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The Wentzell boundary value problems with condition for second-order linear elliptic
equations were studied by various methods. Over time, condition was understood as a
description of a process occurring at the boundary of the domain and influenced by processes
within the domain. Since in the mathematical literature the Wentzell boundary conditions
has been considered from the two points of view (in classical and neoclassical cases), the
purpose of this work is to show the solvability of the Wentzel problem for the Poisson
equation in the square in neoclassical one, when we divide the desired function into two
components.
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Introduction

Let Q@ C R*, n € N\ {1}, be a smooth Riemannian manifold with boundary 99 of
class C*°. Let us consider the Poisson equation

—Av(z) = f(x), z € Q. (1)
with the Wentzell boundary conditions
Aw(x) + dyv(z) +yw(x) =0, x € 09, (2)
and with the agreement’s conditions
Trv=w. (3)

Apparently there the symbol A in equation (1) denotes the Laplace operator and the
Laplace-Beltrami operator in equation (2), this will be clear from the context. Moreover,
equation (2) will be considered exclusively in O-form spaces. Here v : @ — R and w : 0Q —
R are the functions sought, the parameter v € R, the symbol 0, denotes the derivative
on the external (with respect to the region €2) normal to the boundary of 0. From now
on, we consider this problem as a system of equations (1) — (3), then the solution of the
system will be in the form u© = v 4+ w. In general, by way of example we can say that there
exist of the modificatons of the model (1), (2), which describes the processes in the cell
cytoplasm and on the cell membrane and generalizes the model proposed in [1].

The purpose of this work is to show new approach for resolvability of problem (1) with
Wentzell boundary conditions. Namely, according to the used agrement condition, describe
the solution of the Wentzell problem.The article contains one sections except introduction
and the list of references. The solvability of the Wentzell problem in the square by side
is given in the first section.
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1. The Solvability of the Wentzell Problem in the Square

Let us consider the solvability of the problem (1)—(3), where as the domain € consider
the square P, = {(z,y) : (z,y) € [0,7] x [0, 7]} with side 7. To solve it, it is convenient
to review two auxiliary problems of the form (4)—(5)

Av(z,y) = f(r,y), (z,y) € I, (4)

Opv = (,O(ZE, y)7 (I,y) € oll, (5>

and agreement’s equation (6)

Aw(z,y) +yw(r,y) = —p(z,y), (v,y) € dl, (6)

having previously done the following replacement on each side of the square

pi(y) (z,y) €L ={(z,y) : 2 =0,0<y <7},

B ) waly) (vy) €Il ={(z,y):x=7,0<y <7},
W= A =N @) () €T = {(wy) ry =00 <z <}
Uo(z) (x,y) €2 ={(2,y):y=m,0<z <7}

In the first step, let us consider the solution of (4)-(5), decomposing it into three
components

Avl(x,y) = f(xay)a (.le,y) € Hﬂ'a

Q1 =0 (z,y) el ={(z,y):2=0,0<y< 7},
v =0 (z,y) el ={(z,y):x=7,0<y <7} (7)
Q1 =0 (z,y) €Iz ={(z,y):y=0,0<z <7},
o1 =0 (z,y)elll={(z,y):y=m0<x <7}
Avy(z,y) =0, (z,y) € I,
dve=¢1(y) (z,y) €l ={(z,y) 2 =0,0<y <},
Oyva = pa(y) (z,y) € 1L ={(2,y) : 2 =7,0 <y <7}, (8)
Oy =0 (z,y) €2 ={(z,y):y=0,0<x <7},
Ova =0 (z,y) et ={(z,y):y=m0<z <7}
AU3($,y) =0, (I,y) € I,
O =0 (z,y) €lll ={(z,y):2=0,0<y <7}
Oy =0 (z,y) el ={(z,y):x=m0<y<7} (9)
Oyuz = Yi(x) (v,y) €2 ={(z,y):y=0,0<x <7},

Opvs = a(z) (2,y) € Uz ={(z,y)  y=m0<a <7}

It is easy to see by simple substitution that the function

v(a,y) = vi(x) + va(, y) + vs(2, y)
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is a solution of the original problem (4)—(5). Let us proceed to find each function v;(x,y),
i =1,2,3 from corresponding problems (7)—(9).
Consider the solution of the problem (7). Let find eigenvalues \,, and eigenfunctions
Uy, of the problem
—Av=M\v

with boundary conditions (7). It is easy to show that the required characteristics are
Vnp = cos(nx) cos(py), Anp = n*+p?,n,p € {0} UN. On the other hand, let us decompose
the function f in the right-hand side of equation (7) into a Fourier series of functions vy,

y) = Z fnpvnp(xuy)a

n,p=1

where

fup = L0 / da / cos(na)cos(py) f (z, y))dy

(Unp ) Unp

Thus, by presenting the solution of problem (7) as

y) = Z Z CapVnp(T, ),

n=1 p=1

we have,
- E E )\npcnpvnp x y § E fnpvnp T y
n=1 p=1 n=1 p=1

which is equal to

or
0 o 4} dfl?} cos(nx) cos(py) f(x, y)dy
Z - - m2(n? + p?) Unp (T, Y).-

n=1 p=1

Let us turn to the solution of problem (8). To do this, solve the auxiliary problem

= 12 = Ty = <zx<
Av—p, J00=0 (my el ={(y):y=00<z<ml} 10)
Owv=0 (z,y)elll={(z,y):y=m0<z <7}

We will look for all possible solutions of this problem by the method of separation of
variables

v(z,y) = X(2)Y (y).
We have,
X"(@)Y (y) + X(2)Y"(y) = 0,
X/l(x) Y/l(y)

X))~ Yy
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As a result, the equations for the unknown functions X and Y are divided by
X'(x) =AX(2), =Y"(y) =AY (y). (11)

Combining boundary conditions (10) and equations (11), we obtain the following Sturm —
Liouville problem

—Y"(y) = AY (),
Y'(0) =0,
Y'(m) =0,

where the eigenfunctions and eigenvalues of the problem are

Yaly) = cos(v/Any) = cos(ny),

™

2
Ap = (—) =n? ne€ {0} UN.
T
Thus, the second equation (11) takes the following form
X"(x) = n*X(z),

and the general solution of the equation is

and all solutions of the homogeneous problem, represented as v, (z,y) = X, (2)Y,(y). We
further decompose the functions ¢1(y) and ps(y) into a Fourier series of eigenfunctions of
Y, (y) of the auxiliary problem and proceed to the system. We have,

P1(y) =D p1aYa(v), (soz(y) = saz,nYn(y)) (12)

Let us proceed to the solution of problem (9). To do this, solve the auxiliary problem

= L= T = <y <
Av =0, {auv 0 (z,y) el ={(z,y): 2 =0,0 <y <m}, 13)

dv=0 (2.y) €Il ={(z.y):x =m0 <y <m}.

We will look for all possible solutions of this problem by the method of separation of
variables

v(z,y) = X(2)Y (y).

We have,
X"(@)Y (y) + X (2)Y"(y) =0,
X)) Yy
X(z) Y

As a result, the equations for the unknown functions X and Y are divided by

—X"(x) = AX(z), Y'(y) =AY (y). (14)
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Combining boundary conditions (14) and equations (15), we obtain the following Sturm —
Liouville problem

—X"(z) = A\ X (),
~X'(0) =0,
X'(m) =0,

where the eigenfunctions and eigenvalues of the problem have the form

X (y) = cos(v/Anz) = cos(nz),

2
An = (ﬂ) =n? ne{0}uUN.
s
Thus, the second equation (15) takes the following form

Y"(y) = nY (y),

and the general solution of the equation is

Bin
Ya(y) = Bne™ + e;y ’

and all solutions of the homogeneous problem, represented as v, (z,y) = X, (2)Y,(y). We
further decompose the functions 1 (x) and 19 (z) into a Fourier series of eigenfunctions of
X, () of the auxiliary problem and proceed to the system. We have,

) = bl (Valo) = 3 v Xao)) (15)
where

Vi = % = %/ﬁgl(x) cos(nz) dz, (@Z)g,n = % = %/ﬁgQ(x) cos(mc)dx).

0 0

Since we needed to find a Fourier series solution of the form
vi(z,y) = Xa(2)Ya(y), (16)
n=1

it was obtained that the series satisfies the equation and the third and fourth boundary
conditions of the problem. It remains to choose constants such that the first and second
boundary conditions of (9) are satisfied. Substituting series (16) and (17) into the first and
second boundary conditions of (9), we obtain the following system

- £ V00X, (@) = 5 X (2).

3 V(M) () = 2t Xo)
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which is equivalent to,
_YTZ(O) = wl,na
Yé(ﬂ—) - 77Z)2,nv

YA(O) = TI,Bn — an,

where

Blmn

e?’LTK'

Y, (7) = nB,e"" — :

Y1, and 1y, determined earlier.

Thus, the solution of problem (9) has the form

= ZXn(x)Yn(y) = Z (Bn(wl,wQ)em + W) cos(nx)

And so, the general solution of (4)—(5) in the square is

= n = ng; Ol,n((ply 902)
Zl . L (T, y) + Zl ( (1, p2)e™ + — cos(ny)+
n,p= n

(&

—l—Z ( (U1, 92)e 731,71(%7%)) cos(nz).

Let us move on to the solution of equation (6), we have on each side of the square I,
the following decomposition into four equations

w'(y) +yw(y) = —1(y), (x,y) €I ={(z,y):2=0,0<y <},

w'(y) +yw(y) = —e2(y), (z,y) € I ={(z,y) 1z =m0 <y < 7},
w'(x) +yw(z) = = (z), (r,y) € 2 ={(z,y):y=0,0 <2z <},

w'(@) +yw(z) = —ta(2), (z,y) €M ={(z,y) :y=m0<z <7}

Since the condition of coupling of the two solutions in the region and on the boundary
is fulfilled

Trv=w,
it is easy to show that for the existence of one-valued solutions of the problem in (1)—(3) we

should add additional conditions to the quotients w; ., 1 = 1,2, 3,4, by pre-decomposing
each of the parts into Fourier series. Thus, the following system is valid
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(
fn (O:y> ¥1,
_pT + prl, @2) + Cl,p(@l,SOQ) = _’Y +22’ (x,y) € H71r7
Bn(¢17 77Z)2) + Bl,n(¢17¢2) = 07 (l‘?y) € H71r7
fnp(ﬂ-vy) Ol p(@17@2) ¥2,p 3
_ I\ ) C mp  ZLP\FLF2)  ¥2 I
\, cos(7rn)l;L p(p1, pa)e™ + e e (z,y) € 112,
Bu(wn, e + DYDY cosmy — 0, () €
B
_fnps\f; i cos(my) + (Bn(¢1,¢2)€m + 1,n(€17/::¢2)) N _716::12’7" =2, (wy) €L,
C n )
Culinsp)er + 2L cos(my) = 0, (a9) € T,
fn (1'70) ¢277’L 4
_pT + Bn(wlan) + Bl,n(wlaw2> = _mam = Qka (x7y> € Hm

\On((pla 902) + Cl,n((plu 902) = 07 (ZE, y) € H72r
(17)
Thus, the following takes place

Theorem 1. For the Poisson equation with Wentzell boundary value problem in the square
by side w there exist unique solution, which has the following form

n C n I
Z X, pUnp (z,y +Z ( (¢1,p2)e™ + —tnirh 72 (:7:5 %)) cos(ny)+

n,p=1

+Z ( %,% Bl’ﬂ(fi7¢2)) COS(?”l.ﬁIT),

e

provided that the coeﬂiczents D1.py P2.ps V1.ms Yo Satisfy the solution of the system (13).
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YPABHEHUNE ITYACCOHA C 'PAHNYHBIMU
YCJIOBUAMUM BEHTHEJIA B KBA/IPATE

H. C. I'onuapos

Bajaun ¢ rpaHUIHBIM ycjioBueM BeHTiiesis Jyist IMHEHHBIX SJUIHIITUIeCKUX YPABHEHUH
BTOPOr'O IMOPSJIKA M3YYAJNCH Pa3aundHbiMu Merofgamu. Co BpeMeHeM YCJIOBHE CTaJjIo ITOHU-
MaThCsl KaK OIMCaHUE [IPOIIECCa, ITPOUCXOIAIIEr0 Ha, IPAHUIIE 00JIACTH U Ha, KOTOPBIN BIIUSIIOT
nporecchl BHyTpHu obiracTu. [lockobKy B MaTeMaTHYECKOil JINTEpAType TPAHUIHBIE YCJIO-
Bust BeHTIIe/1s1 paccMaTpUBAIIICE € JBYX TOYEK 3peHHs (B KJIACCAIECKOM U HEOKJIACCHIECKOM
CJIydasix), 1eJIbio JaHHON paboThl ABJIAETCs OKA3aTh PA3PEIIUMOCTDb 3a/1a49u Benruess [
ypaBHeHus Ilyaccona B KBajipaTe B HEOKJIACCHYECKOM CJIydae, KOTJIa MBI pa3/essdeM HNCKO-
MY (QYHKIIUIO Ha JBE€ KOMIIOHEHTHI.

Keywords: ypasnenue Ilyaccona; xpaesoe ycaosue Benmueas, pad Pypoe.
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