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The article is devoted to the stabilization of solutions to the stochastic Barenblatt —
Zheltov — Kochina equation. The Barenblatt — Zheltov — Kochina equation is a model of
filtration of a viscous liquid in a porous medium. This equation also models the processes
of moisture transfer in the soil. We consider the problem for the Barenblatt — Zheltov
— Kochina equation with random initial data. The equation is considered as a system of
equations given on stable and unstable invariant spaces. The problem of stabilization is as
follows. It is required to find a controlling effect on the system so that its solutions become
asymptotically stable. For the stochastic Barenblatt — Zheltov — Kochina equation, we find
feedback such that the closed system is asymptotically stable. Numerical solutions to the
stochastic Barenblatt — Zheltov — Kochina equation and the stabilized equation are found.
Graphs of solutions are constructed.

Keywords: stochastic Sobolev type equations; stable and unstable invariant spaces;
stabilization of solutions.

Introduction

Consider the stochastic analogue of the Barenblatt — Zheltov — Kochina equation
(A = A)uy = aAu. (1)
For this, we reduce the equation to the stochastic linear Sobolev type equation
L= Mp (2)

where the operators L, M are linear and continuous, 7 is a stochastic K-process, denote

by 1 its Nelson — Glicklich derivative [1]. A large number of works (see, for example, [2-4])
are devoted to the study of the Cauchy and Showalter — Sidorov problems for equation
(2). The paper [5] considers Sobolev type equations of higher order with additive <white
noisex. In [6], multipoint initial-final value problems for stochastic dynamical Sobolev type
equations are studied. The stability of equation (2) is studied in |7]. In [8-10], numerical
experiments are carried out to calculate stable and unstable solutions to equation (2).

A large number of papers (see, for example, the reviews [11-15|) are devoted to the
stabilization of linear stationary deterministic systems. One of the problems is the problem
of stabilizing a linear stationary system using feedback [13]. In [13], the study of the
stabilizability of a stochastic system is reduced to the problem of optimal control to a
deterministic system. In the deterministic case, the question of stabilization of solutions
to the Cauchy problem for a parabolic equation was first considered by L.A. Lusternik
and M.I. Vishik (see, for example, the review [14]).

The aim of the work is to stabilize a stochastic linear equation of the Sobolev type.
Equation (2) is considered as a system of equations, one of which is defined on the stable
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invariant space I®, and the second one is defined on the unstable invariant space I“. By
the stabilization of solutions, we mean the following problem. It is required to find a
controlling effect on the second equation of the system such that the invariant space I*
becomes stable.

The article consists of Introduction, two sections and References. Section 1 considers
static stabilization of a linear stochastic equation by stationary feedback. Section 2 contains
the results of stabilization of the Barenblatt — Zheltov — Kochina equation and the results
of a numerical experiment.

1. Stabilization of Solutions to Stochastic Sobolev Type Equation

Let 4l (§) be a separable real Hilbert space, {¢r}({1x}) be a basis in this space. The
elements of the space UL, (FxLs) are the vectors

= Z AkERPr (C = Z )\ka%) ;
= =1

where K = {/\kz} C R-H Z/\i < +00, and {fk} C Lg ({Ck}CL2)7 ||§kHL2 <
k=1

const (||¢x||lL, < const).
Let the operators L € L(UkLy; FkLy), M € Cl(UkLy; FxL,).

Lemma 1. The operator A € L(;F) (linear and continuous) if and only if A €
E(UKLQ; FKLQ)

The set p*(M) ={p € C: (uL — M)™' € L(F;U)} is called the L-resolvent set of the
operator M, and the set o%(M) = C\ p*(M) is called the L-spectrum of the operator M.
If the operator M is (L, o)-bounded, i.e. (M) = C\ p*(M) is a bounded set, then there
exist the projectors

P % (L — M) Ldp € £(UgLy), Q — %/L(ML — M) ldp € £(FkLy). (3)
0l 0
The contour v C C bounds an area containing o (M).

Projectors (3) split the spaces UgLy = U%Ly & ULy and FxLy = Fx Ly & Fi Lo,
where ULy (Ui L) = ker P (imP), F Ly (FiLs) = ker Q (im@), The operators Ly, M,
are the restrictions of the operators L, M on the spaces ULy, k = 0,1. The operators
Liy(My,) € L(UkLy, FiLy), k = 0,1, there exist the operators M, "' € L(F%Ly, UkLs),

L7t € L(FiLy, UkLy). Consider the operators H = Ly'My and S = L;'M;. Let the
operator M be (L, c)-bounded and H = O, p =0 or H? # O, HP*' = O, then it is called
(L, p)-bounded operator.

Let the condition

ot (M) = of (M) ® o7 (M),
of (M) ={p€o"(M):Re p<0}#0, (4)
oy (M) ={p€ot(M):Reu>0}#0

be fulfilled, then there exist the projectors
1 _ 1 _
Py =5= [ (uL—=M)"'Ldp, Qupy= 5= [ L(pL— M) "dp,

211
iy Fl(v")
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where the contour I';,y belongs to the left (right) half-plane and bounds an area containing
that part of L-spectrum of the operator M, which is located in this half-plane. Note that

PP = PPy = Py, Q)@ = QQiry = Qury and PP, = PP, = 0, QQ, = Q,Q; =
0. Let I*™ = im Py, Fiéu)LQ = imQyq). The operators M; (L;) and M, (L,) are the
restrictions of the operator M (L) on the spaces I* and I*.

Consider linear equation (2) with the initial condition

1(0) = 1o, (5)

where 179 = > A&rpr. Let condition (4) be fulfilled, then we consider problem (2), (5) as
k=1

the system
o0
Hn =1’ n°0) =, (6)
Ly m= My, m(0) = o, (7)
L, 7;)7": Mrnra 77r(0> = Nro- (8>
Here ) = (I—-P)ny = > Meror, where [ is the kernel dimension of the operator
k={k:ker L#{0}}
L, and mo = Py = > Nei(B)ers o = Pono = > Ne&i(t)pr- The
k={k:Re ur<0} k={k:Re ui>0}

existence of solutions to problem (2), (5) is discussed in [2|. It is shown that if 79 € U Lo,
then there exists a unique solution to problem (2), (5). In [7], it is shown that there exist
the holomorphic groups

1 1
U = 5= /(MLl — M) Liettdp, Ul = —— /(MLr — M) Letdp.
271 271
i Ir

It is proved that the solutions 1, = n,(t) = Uln, to problem (7) belong to the stable
invariant space I°, and the solutions 1, = 7,.(t) = Uln,o to problems (8) belong to the
unstable invariant space I*. The stochastic process n = n; + 7, is a solution to problem
(2), (5).

The solution to problem (9) has the form 7, = Ufn. Since . liin | () || ugr, = 0, then
—+400

consider the following stabilization problem. It is required to find the stochastic process
X € FiLs such that the solutions to the system

Ly = Mymi, mi(0) = o, (9)
L, ﬁr: Mrnr +X 777“(0) =T (1())
are stabilized, i.e.
i {l7,(t)|uger, = 0. (11)
For (5), we find a static output feedback of the form
X = By (12)

such that a system closed by feedback (12) is asymptotically stable. Here B is some linear
bounded operator. So, for the equation

L, ﬁr: Mrnr + B777“ = (MT + B)??r, (13>

we need to find the operator B such that the spectrum o~ (M, + B) belongs to the left
half-plane of the complex plane.

2023, vol. 10, no. 1 23



0. G. Kitaeva

2. Stabilization of Solutions to Stochastic
Barenblatt — Zheltov — Kochina Equation

Let
U={ze Wi (—n,7): 2(—7) = 2(7) = 0}, § = Wi(—m, 7),
where [ € {0} UN. The sequence {sinkz} of the eigenfunctions of the Laplace operator

A is a basis in the Hilbert space W]ngQ(—?T,?T), and the spectrum of the operator A is
o(A) = —k*. Let the sequence {xx} C La ({¢x} C L2) be a uniformly bounded sequence,

the sequence {\z} be such that Y Ay < +oo. The elements of the space UxLy (FxLs)
k=1
are the vectors

X = Z Ak Xk Sin kx <C = Z Ak sin k‘x) .
k=1 k=1

The formulas

L=(\-A), M=aA (14)

define the operators L, M : UgxL, — FgL,. Then we consider stochastic equation (1) in
the form (2). The phase space of equation (2) is the space [3]

ULL, — UkLy, ifAN#—k* keN,;
K n € UgLy: (n,sinkz) =0, if A = —k%

Let a €e Ry, A € R_. Then

ot (M) = o} (M) U o (M),

where
—ak? —ak?
O'JI:(M) = {m . —]{?2 > A}, O'E(M) == {m : —]1’}2 < )\} .
The spaces
I" = {n € ULy : (n,sinkz) =0, —k* > A}, (15)
I = {n € ULy : (n,sinkz) = 0, —k* < A} (16)

are unstable and stable invariant spaces. The dimension of the space I" is equal to m =
ml?x{k : —k? > A}, and codimI® = m + dimker L.
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Z '

Let B = a(e + m?)I, € > 0 can be chosen arbitrarily small. Then

—ak? + ale + m?)

b<o

Z A& sin kx

k

(at 1) = {

o

A+ k2

The number of random K-values is chosen equal to 5
for a numerical experiment. Following the algorithm from [8], we calculate the solutions 7,

The solution to problem (13) has the form

,sin kx) sin kx.

1

m

the parameters A = =5, a = 1.5

Y

25
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and n,. Calculate n = 7, + n,. Fig. 1 shows a graph of the solution to the equation before
stabilization, Fig. 2 shows a graph of the solution of the equation after stabilization at
t € [0.5] and & = 0.23539, & = —1.07919, & = —0.73045, £, = 0.86707, & = 0.15989.

Conclusion

In the future, we intend to consider the stabilization of semilinear stochastic Sobolev

type equations [16,17].
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CTABNJIN3AIINA CTOXACTUYECKOI'O YPABHEHUN A
BAPEHBJIATTA - YKEJITOBA — KOUMTHOI

O. I Kumaesa

CraThst OCBSIIEHA CTAOWIN3AINN PEIIEHNI CTOXaCTHIECKOTO ypaBHeHus bapenbiaar-
ta — 2KenroBa — Kounnoit. Ypasuenne Bapenbisiarra — 2Kenrosa — Kounnoii sBisiercs
MOJIEJIBIO (PUJIBTPAIMK BSI3KOW YKUJIKOCTH B IIOPUCTOIl cpejlie. DTO ypaBHEHHE TaKyKe MO-
JIeJIUPYET IPOIECChl IepeHoca BJjarn B mouse. PaccmarpuBaeTcs 3ajiada Jjisl YPaABHEHUS
Bapenbsarra — 2Kenrosa — KounHoii co ciaydailHbIMU HAYAJIbHBIMU JIAHHBIMU. Y DABHEHUE
paccMaTpUBAETCs B BUJE CUCTEMbI yPDABHEHMIA, 33 JaHHBIX HA YCTOWYNBOM U HEYCTONIHMBOM
MHBAPUAHTHBIX MPOCTPAHCTBAX. 3ajada CTAOMIN3AINN COCTOUT B cjemyiomeM. Tpebyer-
Cs HANTU yIPABJISIONIEe BO3IEUCTBIE HA CUCTEMY, YTOOBI €€ PENIeHus CTAJNd ACUMITOTHKI
yerovauBbiMu. J[J1st croxacTudeckoro ypasaenus bapenoaarra — zKenrosa — KounHoit Hait-
JieHa Takasl obpaTHasi CBsI3b, YTO 3aMKHYyTasl CHCTeMa ObLIa aCUMIITOTHIYECKU YCTONIUBOIA.
Haitmernsl guceHnble penrenns CTOXaCTUIeCKOro ypasHenust bapenbiarrta — 2KemroBa —
Kouwnoit n crabuansupoBantoro ypasHenus. I[locTpoennb! rpadukn pereHnii.

Karouesvie caosa: ypasrenus coboresckozo muna; CMoTacmusyeckue ypashenus; dug-

Peperyuarvrvie Gopmol; IKCNOHEHUUANDGHBLE QUTOMOMUL.
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