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In this paper, we propose a method to describe the dynamics of deformation of

polymeric materials under thermal and mechanical impacts. The method is based on solving

the equation for a viscous incompressible fluid in the quasi-stationary approximation. This

method is implemented for the case of simple compression of a cylindrical sample, the

thickness of which is much less than its diameter. We construct dependencies of the viscosity

coefficient on temperature and determine the relaxation time for the Maxwell mathematical

model. It is shown that the viscosity of materials strongly depends on temperature, and

this dependence is exponential. The performed calculations of the deformation of various

polymeric materials demonstrate satisfactory agreement with the experimental data over

the entire temperature range.
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equation of state.

Introduction

The problem on mathematical modelling of the behavior of porous organic materials
under the action of mechanical and thermal loads is inextricably connected with the
analysis and prediction of emergency situations that are caused by the use of energy
materials in industry, their safe storage and operation. Accidents associated with fires in
warehouses of energy materials occur quite regularly. Therefore, the relevant problems are
safe handling of emergency products that fall into the thermal field of a fire, and a reliable
assessment of the safe time spent by energy materials in the thermal field of a fire.

In products containing energy materials, there are parts from porous organic matter
such as foam or penodiflon. This fact can significantly complicate such an assessment, since
during heating, the parts can be significantly deformed as a result of thermal softening
and mechanical action of the adjacent strong parts. The deformation, in turn, can lead
to reducing thermal resistance (due to thinning and increased density) and reducing the
predicted time before ignition. At present, an insufficient number of computational and
theoretical studies of the behavior of thermoplastic materials under mechanical impact
and elevated temperatures were carried out. For these purposes, it is necessary to develop
a mathematical model of deformation, which should take into account thermal softening
to correct the estimate of material deformation, as well as an increase in density (decrease
in porosity) under force impacts and elevated temperatures.

In this regard, in this work, we carry out mathematical modelling of the behavior of
thermoplastic materials under mechanical action in the temperature range 70◦-180◦С and
compare the results obtained with the experimental data given in [1].
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1. Mathematical Model of Deformation of Thermoplastic

Materials

There exist viscous fluids that behave like solids for short time intervals, which are
long compared to molecular times. Such amorphous solids can be considered as the limiting
case of such viscous fluids.

The properties of such fluids can be described in terms of the Maxwell model [2]. For
short periods of time, these fluids are elastically deformed. After the deformation stops,
shift stresses remain in the fluids and decay with time. The stress decay time τ is called
the Maxwellian relaxation time. At times of deformation much shorter than the relaxation
time, the medium behaves like a solid body. At times of deformation of the order of time
τ and more, the medium behaves like a fluid with a characteristic viscosity η

η ∼ µτ, (1)

where µ is a shift modulus.
Experimental data on the deformation of thermoplastic materials under heating and

mechanical load [1] very clearly demonstrate the properties of the materials under study as
the properties of a very viscous fluid: at a constant load and temperature, the deformation
process lasts for tens of minutes. At the initial moments of time after loading, according
to the experimental data, an estimate of the medium flow velocity is ∼ 10−5 m/s, which
is much less than the velocity of sound.

Thus, the deformation of thermoplastic materials can be described in terms of the
model of a quasi-stationary flow of an incompressible fluid. The mathematical formulation
of this model is expressed in the form of the incompressibility condition and the stationary
Navier-Stokes equation:

(∇~υ) = 0, (2)

ρ (~υ∇) ~υ = −∇P + η∇2~υ, (3)

where ρ, P, ~υ are mass density, pressure, velocity, respectively.
The geometry of the problem to be solved is shown in Fig. 1. A sample of material

with the thickness h and the radius R is subjected to compression under the action of the
force F, which is constant per unit area. During compression, the thickness of the sample
decreases and, accordingly, its radius increases. We are interested in the dependence of the
relative deformation of the sample on time:

△ h (t)

h0

= 1−
h (t)

h0

, (4)

where h0 is the thickness of the sample at the initial moment of time.
This problem is solved in a cylindrical coordinate system. The velocity field is

characterized by the radial component υr (r, z) and the axial component υz (r, z). The
boundary conditions on the velocity field have the following form:

a) the no-slip condition

υr (r, z = 0) = υr (r, z = h) = 0 (5)

is satisfied for the radial component of the velocity at the contact boundaries;
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Fig. 1. Geometry of problem

b) for the axial velocity component, the condition is

υz (r, z = 0) = 0, υz (r, z = h) = υp, (6)

where υp is the velocity of movement of the upper plate of the press, which depends on
the applied force F.

First of all, we take into account that the medium flow velocities are small
(∼ 10−5 m/s), which makes it possible to neglect the left side of equation (3), which
contains the second powers of the velocity. In this case, the system of equations (2), (3)
can be written as:

1

r

∂

∂r

(

r
∂υr
∂r

)

+
∂2υr
∂z2

=
1

η

∂P

∂r
,

1

r

∂

∂r

(

r
∂υz
∂r

)

+
∂2υz
∂z2

=
1

η

∂P

∂z
, (7)

1

r

∂ (rυr)

∂r
+

∂υz
∂z

= 0. (8)

At a given point in time, the sample thickness is defined as

h (t) = h0 −

t
∫

0

υz (h, t
′) dt′. (9)

Equations (7) – (9) with boundary conditions (5) and (6) form a system of equations
that describe the quasi-stationary deformation of a sample under the action of the applied
force.

In general case, the solution of this formulated system is possible only numerically,
but for the case h << R the system has a simple analytical solution similar to the
solution obtained in [3]. To check the correctness of this approach to the description of the
phenomenon under consideration, we use this analytical solution.

Since the medium is incompressible, its volume remains the same and is equal to
V0 = πR2h. This implies:

υp
υr (R)

= −
2h

R
, (10)

where υp = ḣ, υr (R) is the velocity of radial spreading of the sample during its
compression, which is the maximum value in comparison with the velocities at other
points of the medium.
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It follows from (10) that the inequality υz << υr holds for h << R. From the estimate
of derivatives of velocities using expressions

∂υr
∂r

∼
υr
R
;

∂υr
∂z

∼
υr
h
;

∂ 2υr
∂r2

∼
υr
R2

;
∂2υr
∂z2

∼
υr
h2

, (11)

we have
∂υr
∂r

<<
∂υr
∂z

;
∂ 2υr
∂r2

<<
∂2υr
∂z2

. (12)

Of course, in expressions (12), the absolute values of the quantities are compared.
Taking into account (12), equations (7) take the form:

∂2υr
∂z2

=
1

η

∂P

∂r
;

∂P

∂z
= 0. (13)

As follows from (13), the pressure is uniform along the depth of the sample, which allows
us to represent the radial velocity component in the form:

υr =
1

2η

∂P

∂r
z (z − h) . (14)

From continuity equation (8) and solution (14) we find:

υz = −

z
∫

0

1

r

∂ (rυr)

∂r
dz = −

1

2ηr

∂

∂r

[

r
∂P

∂r

(

z3

3
−

hz2

2

)]

. (15)

Substituting boundary condition (6) into (15), we can find the pressure field in the
compressible sample expressed in terms of the velocity of the upper press plate υp:

P (r) =
3ηυp
h3

(

R2
− r2

)

+ P0, (16)

where P0 is the external pressure. Using (16), it is easy to calculate the total force acting
on the top plate of the press:

πR2F = 2π

R
∫

0

(P − P0) rdr =
3πηυpR

4

2h3
. (17)

From (17), we obtain the dependence of the press plate velocity on the applied force:

υp (t) =
2

3

F

ηV0

h4 (t) . (18)

Taking into account (9), expression (18) makes it possible to find the velocity υp, and,
consequently, the fields of velocities, pressure, and deformation at any moment of time.
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2. Numerical Research. Comparison with Experiment

The dynamics of deformation of thermoplastic materials at a given temperature and
constant mechanical loading is calculated by formulas (4), (9) and (18). For calculations,
expression (18) is represented as:

υp (tn+1) =
2

3

F

ηV0

[h (tn)− υp (tn) △ t]4 , (19)

where tn+1 = tn+ △ t, △ t is the time interval that is chosen so that the change in the
medium flow velocity in this interval can be neglected. In the calculations below, the value
of △ t is 3− 5 s.

In (19), the unknown parameter is the relaxation time contained in expression (1),
which is a function of temperature. At this stage of research, this value can be found
only on the basis of experimental data. Since the spread of elastic constants for polymeric
materials is quite large, then, instead of the relaxation time, we directly determine the
viscosity coefficient on the basis of experimental data.

Fig. 2. Time dependence of relative deformation

Experimental data [1] are used to determine the viscosity coefficient. The calculations
are carried out for a sample with the following parameters: the thickness is h0 = 7 mm,
the radius is R0 = 20 mm. The pressures applied to the sample are set in the range
F = 0.1− 1.0MPa (1− 10 kgf/cm2).

Fig. 2 shows the results of comparing the calculated and experimental dependencies of
the relative deformation on time for the foam plastic PS-1, the polystyrene PS-1 at various
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Fig. 3. Time dependence of relative deformation of ABS_2020

pressures and the temperature of 140◦C. Markers denote experiment [1], lines represent
calculations with the viscosity coefficient η = 2 · 106 Pa·s.

The above comparisons indicate a qualitative agreement between the results obtained
within the framework of the model considered here and the experimental data. The
greatest discrepancy between the calculated and experimental results takes place at small
deformations, which is primarily due to the non-fulfillment of the condition h << R used
in the model.

Similar calculations are carried out for the samples of the material ABS-2020 (Fig. 3).
Markers denote experiment [1], lines represent calculations with the viscosity coefficient
η = 5.5 · 106 Pa·s. As in the previous calculations, the greatest discrepancy between the
calculated and experimental results takes place at small deformations, that is, in the case
when the condition h << R is not satisfied.

Within the framework of this model, the values of the steady-state deformation of
penodiflon at the temperature of 140 ◦C are also quite satisfactorily described at the
value of the viscosity coefficient η = 8 · 108 Pa·s. Comparisons of the calculated and
experimental data are given in Tables 1–3. Tables 1–2 compare the steady-state values of
relative deformations (at the time point of 30 minutes) with experimental data [1], as well
as present the values of viscosity coefficients for various temperatures.

From the data given in Tables 1–3, it follows that with increasing sample temperature,
the viscosity coefficient, and, consequently, the relaxation time, decrease, as a result of
which the material becomes more fluid. It is noteworthy that for polystyrene there is an
effect of ≪saturation≫ of viscosity: it remains constant in the range of 130◦ – 150 ◦C.

Fig. 4 shows the dependence of viscosity coefficients on temperature for various
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Table 1
Relative deformation of the material foam plastic PS-1 at different temperatures and
pressures

F = 0.1MPa
Deformation %

F = 0.3MPa
Deformation %

F = 0.5MPa
Deformation %

F = 1.0MPa
Deformation %

Viscosity

Т◦, C
Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. Pa·s

95 14.1 15.4 30.5 30.3 37.1 38.1 47.3 48.9 2.5·107

115 31.4 27.5 49.9 44.6 48.4 52.2 47.6 61.3 107

130 50.5 52.2 73.9 66.1 74.8 71.2 75.3 77.1 2·106

140 52.5 52.2 64.1 66.1 68.2 71.2 75.1 77.1 2·106

150 52.5 52.2 58.1 66.1 64.8 71.2 69.0 77.1 2·106

Table 2

Relative deformation of the material ABS_2020 at different temperatures and pressures

F = 0.1MPa F = 0.3MPa F = 0.5MPa F = 1.0MPa Viscosity
Т◦, С Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. Pa·s
115 5.1 5.4 12.1 13.4 18.5 19.3 27.9 29.1 9·107

140 32.1 36.8 47.6 53.3 58.3 60.0 67.7 68.1 5.5·106

150 41.6 49.0 60.1 63.5 66.8 69.0 76.8 75.3 2.5·106

Table 3

Relative deformation of the penodiflon material at different temperatures and pressures

F = 0.1MPa F = 0.3MPa F = 0.5MPa F = 1.0MPa Viscosity
Т◦, С Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. Pa·s
140 1.6 0.67 3.4 1.96 5.6 3.2 5.8 5.9 8·108

150 7.2 6.72 15.2 16.0 20.9 22.6 34.9 33.0 7·107

180 51.4 49. 69.5 63.0 71.9 69.0 75.2 75.3 2.5·106

materials. It follows from the above dependencies that the viscosity of materials strongly
depends on temperature, and this dependence is exponential – on a logarithmic scale, the
dependencies on temperature are close to a linear law.

Based on the viscosity values found, the relaxation time can be estimated. The shift
modulus of polystyrene is µ ∼ 107 Pa, which leads to the relaxation time τ = 0.2 – 2.5 s.
The ABS_2020 shift modulus is µ ∼ 109 Pa and then τ = 2.5 – 100 ms.

3. Conclusions

Based on the results of this analysis, the following conclusions can be drawn.
1. The results presented in this paper show that for the case of simple compression

of cylindrical samples of porous organic materials, the thickness of which is much less
than its diameter, the properties of the material can be described in terms of the Maxwell
model [2].

2. The performed calculations demonstrate satisfactory agreement with the
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Fig. 4. Dependence of viscosity coefficients on temperature

experimental data. Based on the experimental data, an estimate of the relaxation time of
the materials polystyrene PS-1 and ABS-2020 is obtained: for polystyrene, the relaxation
time is 0.2 – 2.5 s in the temperature range 95◦ – 150◦ C, while for ABS_2020 the relaxation
time is 2.5− 100 ms in the temperature range 115◦ – 150◦ C.

3. To obtain more accurate data on the temperature dependence of the viscosity
coefficients using this method, it is necessary to have a more detailed dependence of the
relative deformation of samples on temperature than that presented in [1], taking into
account the velocity of their heating. The latter circumstance is significant, especially at
low temperatures, at which the relaxation time is especially long.

4. To apply the proposed model for describing the dynamics of deformation of
polymeric materials under thermal and mechanical impacts in real structures, it is
necessary to develop a method for solving equations in arbitrary geometry and arbitrary
boundary conditions, taking into account real state equations [4, 5] of the material and
methods for calculating the effective thermal conductivity [6].

The work was carried out with the financial support of the Ministry of Education and
Science of the Chelyabinsk Region within the framework of the complex project ≪Research,
development and manufacture of technology demonstrators of a hydrogen propulsion system
with a central body for a rocket and space complex with a reusable single-stage launch
vehicle≫ under Agreement No. 379 dated 07.12.2021

References

1. Mihajlov S.M., Lupsha V.A., Tagirov R.M., Kuzhel’ M.P., Komissarov A.V.,
Gar’yanova N.V. Deformation of thermoplastic materials under conditions of heating
and mechanical loading. Nuclear project, 2015, no. 22, pp. 74–75.

2. Landau L.D., Lifshits E.M., Theoretical physics. Vol. 7. Elasticity Theory. Moscow,
Nauka, 1987, 248 p.

2022, vol. 9, no. 4 41



A. A. Aiderkhanova, Yu. M. Kovalev, A. P. Yalovets

3. Landau L.D., Lifshits E.M., Theoretical physics. Vol. 6. Hydrodynamics. Moscow,
Nauka, 1988, 734 p.

4. Kovalev Y.M., Equations of State To Describe Isothermal Compression of
Certain Molecular Nitro Compound Crystals. Journal of Engineering Physics and
Thermophysics, 2020, vol. 93, no. 1, pp. 223–233.

5. Kovalev Y.M., Determination of the temperature dependence of the Isobaric
volumetric expansion coefficient for Certain Molecular Crystals of Nitro Compounds.
Journal of Engineering Physics and Thermophysics, 2018, vol. 91, no. 6., pp. 1573–
1582. DOI: 10.1007/s10891-018-1895-8

6. Volchenko T.S., Yalovets A.P., Calculation of the effective thermal conductivity of
powders formed by spherical particles in a gaseous atmosphere. Technical Physics,
2016, vol. 61, no. 3, pp. 324–336. DOI: 10.1134/S1063784216030245

Alina A. Aiderkhanova, Laboratory assistant of the Department of Computational
Mechanics, head of the Educational Laboratory ≪Interdepartmental Educational Laboratory
≪Mathematical Modelling and Computer Technologies≫, South Ural State University
(Chelyabinsk, Russian Federation), aiderkhanovaaa@susu.ru

Yurii M. Kovalev, DSc (Math), professor, Professor of the Department of
Computational Mechanics, Head of Laboratory ≪Mathematical modelling of fast processes
in multicomponent and multiphase media≫, South Ural State University (Chelyabinsk,
Russian Federation), kovalevym@susu.ru

Alexander P. Yalovets, DSc (Math), professor, Professor of the Department of
Computational Mechanics, South Ural State University (Chelyabinsk, Russian Federation),
ialovetcap@susu.ru

Received October 27, 2022.

УДК 53.092+53.093 DOI: 10.14529/jcem220404

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

ДЕФОРМИРОВАНИЯ ПОРИСТЫХ ОРГАНИЧЕСКИХ

МАТЕРИАЛОВ

А. А. Айдерханова, Ю. М. Ковалев, А. П. Яловец

В данной работе предложен метод описания динамики деформирования полимер-

ных материалов при температурном и механическом воздействии. Метод основан на

решении уравнения для вязкой несжимаемой жидкости в квазистационарном прибли-

жении. Данный метод реализован для случая простого сжатия цилиндрического об-

разца, толщина которого много меньше его диаметра. Были построены зависимости

коэффициента вязкости от температуры и определено время релаксации для матема-

тической модели Максвелла. Показано, что вязкость материалов сильно зависит от

температуры, причем эта зависимость носит экспоненциальный характер. Проведен-

ные расчеты деформирования различных полимерных материалов продемонстрирова-

ли удовлетворительное согласие с экспериментальными данными во всем диапазоне

температур.

Ключевые слова: вязкая несжимаемая жидкость; математическая модель

Максвелла; теплопроводность; уравнение состояния.
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