the case when the
origin of the nominal system (2) is exponentially stable and V' (¢, x) is a Lyapunov function
of the nominal system satisfying (3) — (5) on [0,00) x D, where {z € R"/||z|| < r}.

Example 2. Consider a second-order system

x| = x9,
vy = —4dx) — 239 + Bas +d (1),

where § > 0 is an unknown constant and d () is a uniformly bounded perturbation that
satisfies the inequality |d (¢)] < 6 for all ¢ > 0. This system coincides with the one we
considered in Example 1, except that the new system has an additional perturbation term
d (t) . This system can be considered as a perturbation of the nominal linear system of the
Lyapunov function, which has the form V (z) = 27 Pz, where P is the same matrix.

This function V' (z) can be considered as a Lyapunov function for the perturbed system,
but the analysis of the influence of two perturbation terms Sx3 and d (¢) should be carried
out separately, since the first term is equal to zero at the origin, and the second is not.
Calculating the derivative V' (z) along the trajectories of the perturbed system, we obtain

2l
, 9 5 (1 2 o 1 d
Vit,x) = —|lz]|3 + 28 o3 | sz122 + 16%2 +2d(t) | =21 + —a

—
8 8 16
V299
3

3
< —ll=ll3 + 28 Kllwlls + 1]2-

In obtaining this estimate, we used the inequality

|221 + Bxo| < ||z]|2V29,

96
and also the fact that k, is an upper bound on || . |x2|* is bounded on Q. by the value —90

For the case of exponential stability, in the analysis of which some singularity was used,
which had no analogue in the analysis of a more general situation of uniform asymptotic
stability, taking into account t — oo [3]. The assumption that all uniformly bounded
perturbations are satisfied, the solutions of the perturbed system will be uniformly
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bounded. On the other hand, in the case of uniform asymptotic stability, an analysis of the
properties of stability shows that when uniformly bounded disturbances arise in a nominal
system with a uniformly asymptotically stable equilibrium point at the origin, its solutions
will remain bounded regardless of the magnitude of the acting disturbances. We cannot
prove this fact, which does not mean that the system cannot have this property. However,
it turns out that this statement is indeed false. One can give examples of systems for which
the origin of coordinates is a globally uniformly asymptotically stable equilibrium point,
but bounded perturbations lead to the fact that the solutions of the perturbed system go
to infinity.

Conclusion

In conclusion, it should be noted that the complexity of the analysis of a nonlinear
dynamical system increases rapidly with an increase in its order. This serves as a
motivation to look for ways to simplify the analysis. If the model can be represented
as interconnected lower order subsystems, we can divide the stability analysis into two
steps. At the first step, perform the decomposition of the system into isolated subsystems
of a smaller order and for each of them we conduct an appropriate study of the stability
properties. At the second step, we use the results obtained at the first step and information
about the interconnections between these subsystems in order to determine the stability
properties of the entire interconnected system. This method is shown in the article on the
given examples and used to find the Lyapunov functions for interconnected systems [4].

References

1. Khalil H.K. Nonlinear Systems. New Jersey, Prentice Hall, 2002.

2. Yeletskikh I.A. Application of the Method of Lyapunov to Investigate on the Stability
of Linear Stationary Systems // CONTINUUM. Mathematics. Informatics. Education,
2019, vol. 14, no. 2, pp. 27-33. (in Russian)

3. La Salle J. Stability by Liapunov’s Direct Method with Applications. New York, London,
Academic Press, 1961.

4. Lyapunov A.M. The General Problem of the Stability of Motion. Boca Raton, CRC
Press, 1992.

Irina A. Yeletskikh, PhD (Math), Associate professor, Institute of Mathematics,
Natural Science and Technics, Bunin Yelets State University (Yelets, Russian Federation),
yeletskikh.irina@yandex.ru.

Konstantin S. Yeletskikh, PhD (Math), Senior Lecturer, Institute of Mathematics,
Natural Science and Technics, Bunin Yelets State University (Yelets, Russian Federation),
kostan.yeletsky@gmail.com.

Received August 18, 2022.

2022, vol. 9, no. 3 53



I. A. Yeletskikh, K. S. Yeletskikh

YAK 517.925 DOI: 10.14529/jcem220305

AHAJIN3 CBOICTB YCTOMYMBOCTU BO3MYIIIEHHBIX
CUCTEM HA IIPEJIMET IIPEJIEJIBHOU
OI'PAHNYEHHOCTHU UX PEIIIEHU

u. A. Eaeuxuz, K. C. Eaeukux

Teopusi ycTORYMBOCTH WIPAET KJIOYEBYIO POJIb B TEOPUU CHUCTEM U HHYKEHEPHBIX
HayKaxX. YCTOWIHMBOCTH TOUYEK PABHOBECUsI OOBITHO PACCMATPUBAETCSI B paMKaxX TEOPUU
ycroiiumBocT, paspaboTaHHON pycCcKMM MareMaTukKoM u MexaHukoM A. M. JIgmyHoBbIM
(1857-1918), 3a/I0KUBIIAM €€ OCHOBBI M JABIINM eil mMs. B Hacrosiee Bpemsi craja
OYeHb PACIIPOCTPAHEHHON TOYKA 3PEHUs] Ha YCTONYMBOCTH, KAK YCTOHYUBOCTH II0 OTHO-
IIEHNI0 K BO3MYIIEHUIO BXOJHOI'O CHIHAJja. B OCHOBY WHCCJIEIOBAHUs ITOJIOYKEH IOIXOJ]
MIPOCTPAHCTBA-COCTOSHUSA J/IsT MOJETUPOBAHNS HEJTMHEHHBIX TUHAMUIECKAX CUCTEM U AJIb-
TEPHATHUBHBIN IIOIXOJM, <BXOJ-BBIXOJ>. B OCHOBY KOHIIEHIINK yCTONYIMBOCTH B TEPMUHAX
<BXOJI-BBIXO/> HEJUHEHHONW CUCTEMBI, MOJIOXKEH MeTox (yHkiuit JIsmyHoBa m ero 06006-
IeHe Ha CJIydail HeJIMHEWHBIX JUHAMUYECKHX cucTeM. TpakToBKa 3aJadud O HAKOILJIEHUH
BO3MYIIEHUIT CBOJUTCS K 3aJ/1a9€e OThICKAHUsI HOPMBI OIIEPATOPA, UTO [TO3BOJISET PACIIHPUTD
KPYT UCCJIeIyEeMbIX MOJEJIeil B 3aBUCHUMOCTH OT IIPOCTPAHCTBA, B KOTOPOM JI€ACTBYIOT BXO/I-
Hble ¥ BBIXOJHBIE CUTHAJIBI.

Karouesvie cr06a: QUHAMUYECKAA CUCTIEMA; YCTNOTHUBOCTNG HAY%AAA KOOPOUHGM; 634U~
MOCBAZAHHBLE U MEOAEHHO MEHANULUECH CUCTIEMDL; TMOUKA DABHOBECUS; IKCNOHERUUGADHAA

YCMotGHUBOCMb; KaA3YaAbHOCMb; KOIPHUUUEHT, YCUAECHUS.
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