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The article contains an overview of results obtained by the author in specially assigned
spaces, namely the spaces of differential forms with stochastic coefficients defined on
some Riemannian manifold without boundary. This work presents graphs of trajectories of
numerical solutions to the Cauchy problem for the Barenblatt—Zheltov—Kochina equation
and the Showalter—Sidorov problem for the Dzektser and Ginzburg—Landau equations. Since
the equations are studied in a space of differential forms, the operators themselves are
understood in a special form, in particular, instead of the Laplace operator, we take its
generalization that is the Laplace—Beltrami operator. Graphs of coefficients of differential
forms obtained during the computational experiments are given for different values of the
parameters of the initial equations.
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Introduction

Consider the following equations:
— the Barenblatt—Zheltov—Kochina equation [1]

(A = Ay, = aAu, (1)

which is a model of dynamics of a fluid filtering in a fractured-porous environment;
— the Dzektser equation [2]

(1 — kA)p = alp — BA%p, (2)

which is a model of flow of a viscous-elastic incompressible zero-order Kelvin—Voigt fluid
in the first approximation;
— the Ginzburg — Landau equation

(A — A)uy = aAu + idA%u (3)

from the phenomenological theory of superconductivity.
In the functional spaces I, §F chosen by us, (1)—(3) are reduced [4] to the linear equation
of Sobolev type
Li = Mu (4)

with the irreversible operator L.
Consider the Cauchy problem [5]
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for equations (1), (2), and the Showalter—Sidorov problem |[6]
P(u(0) — up) = 0 (6)

for equations (2), (3).
The papers [8]-[10] propose a transition of (4) to the stochastic Sobolev type equations

L n= Mn (7)

with the condition
n(0) = 1o (8)
P(n(0) —no) =0 (9)

in spaces of Wiener stochastic processes in the case of an abstract (L, p)-bounded operator
M, (L, p)-sectorial operator M and (L, p)-radial operator M, respectively. Since Wiener
processes are continuous, but nondifferentiable in the usual sense at each point, we use
the Nelson-Gliklikh derivative [7]. In this article, we study numerical solutions to all three
equations (the Barenblatt — Zheltov — Kochina equation [13|, the Dzektser equation [16]
and the Ginzburg — Landau equation [18]) in spaces of differential forms defined on a torus
in the form (7).

1. Structure of Differentiable «<Noises> Spaces

Consider the complete probability space 2 = (€, 3, P) with the probability measure P
associated with the sigma-algebra ¥ of subsets of the space 2. If R is the set of real numbers
endowed with a sigma algebra, then the mapping £ : ¥ +— R is called a random variable.
The set of random variables &, the mathematical expectation of which is equal to zero,
ie. M¢ = 0, while variance is finite, i.e. D¢ < oo, form the Hilbert space Lo with the
scalar product (&,&) = ME& & and with the norm denoted by ||€||L,. If we take the
subalgebra Y, of the sigma-algebra Y, then we obtain the subspace of random variables
LJ C Ly measurable with respect to Y.

A measurable mapping n = n(t,w) : J x ¥ — R, where J = (a,b) C R, is called a
stochastic process, a random variable n(-,w),w € Q is said to be a section of the stochastic
process, and a function 7(t,-),t € J is said to be a trajectory of the stochastic process.
The stochastic process n = n(t,w) is called continuous, if the trajectories n = n(t,wy) are
continuous functions almost sure (i.e. for a.a. (almost all) wy € ). The set n = n(t,w) of
continuous stochastic processes forms a Banach space CLs.

By the Nelson — Gliklikh derivative of the stochastic process n € CLo at the point
t € J we mean the random variable

5 % (Ayg%+ MY (n(t+ At,-) —n(t, ~)) © lm MY (n(t — At ) —n(t, ))) (0)

At Ats0+ At

if the limit exists in the sense of a uniform metric on ¢ € J. Here M, is the expectation on
a subalgebra of the sigma-algebra ¥ that is generated by the random variable n = n(t,w).

If there exist the Nelson — Gliklikh derivatives 7 (,w) of the stochastic process n at almost
all points of the interval J, then we say that there exists the Nelson — Gliklikh derivative
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N (-,w) almost sure on J. The set of continuous stochastic processes with continuous

Nelson — Gliklikh derivatives 73 form the Banach space C'L,. Further, by induction, we
obtain the Banach spaces C'Ly, 1 € N of the stochastic processes having continuous

Nelson — Gliklikh derivatives on J up to the order 1 € N inclusively with the norms of the
(k)

1ok 0(0)
form HnHCle = SUP(Z Dn (t,(ﬂ))%, where 77 (t,W) = 77(75700)
teJ k=0

2. Resolving Groups or Semigroups of Operators

Let 4 and § be real separable Hilbert spaces. Denote by L(i;§) the space of
linear bounded operators, and by Cl(4; F) the space of linear closed and densely defined
operators. Let us construct the Hilbert spaces ULy and FgLy, where K = {\;} C R is

o0
a monotone sequence of numbers such that > A} < +oc.

k=1
The operator M is called spectrally bounded with respect to the operator L (or, shortly,
(L,o)-bounded), if Ir >0 VYueC (lu|>r)= (ue p-(M)).
In complex plane C, for the (L, o)-bounded operator M, we choose a closed circuit of
the form v = {u € C: |u| = R > r}. Then the integrals

Py [ BODdL Q=5 [ Lh0nd

27 27
0l v
make sense as the integrals of analytic functions on a closed circuit. Moreover, the operators
Py — and Q : §F — § are projectors [4]. Denote by Ly, M the restrictions of the
operators L, M on the subspace 4, k =0, 1.

Theorem 1. [4] Let the operator M be (L, o)-bounded. Then
(i) Li, My € L(U¥FY), k=0,1;
(ii) there exist operators L' € L(FHUY), Myt € L(FO;U0).

If the operator M is (L, o)-bounded, then by virtue of Theorem 1, there exist the
operators H = My 'Ly € L(4°) and S = L7'M; € L(LY).

Definition 1. The (L, 0)-bounded operator M is called
(i) (L,0)-bounded, if H = O
(ii) (L,p)-bounded, if H? # @ and HP™' = O for some p € N.

Theorem 2. [11] Let the operator M be (L,p)-bounded, p € {0} UN. Then there exists
an analytical group of the operators on the space ULy (FxLs).

Definition 2. The operator M € Cl(UkLy; FxLy) is said to be p-sectorial with respect
to the operator L € £L(UgLs; FxLy) (for shortness, (L, p)-sectorial), p € {0} UN, if

(i) there exist constants & € R and © € (§,7) such that the sector St (M) = {u €
C: |arg(p — a)| < O, pu# a} C p"(M);

(}1() there exists a constant K; > 0 such that maX{HR(L%p)(M)Hu, HL(Lu,p)(M)Hg} <
1

p
I1 ‘Mq —af
q=0

Here p*(M) = {u € C: (uL — M)™' € L(F;)} is the L-resolvent set, and o“(M) =

for any pio, pi1, ..., ptq € SEe(M) .
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C\ p"(M) is the L-spectrum of the operator M. For u, € p (M) g = 0,1,....,p, the

operator functions R);(M) = (uL—M)'L and L (M) = L(uL—M)~" are called the right

L-resolvent and the left L-resolvent of the operator M, and R (M) = H p(pgL—M)™'L
=0

and L(L%p)( )= ql;[O pL(uL — M)~! are called the right (L, p)—resolvent and the left (L, p)-
resolvent of the operator.

The stochastic Sobolev type equation
L 1= Mn (11)
can be reduced to two equations of the form
A v= Bv.

Let us formulate

Lemma 1. The following statements are true:
i) the operator A € L(L;§) exactly if A € L(UkLa; FxLa);
ii) the operator B € Cl(4;F) exactly if B € Cl(UgLa; FgLa).

Theorem 3. [15] Let the operator M be (L, p)-sectorial, then there exists an analytical
semigroup of the operators on the space ULy (FxLsy).

Definition 3. The operator M € Cl(UgkLy; FxLs) is said to be p-radial with respect to
the operator L € L(UkLa; FxLa) (for shortness, (L, p)-radial), p € {0} UN; if

i) there exists a constant a € R such that [o, +00) C pt(M);

ii) there exists a constant K; > 0 such that Yu, € [a,+0),¢ = 0,1,...,p,¥n € N

mas{1RE, (M), 1L,y (M} < ———.

I1(1g — )"

q=0

Theorem 4. [11] Let the operator M be (L, p)-radial. Then there exists a Cy-semigroup
of the operators on the space UxLy (FxLy).

The set ker V* = {v € UgLa(FkLa) : Vv = 0} is called the kernel, the set imV* =

{v e UKL2(FKL2)t1iI£r Vv = 1y} is said to be the image of the analytical semigroup
H

Vt:t > 0. Denote U° = {U¥L,} (F° = {F%L2}), which form a closure of kernels of

semigroups in the norm of the space { = ULy (§ = FxLz). Also, denote 4! = {UgLo}

(§' = {FkLz}), which form a closure imR{, (M) (imL{, ,,(M)) in the norm of the space

(1
i = UkLs (§F = FkLs). The spaces UL, and FkL, are splitted into the direct sum

UkL, = UYLy ® UkL,, FxL, = Fy L, @& Fi L. (12)

The following theorem takes place.

Theorem 5. If the operator M is (L,p)-radial and there exist splittings (12), then
imU* = UgLs and imF* = FiL,.
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Previously, the Showalter-Sidorov problem

P(n(0) =no) =0 (13)

was investigated [11] in the spaces Y4 = UgLs (§ = FkLz), where there exist
representations of the form

n(tv ) = Z /\kzgkz(tv ')@k‘ (14>

Theorem 6. Suppose that the operator M is (L, p)-radial and there exist splittings (12),
then Vo € U C 8 there exists the unique solution to problem (11), (13).

3. Differential Forms and Computational Experiments

Consider a two-dimensional torus obtained by the direct product of two segments
T = [0, 7] x [0,27]. The torus is a 2-dimensional smooth compact oriented Riemannian
manifold without boundary. Using theory presented in Sections 1 and 2, we construct
spaces of smooth differential ¢g-forms with stochastic processes as the coefficient:

w(t,w,x,x2) = Z Xityooiig (b W, 1, T2)dxsy A o A dyy, (15)

[i1,...,%q|=¢

where [i1, ..., 14| is a multi-index, and, according to (14), the coefficients have the form

it iz, oniq (b W, T1, T2) = Z Ak v, ig (1) P
k=1

As i, we consider the spaces of differential ¢-forms defined on a smooth compact
oriented Riemannian manifold without boundary and orthogonal to harmonic g-forms.
Such spaces take place on the basis of the Hodge-Kodaira theory in the deterministic case
for the Cauchy problem for Ginzburg-Landau equation (3). We consider the Showalter —
Sidorov problem

P(n(0) =no) =0 (16)

for the stochastic version of the Ginzburg — Landau equation

(A + A) 1= aAn + idA%, (17)

and the signs differ from (3) since instead of the Laplace operator we use its generalization
(up to a sign) to spaces of differential forms, namely, the Laplace — Beltrami operator.
Denote the operators

L=(\+A), M =alA+idA?

and arrive at (7).
For this problem, the work [17| proves (L, p)-radiality of the operator M and constructs
the relative spectrum
aX, + id\;
= —VT~
A+ A
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Fig. 1. Solution to (16), (17) for « = —0.5,d = 0.5, A =4,¢=0

where {\} is the sequence of eigenvalues of the Laplace-Beltrami operator on the torus
numbered in increasing order taking into account the multiplicity, and {¢y} is the sequence

of eigenfunctions, respectively.
Introduce a grid on the torus and construct a difference analogue of the trajectories

of the Ginzburg-Landau stochastic equation, and implement the Petrov—Galerkin method
in the Maple system.

Here we implement the following algorithm.
Step 1. Enter the parameters of the Ginzburg — Landau equation (o, d € R\ # 0).

Step 2. Construct a grid on the two-dimensional torus T.

Step 3. Calculate eigenvalues and construct eigenfunctions.
Step 4. Represent solutions in the form of expansion in terms of eigenfunctions.
Step 5. Obtain a numerical solution to the problem for a random value that belongs

to the probability space 2.
Step 6. Obtain a graphical representation of the solution and display the solution on

the screen.
Fig. 1 shows the unique coefficient for solution to the homogeneous Ginzburg — Landau

equation for O-forms (2-forms) at o = —0.5,d = 0.5, A = 4.
Figs. 2 and 3 show the coefficients at dx and dy, respectively, for the solution to the

homogeneous Ginzburg — Landau equation for a = 1,d =2, A\ = 0.

Journal of Computational and Engineering Mathematics
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Fig. 2. Coefficient at dz of the solution to (16), (17) for a =2,d=2,A =0, =1

Fig. 3. Coefficient at dy of the solution to (16), (17) for a =2,d =2, A=0,qg =1

2022, vol. 9, no. 4
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Then we take the stochastic version of the Dzektser equation
(A+A) = —aln — BAZ). (18)

Denote the operators
L=(\+A), M=—aA N=—3A%

and arrive at

L= Mn + N(8), (19)

with © = 7.
For this problem, the paper [14] proves (L,0)-sectoriality of the operator M and
constructs the relative spectrum

—Oé)\k - 6)\%

A W

A
'Tr'ﬂm':""

;I!f;%"” i
e

s
""’0‘"“". o e

Fig. 4. Coefficient of the solution to the Showalter—Sidorov problem for the Dzektser
equation with o = =2, = —-2,A =0.1,¢ = 0 at the moment t = 1

Fig. 4 shows the unique coefficient ¢ = 0(¢ = 2) for the solution to homogeneous
Dzektser equation (18) with Cauchy condition (8) for the values a« = =2, 6 = —2, A = 0.1.

At last we take the stochastic version of the Barenblatt — Zheltov — Kochina (BZK)
equation

(A+A4) = alAn+ f. (20)

Denote the operators
L=\A+A), M=aA

and arrive at .
Ln=Mn+f. (21)
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For this problem, the paper [11| proves (L,0)-boundedness of the operator M and

constructs the relative spectrum
Oé/\k;

TN
The algorithm of solution of the Cauchy problem for the Barenblatt—Zheltov—Kochina
equation is presented by the block diagram given in Fig. 5.

C =

Input of the initial data: local coordinates of the manifold M,

e

the operators L and M by the parameters A and &, the
inhomogeneoustermand the number of splitting steps

Check the homogeneity: f #+ 0

Project the inhomogeneous part onto the chosen subspace

le
Project the Barenblatt — Zheltov— Kochina equation
onto the chosen subspace

!

Construct a numerical analogue for the equation and compute
its solutions in the chosen subspace

I

Output of the solution in the form of a graph

C v

Fig. 5. Block diagram of the algorithm for BZK equation

2022, vol. 9, no. 4 11
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3

Fig. 6. The graph of the Cauchy problem solution for BZK with A =7,a=0.5,f =0

The graphs show the solutions at the time moments tx,k = 1,...,8, by the
corresponding colors: pink, green, blue, black, yellow, brown, red, black.

Fig. 7 shows the graphs of the solution to the homogeneous Cauchy problem with
A = T,a = 0.5 at the first eight time moments. Fig. 8 shows a similar graph with an
inhomogeneous term f = 10sin(5¢). Further, we present graphs of the solution with A =
1, = 2 for the homogeneous equation and inhomogeneous equation with f = 5sin(2t) in
Fig. 9 and in Fig. 10, respectively.

s

Fig. 7. The graph of the Cauchy problem solution for BZK with A = 7,a = 0.5, f =
10 sin(5t)
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3

Fig. 9. The graph of the Cauchy problem solution for BZK with A = 1, a = 2, f = 5sin(2t)

Conclusion

As a result of studying the numerical solutions to the Sobolev type equation, we obtain
the graphs of the solution for three model cases on the torus. In addition to the presented
results, there exist the papers on these equations on the sphere and for the linear and
semilinear Hoff equation [20], but they are not included in this overview.
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YU CJIEHHBIE PEINTEHN A HEKJTACCNYECKUNX
YPABHEHUN B ITPOCTPAHCTBAX
JNOOEPEHIITNAJIBHBIX ®OPM

. E. Ilagparos

Crarbst COepKUT 0030 PE3YILTATOB, MOJIYICHHBIX ABTOPOM B CIIEIHAILHO 33 JaHHBIX
MIPOCTPAHCTBAX, 8 UMEHHO MPOCTPAHCTBAX An(MdepeHITnaIbHBIX (POPM CO CTOXACTHIECKH-
Mu K03 punmenTaMu, OnpeeeHHbIX Ha HEKOTOPOM PUMaHOBOM MHOrooOpasum 06e3 Kpasi.
B nannoil pabore mnpejicraBiieHbl I'padUKN TPAEKTOPHIl YUC/I€HHBIX pelteHuil 3a1a49u Korm
quist ypasaenusi bapen6iarra—2Kenrosa—Kounnoit u 3amaun [Iloyosrrepa—CuiopoBa jjis
ypasuennii /I3eknepa u 'nuzbypra—Jlammgay. [lockoabky ypaBHeHUS N3y 9aI0TCS B IPOCTPAH-
crBe auddepeHImaabHbIX (GOpM, CaMHU OMepaTophbl MOHUMAIOTCS B CHEIHAJILHON (dopme,
B YaCTHOCTHU, BMecTO oreparopa Jlamraca Gepercsi ero o6001eHne — omneparop Jlammaca—
Benprpamu. I'pacduku koaddurmentor auddepeHuaibHbX (GOPM MOy YeHHbIE TP ITPO-
BEJIEHUY BBIUKCJ/INTE/IbHBIX SKCIIEPUMEHTOB IIPUBEJIEHBI JIJIsl PA3JINYHBIX 3HAUEHU mapaMeT-
POB HCXOJHBIX yPABHEHUI.

Karoueswie crosa: ypasrenue coboresckozo muna; dupdepenyuarvrive Gopmot; puma-

H060 MHo2000pasue; onepamop Jlanaaca - Beavmpamu; wucaenmnoe pewerue.
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