
M. A. Sagadeeva, S. A. Zagrebina

MSC 60H30, 34K50, 34M99 DOI: 10.14529/jcem230105

SOLUTION OF STOCHASTIC NON-AUTONOMOUS
CHEN – GURTIN MODEL WITH MULTIPOINT
INITIAL-FINAL CONDITION

M. A. Sagadeeva1, sagadeevama@susu.ru
S. A. Zagrebina1, zagrebinasa@susu.ru
1South Ural State University, Chelyabinsk, Russian Federation

In this paper the authors investigate the solvability of a non-autonomous Chen –

Gurtin model with a multipoint initial-final condition in the space of stochastic K-processes.

To do this, we first consider the solvability of a multipoint initial-final problem for a non-

autonomous Sobolev type equation in the case when the resolving family is a strongly

continuous semiflow of operators. The Chen – Gurtin model refers to non-classical models

of mathematical physics. Recall that non-classical are those models of mathematical physics

whose representations in the form of equations or systems of partial differential equations

do not fit within one of the classical types: elliptic, parabolic or hyperbolic. For this model,

multipoint initial-final conditions, which generalizing the Cauchy and Showalter-Sidorov

conditions, are considered.

Keywords: Sobolev type equations; resolving C0-semiflow of operators; relatively spectral

projectors; Nelson – Gliklikh derivative; space of stochastic K-processes.

Introduction

Let Π ⊂ Cm be a bounded domain with boundary ∂Ω of C∞ class. The parameters λ,
d ∈ R. On interval (τ0, τn) ⊂ R consider the modified Chen – Gurtin equation [1]

(λ−∆)ut(x, t) = ν(t)(∆u(x, t)− id∆2u(x, t)) + g(x, t), (x, t) ∈ Ω× (τ0, τn), (1)

∆u(x, t) = u(x, t) = 0, (x, t) ∈ ∂Ω × (τ0, τn), (2)

which allows us to take into account the change in system parameters over time and
describes the process of thermal conductivity with ≪two temperatures≫ [1], as well as in
the special case at d = 0 the dynamics of fluid pressure in a fractured-porous medium [2]
and the process of moisture transfer in the soil [3]. In addition, if, in the case of λ = 0, we
take ∆u as the searched function, then a linearized classical Ginzburg –Landau equation
can be obtained from this equation, taking into account diffraction and the absence of
diffusion action [4].

The problem (1), (2) is reduced to a non-autonomous equation of the Sobolev type
[5, 6] of the form

Lu̇(t) = a(t)Mu(t) + g(t), (3)

where operators L ∈ L(U;F) (i.e. linear and continuous) and M ∈ Cl(U;F) (i.e. linear,
closed and densely defined in U) defined in some Banach spaces U, F. Equation (3) refers
to equations unresolved with respect to the highest derivative (see more in [7]), since the
operator with the derivative on the left side can be zero for some parameter values. Note
that the non-autonomous model (1), (2) is described by the equation (3) which relating
to the relatively p-radial case [5, 8], i.e. the operators L and M generates a strongly
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continuous resolving semigroup for a homogeneous autonomous equation (3) (a(t) ≡ 1).
Note that such a class of equations was firstly considered in [8].

Fix uj ∈ U, j = 0, n and take τ0 = 0 и τj ∈ R+ such as τj−1 < τj , j = 1, n. Let us add
the equation (3) with a multipoint initial-final condition [9]

lim
t→τ0+

P0(u(t)− u0) = 0, Pj(u(τj)− uj) = 0, j = 1, n, (4)

where operators Pj are relatively spectral projectors [9]. Condition (4) generalizes the
classical conditions of Cauchy and Showalter – Sidorov [10, 11].

Previously, the problem (3), (4) was considered in the deterministic case [12], and
the stochastic equation (3) with Cauchy and Showalter–Sidorov conditions investigated
in [13]. This article we consider a multipoint initial-final condition for the Chen – Gurtin
model in the stochastic case. The article, in addition to the introduction, conclusion and
list of references, contains four parts. The first part provides information on the solvability
of classical problems for abstract deterministic Sobolev-type equations with relatively p-
radial operators. The second part describes the space of stochastic K-processes, after which
the third part describes the solution of the stochastic problem (3), (4). And in the last
part, solutions of the stochastic non-autonomous Chen – Gurtin model with a multipoint
initial-final condition are constructed.

1. Non-autonomous Sobolev-type Equations
with Relatively p-Radial Operators

Let U and F are Banach spaces. Operators L ∈ L(U;F) (i.e. linear and continuous)
and M ∈ Cl(U;F) (i.e. linear, closed and densely defined in U). By [5, 8] we call sets
ρL(M) = {µ ∈ C : (µL −M)−1 ∈ L(F;U)} и σL(M) = C \ ρL(M) L-resolvent set and
L-spectrum of operator M correspondingly. In [5, 8] It is shown that the L-resolvent set is
open, and therefore the L-spectrum of the operator M is always closed. The L-resolvent
set of the operator M can be an empty set, for example, if kerL∩kerM 6= {0}. Assuming
that ρL(M) 6= ∅, we introduce the operator-functions of a complex variable (µL −M)−1,
RL

µ(M) = (µL − M)−1L, LL
µ(M) = L(µL − M)−1 with the domain ρL(M), which we

call L-resolvent, right and left L-resolvent of operator M correspondingly. Similarly, the
function operator (p+ 1) of a complex variable type

RL
(λ,p)(M)=

p
∏

k=0

RL
λk
(M), LL

(λ,p)(M)=

p
∏

k=0

LL
λk
(M), λk∈ρ

L(M) (k = 0, p)

with the domain [ρL(M)]p+1 we call right and left (L, p)-resolvent of operator M
correspondingly. Also, due to the results of [5, 8], all the presented operator-functions
are holomorphic in their domain of definition.

Definition 1. [5] Operator M we call p-radial relatively to the operator L (for short
(L, p)-radial) if

(i) ∃α∈ R : (α,+∞) ⊂ ρL(M);
(ii) ∃K > 0 ∀µ = (µ0, µ1, . . . , µp) ∈ (α,+∞)p+1 ∀n∈ N

max{‖(RL
(µ,p)(M))n‖L(U), ‖(L

L
(µ,p)(M))n‖L(F)} ≤

K
p
∏

k=0

(µk − α)n
.
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Denote U0 = kerRL
(µ,p)(M), F0 = kerLL

(µ,p)(M), L0 = L

∣

∣

∣

∣

U0

, M0 = M

∣

∣

∣

∣

domM∩U0

. By

symbols U1 and F1 we denote the closure of lineals imRL
(µ,p)(M) and imLL

(µ,p)(M). Note

that under the condition of (L, p)-radiality of the operator M , there exists an operator
M−1

0 ∈ L(F0;U0).
One-parameter family of operators U• : R+ → L(U) we call a strongly continuous

semigroup (C0-semigroup) of operators if
(i) UsU t = Us+t ∀s, t ∈ R+;
(ii) U t strongly continuous for t > 0 and exists lim

t→0+
U tu = u for all u from some lineal

dense in U.
Semigroup {U t ∈ L(U) : t ∈ R+} we call an exponentially bounded with constants C

and α if ∃C > 0 ∃α ∈ R ∀t ∈ R+ ‖U t‖L(U) ≤ Ceαt.

Theorem 1. [5] Let the operator M be an (L, p)-radial (p ∈ {0} ∪ N). Then there exist
degenerate C0-semigroup {U t ∈ L(Ũ) : t ∈ R+} и {F t ∈ L(F̃) : t ∈ R+} which are
exponentially bounded with constants K, α from Definition 1. Here by Ũ and F̃ denote the
closure of lineals U0+̇ imRL

(µ,p)(M) and F0+̇ imLL
(µ,p)(M) by norm of spaces U and F.

Remark 1. [5] Units of semigroups {U t ∈ L(Ũ) : t ∈ R+} and {F t ∈ L(F̃) : t ∈ R+}
are projectors P = lim

t→0+
U t and Q = lim

t→0+
F t along U0 or F0 on subspace U1 or F1

correspondingly.

Introduce the condition

U = U0 ⊕ U1, F = F0 ⊕ F1. (5)

By symbols Lk and Mk denote the restrictions of L or M on subspace Uk or domMk ∩ Uk

(k = 0, 1). And introduce one more condition as

there exists an operator L−1
1 ∈ L(F1;U1). (6)

Remark 2. A sufficient condition for fulfilling the conditions (5) and (6) is, for example,
the strong (L, p)-radiality of the operator M (p ∈ N0) [5, Chapter 2]. Here and further
N0 ≡ {0} ∪ N.

Theorem 2. [5] Let the operator M be an (L, p)-radial (p ∈ N0) and conditions (5), (6)
are fulfilled. Then

(i) Lk ∈ L(Uk;Fk), Mk ∈ Cl(Uk;Fk), domMk = domM ∩ Uk, k = 0, 1;
(ii) an operator H =M−1

0 L0 ∈ L(F0) is nilpotent degree not higher than p;
(iii) an operator S = L−1

1 M1 ∈ Cl(U1) generates C0-semigroup of resolving operators
for equation u̇ = Su.

On interval (τ, T ] ⊂ R+ we consider the Cauchy problem

lim
t→τ+

u(t) = uτ (7)

for a homogeneous non-autonomous equation

Lu̇(t) = a(t)Mu(t), (8)

where function a : [τ, T ] → R+ will be defined below.
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Definition 2. [5] A solution of equation (8) we call the vector-function u∈C([τ, T ];U)∩
C1((τ, T ];U) which is satisfying this equation on (τ, T ]. The solution of equation (8) we
call a solution of Cauchy problem (7), (8), if it additionally satisfies the condition (7).

Definition 3. [5] Closed set P ⊂ U are called a phase space of equation (8) if
(i) any solution u(t) of equation (8) in P for all t;
(ii) for arbitrary uτ from P there exists the unique solution of the Cauchy problem

(7) for equation (8).

Theorem 3. [12] Let the operator M be an (L, p)-radial (p ∈ N0), the conditions (5),
(6) are fulfilled and the function a ∈ C(R,R+). Then the phase space of equation (8) is
a subspace U1.

Remark 3. Under the conditions of Theorem 3 for an arbitrary uτ ∈ U1 there is a unique
solution to the Cauchy problem (7), (8) of the form u(t) = U(t, τ)uτ . If uτ /∈ U1, then the
Cauchy problem is fundamentally unsolvable [10]. Here U(t, τ) is a semiflow of resolving
operators of the equation (8) (more see in [12]).

2. Sobolev-type Equations in the Space
of Complex-valued Stochastic K-Processes

Let Ω ≡ (Ω,A,P) be a complete probability space with probability measure P

associated with the σ-algebra A of subsets of the set Ω, and C is a set of complex numbers
endowed with a Borel σ-algebra. The measurable mapping ξ : Ω → C is called a random
variable. A set of random variables with zero mathematical expectation and finite variance
forms a Hilbert space L2 = L2(Ω;C) = {ξ : Eξ = 0, Dξ < +∞} with a scalar product
(ξ1, ξ2) = Eξ1ξ2 and the norm ‖ξ‖2

L2
= Dξ.

Let us take the set I ⊂ R and consider two mappings: f : I → L2, which matches each
t ∈ I with a random variable ξ ∈ L2, and g : L2 ×Ω → C, which each pair (ξ, ω) matches
the point ξ(ω) ∈ C. Mapping η : I × Ω → C (or what is the same η : I → L2), having
the form η = η(t, ω) = g(f(t), ω), we call a complex-valued stochastic process. A stochastic
process η = η(t) is continuous on the interval I if all its trajectories are continuous (almost
surely) (i.e. with a.a. (almost all) ω ∈ A trajectories η(·, ω) are continuous functions). The
set of continuous stochastic processes η : I → L2 forms a Banach space with a standard
sup-norm, which we denote by the symbol C(I;L2).

Let H be a complex separable Hilbert space with an orthonormal basis {ϕk}, a

monotone numerical sequence K = {λk} ⊂ R+ is, what is
∞
∑

k=1

λ2k < +∞, and the

sequence {ξk} = ξk(ω) ⊂ L2 of random variables such, what is ‖ξk‖L2
≤ C with some

constant maxC ∈ R+ and for all k ∈ N. Let’s construct H-valued random K-value

ξ(ω) =
∞
∑

k=1

λkξk(ω)ϕk. Completion of the linear span of the set {λkξkϕk} according to

the norm ‖η‖HKL2
=

(

∞
∑

k=1

λ2kDξk

)1/2

is called space of H-valued random K-value and are

denoted by HKL2. That is clear that the space HKL2 is a Hilbert space and the random
K-value ξ = ξ(ω) ∈ HKL2.
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Mapping η : I → HKL2, which is defined as η(t) =
∞
∑

k=1

λkηk(t)ϕk, where {ηk} ⊂

C(I;L2), are called a continuous H-valued stochastic K-process, if the series in this equality
converges uniformly according to the norm ‖ · ‖HKL2

on any compact in I and process
trajectories η = η(t) are continuous almost surely. The H-valued stochastic K-process is

differentiating by Nelson – Gliklikh [13, 14], if the series in
◦
η(t) =

∞
∑

k=1

λk
◦
ηk(t)ϕk converges

uniformly according to the norm ‖ · ‖HKL2
on any compact in I and process trajectories

◦
η=

◦
η (t) are continuous almost surely. Here

◦
ηk is a Nelson – Gliklikh derivation of stochastic

process ηk : I → L2. By the symbol C(I;HKL2) we denote the space of continuous H-
valued stochastic K-processes and analogously by the symbol Cℓ(I;HKL2) we denote the
space H-valued stochastic K-processes, which are continuous differentiable in Nelson –
Gliklikh sense up to and including the order of ℓ ∈ N.

Now let U and F be complex separable Hilbert spaces with an orthonormal basis {ϕk}
and {ψk} correspondingly. By symbols UKL2 and FKL2 we denote the Hilbert spaces,
which are completion of linear span of random K-values

ξ =

∞
∑

k=1

λkξkϕk (ξk ∈ L2) and ζ =

∞
∑

k=1

µkζkψk (ζk ∈ L2) according to the norm

‖η‖2UKL2
=

∞
∑

k=1

λ2kDξk and ‖ω‖2FKL2
=

∞
∑

k=1

µ2
kDζk correspondingly. Note that in different

spaces (UKL2 and FKL2) the sequence K can be different (K = {λk} in UKL2 and
K = {µk} in FKL2), however, all sequences marked with the symbol K must be monotonic
and summable with a square. All results, generally speaking, will be true for different
sequences of {λk} and {µk}, but for simplicity’s sake we will limit ourselves to the case
λk = µk.

Let A : U → F be a linear operator. By the formula Aξ =
∞
∑

k=1

λkζkAϕk we define

linear operator A : UKL2 → FKL2, moreover, if the series on the right side of this equality
converges (in the metric FKL2), then ξ ∈ dom A, and if it diverges, then ξ /∈ dom A.
Traditionally , we define spaces of linear continuous operators L(UKL2;FKL2) and linear
closed densely defined operators Cl(UKL2;FKL2).

Lemma 1. (i) The operator A ∈ L(UKL2;FKL2) exactly when A ∈ L(U;F).
(ii) The operator A ∈ Cl(UKL2;FKL2) exactly when A ∈ Cl(U;F).

Lemma 2. (i) The operator M ∈ Cl(UKL2;FKL2) be a p-radial relatively to the operator
L ∈ L(UKL2;FKL2) exactly when the operator M ∈ Cl(U;F) be a p-radial relatively
to the operator L ∈ L(UKL2;FKL2).
(ii) L-spectrums of operators M match in both cases.
(iii) Conditions (5), (6) are fulfilled in spaces U, F exactly when they are fulfilled in spaces
UKL2, FKL2.

The proofs of these lemmas are based on the obvious equality

‖Aξ‖F ≤
∞
∑

k=1

λ2kDξk‖Aϕk‖
2
F ≤ const

∞
∑

k=1

λ2kDξk = const ‖ξ‖U.
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So, let the operators L ∈ L(UKL2;FKL2) and M ∈ Cl(UKL2;FKL2) such that the
operator M is (L, p)-radial (p ∈ {0} ∪ N), and conditions (5), (6) are fulfilled. Consider a
linear evolutionary stochastic equation

L
◦
η=Mη. (9)

The process η ∈ C
1(R;UKL2) we call solution of equation (9), if when substituting it

in (9) it turns this equation into an identity almost surely. Solution η = η(t) of equation (9)
we call solution of Cauchy problem

lim
t→τ+

(η(t)− ητ ) = 0 (10)

if it is fulfilled for this function and some random K-value ητ ∈ UKL2. Analogously,
the solution of the Showalter – Sidorov problem

lim
t→τ+

P (η(t)− ητ ) = 0 (11)

for equation (9) is defined.

Definition 4. Set PKL2 ⊂ UKL2 we call stochastic phase space of equation (9) if
(i) almost surely each trajectory of the solution η = η(t) of the equation (9) in PKL2,

i.e. η(t) ∈ PKL2, t ∈ R, for almost all trajectories;
(ii) for almost all ητ ∈ PKL2 there is a unique solution to the Cauchy problem (10)

for equation (9).

Theorem 4. Let the operator M be an (L, p)-radial (p ∈ N0) and condition (5), (6) are
fulfilled. Then the stochastic phase space for equation (9) is a space U1

K
L2.

Remark 4. As above in the remark 3, we note that the Cauchy problem (9), (10) is
solvable only for ητ ∈ U1

K
L2, but the Showalter – Sidorov problem(9), (11) is solvable for

any ητ ∈ U1

K
L2. This solution has the form η(t) = U t−τPητ , where U t−τ semigroup of

solving operators for a stochastic equation (9), which exists by virtue of Theorem 1 with
taking into account Lemmas 1 and 2, and the projector P from Remark 1 with taking into
account the same lemmas (see more in [13]).

3. Solution of a Multipoint Initial-Final Problem
for a Non-autonomous Evolutionary Equation

Let U, F be complex separable Hilbert spaces, operators L ∈ L(U;F), M ∈ Cl(U;F)
such that the operator M is (L, p)-radial (p ∈ N0), and the conditions (5), (6) are satisfied.
On the interval (τ0, τn] consider an inhomogeneous stochastic equation

L
◦
η(t) = a(t)Mη(t) +̟(t), (12)

where η = η(t) is the searched stochastic K process, t ∈ (τ0, τn], and ̟ : (τ0, τn) → FKL2

is a given one. Introduce an additional condition






















σL(M)=
n
⋃

j=0

σL
j (M), n ∈ N, such that σL

j (M) 6= ∅ contained in a limited

area Dj ⊂ C with a piecewise smooth border ∂Dj = γj ⊂ C. Moreover,

Dj ∩ σ
L
0 (M) = ∅ and Dk ∩Dl = ∅ for all j, k, l = 1, n, k 6= l.

(13)
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Due to the holomorphism of relative resolvents the condition (13) guarantied that
there exist projectors, that have the form [9]

Pj =
1

2πi

∫

γj

RL
µ(M)dµ ∈ L(U), Qj =

1

2πi

∫

γj

LL
µ(M)dµ ∈ L(F), j = 1, n,

P0 = P −
n
∑

j=1

Pj , Q0 = Q−
n
∑

j=1

Qj , where P and Q are defined in Remark 1.

Introduce the subspaces U1j = imPj, F
1j = imQj , j = 0, n. Then by the contraction

we have

U1 =
n
⊕

j=0

U1j and F1 =
n
⊕

j=0

F1j .

By symbols L1j we denote the restrictions of operator L on U1j , j = 0, n, and by
symbols M1j denote the restrictions of operator M on domM ∩U1j , j = 0, n. That is clear
that Pjϕ ∈ dom M for ϕ ∈ dom M , that’s why domain dom M1j = dom M ∩U1j is dense
in U1j , j = 0, n.

Theorem 5. (Generalized spectral theorem) [9]. Let operators L ∈ L(U;F) and M ∈
Cl(U;F) such that operator M is an (L, p)-radial (p ∈ N0), and condition (5), (6), (13)
are satisfied. Then

(i) operators L1j ∈ L(U1j ;F1j), M1j ∈ Cl(U1j ;F1j), j = 0, n;
(ii) there exist operatprs L−1

1j ∈ L(F1j;U1j), j = 0, n.

Fix ηj ∈ UKL2 (j = 0, n) and take τ0 = 0 and τj ∈ R+ such that τj−1 < τj , j = 1, n.
For them, consider a multipoint initial-final problem [9, 11, 12]

lim
t→τ0+

P0(η(t)− η0) = 0, Pj(η(τj)− ηj) = 0, j = 1, n (14)

for equation (12). Let’s act on the equation (12) sequentially by projectors I−Q and Qj,
j = 0, n, and we get a system

{

H
◦
η 0(t) = a(t)η0(t) +M−1

0 ̟0(t),
◦
η 1j(t) = a(t)Sjη

1j(t) + L−1
1j ̟

1j(t), j = 0, n,

which equivalent to this equation. Here operator H =M−1
0 L0 ∈ L(U0) is nilpotent degree

not higher than p ∈ {0} ∪ N, and operators Sj = L−1
1j M1j ∈ Cl(U1j) such that σ(Sj) =

σL
j (M); ̟0 = (I−Q)̟, ̟1j = Qj̟, η0 = (I− P )η, η1j = Pjη, j = 0, n.

Definition 5. The process η ∈ C([τ0, τn];UKL2) ∩ C1((τ0, τn];UKL2) we call solution of
equation (12), if it almost surely turns it into an identity on (τ0, τn). Solution η = η(t)
of equation (12) are called solution of a multipoint initial-final problem (12), (14), if it
almost surely satisfies the conditions (14).

Theorem 6. Let the scalar function a ∈ Cp+1([τ0, τn];R+), the operator M is an (L, p)-
radial (p ∈ N0), and conditions (5), (6), (13) are satisfied. Then for arbitrary random
K-value ηj ∈ UKL2 (j = 0, n) that are independent from U-valued K-processes L−1

1 Q̟ :
(τ0, τn) → UKL2 such that Q̟ ∈ C((τ0, τn),F

1

K
L2) and (IF −Q)̟ ∈ Cp+1((τ0, τn),F

0

K
L2),
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there exists almost surely the unique solution η∈C([τ0, τn];UKL2) ∩ C
1((τ0, τn];UKL2) of

problem (12), (14), which has the form

η(t)=−

p
∑

k=0

HkM−1
0

(

1

a(t)

©d

dt

)k
̟0(t)

a(t)
+

n
∑

j=0



U(t, τj)Pjηj−

τj
∫

t

U(t, s)PjL
−1
1j ̟

1j(s)ds



 .

Here the symbol
©d

dt
denote the Nelson – Gliklikh derivation, and operator U(t, τ) is from

the Remark 4.

The statement of this theorem is a consequence of the corresponding theorem from
[12] taking into account Lemmas 1 and 2.

4. Solutions of a Multipoint Initial-Final Problem
for a Non-autonomous Chen – Gurtin Model
with Complex Coefficients

Let Π ⊂ Cm be a bounded domain with boundary ∂Π of class C∞. Transform the
stochastic equation

(λ−∆)
◦
η (x, t) = ν(t)(∆− id∆2)η(x, t) +̟(x, t), (x, t) ∈ Π× (τ0, τn) (15)

with parameters λ, d ∈ R and boundary conditions

∆η(x, t) = η(x, t) = 0, (x, t) ∈ ∂Π× (τ0, τn) (16)

to equation (12). To do this let’s take functional spaces U = W 2
2 (Π)∩

◦

W1
2(Π), F = L2(Π),

where W 2
2 (Π),

◦

W1
2(Π) are Sobolev spaces. Define operators L∈L(U;F) and M ∈Cl(U;F)

by formulas L = λ − ∆ and M = ∆ − id∆2 with domain of definition domM = {u ∈
W 4

2 (Π) : u(x) = ∆u(x) = 0, x ∈ ∂Π}.

Lemma 3. [13] For arbitrary λ ∈ R \ {0}, d ∈ R, the operator M is an (L, 0)-radial and
conditions (5), (6) are satisfied.

The statement of the Lemma 3 follows from [13] taking into account the Remark 2.
Denote by {λk} the sequence of eigenvalues of a homogeneous Dirichlet problem for the
operator Laplace ∆ in the domain of Π. Let the sequence {λk} be numbered by non-
increment, taking into account multiplicity. Denote by {φk} orthonormal (in the sense of
L2(Π)) a sequence of corresponding eigenfunctions φk ∈ C∞(Π), k ∈ N. The L-spectrum
of operator M has the form

σL(M) =

{

µk =
λk − idλ2k
λ− λk

, k ∈ N \ {l : λl = λ}

}

.

In order for the contour γ ⊂ C to satisfy the condition (13), it is enough to take γj = ∂Dj

(j = 0, n) so that

n
⋃

j=0

Dj ⊃ σL(M) and each of the area Dj (j = 1, n) contained a finite
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number of points from σL(M). Denote σL
j (M) = σL(M) ∩Dj and construct projectors

Pj =
∑

k:µk∈σ
L
j (M)

〈·, φk〉 φk, j = 0, n.

Fix ηj ∈ UKL2, j = 0, n and take τ0 = 0 and τj ∈ R+ such that τj−1 < τj , j = 1, n. In the
cylinder Π× (τ0, τn) find a solution to the equation (15) satisfying the boundary condition
(16) and the conditions

Pj(η(x, τj)− ηj(x)) =
∑

k:µk∈σ
L
j (M)

〈(η(τj)− ηj), φk〉φk(x) = 0, j = 0, n (17)

of multipoint initial-final problem.
The following statement follows from Theorem 6 and Lemma 3.

Theorem 7. For an arbitrary λ ∈ R \ {0}, d ∈ R, ν ∈ C1((τ0, τn);R+), and for
any random K-value ηj ∈ UKL2 (j = 0, n) which independent from U-valued K-process
L−1
1 Q̟ : (τ0, τn) → UKL2 such that the conditions

(IF −Q)̟ ∈ C1((τ0, τn);F
0), Qj̟ ∈ C((τ0, τn);F

1j), j = 0, n

are satisfied, there exist almost surely the unique solution η ∈ C1((τ0, τn);UKL2) of
multipoint initial-final problem (15), (16), (17), which has the form

η(x, t) = −
∑

λk=λ

〈̟(t), φk〉

ν(t)(λk − idλ2k)
φk(x)+

+

n
∑

j=0







∑

k:µk∈σ
L
j (M)

exp







λk − idλ2k
λ− λk

t
∫

τj

ν(ζ)dζ






〈ηj, φk〉φk(x)+

+
∑

k:µk∈σ
L
j (M)

t
∫

τj

exp





λk − idλ2k
λ− λk

t
∫

s

ν(ζ)dζ





〈̟(s), φk〉

λk − idλ2k
φk(x) ds






.

Conclusion

In the future, it is planned to develop methods for numerical research of the problems
discussed in this article.
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РЕШЕНИЕ СТОХАСТИЧЕСКОЙ НЕАВТОНОМНОЙ
МОДЕЛИ ЧЕНА – ГЕТИНА С МНОГОТОЧЕЧНЫМ
НАЧАЛЬНО-КОНЕЧНЫМ УСЛОВИЕМ

М. А. Сагадеева, С. А. Загребина

В статье исследуется разрешимость неавтономной модели Чена – Гетина с много-

точечным начальным-конечным условием в пространстве стохастическихK-процессов.

Для этого сначала рассматривается разрешимость многоточечной начально-конечной

задачи для неавтономного уравнения соболевского в случае когда разрешающим се-

мейством является сильно непрерывный полупоток операторов. Модель Чена –Гетина

относится к неклассическим моделям математической физики. Напомним, что неклас-

сическими называют те модели математической физики, чьи представления в виде

уравнений или систем уравнений в частных производных не укладываются в рамках

одного из классических типов – эллиптического, параболического или гиперболическо-

го. Для этой модели рассмотрены многоточечные начально-конечные условия, обоб-

щающие условия Коши и Шоуолтера – Сидорова.

Ключевые слова: уравнения соболевского типа; разрешающие C0-полупотоки опе-

раторов; относительно спектральные проекторы; производная Нельсона – Гликлиха;

пространство стохастических K-процессов.

Литература

1. Chen, P.J. On a Theory of Heat Conduction Involving Two Temperatures / P.J. Chen,
M.E. Gurtin // Journal of Applied Mathematics and Physics. – 1968. – V. 19, № 4. –
P. 614–627.

2. Barenblatt, G.I. Basic Concepts in the Theory of Seepage of Homogeneous Liquids in
Fissured Rocks / G.I. Barenblatt, Iu.P. Zheltov, I.N. Kochina // Journal of Applied
Mathematics and Mechanics. – 1960. – V. 24, № 5. – P. 1286–1303.

3. Hallaire, M. Soil Water Movement in the Film and Vapor Phase under the Influence of
Evapotranspiration. Water and Its Conduction Insoils / M. Hallaire // Proceedings of
XXXVII Annual Meeting of the Highway Research Board, Highway Research Board
Special Report. – 1958. – № 40. – P. 88–105.

4. Aranson, I.S. The World of the Complex Ginzburg–Landau Equation / I.S. Aranson,
L. Kramer // Reviews of Modern Physics. – 2002. – V. 74, № 1. – P. 99–143.

5. Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of
Operators / G.A. Sviridyuk, V.E. Fedorov. – Utrecht, Boston: VSP, 2003.

54 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

6. Alshin, A.B. Blow Up in Nonlinear Sobolev Type Equations / A.B. Alshin,
M.O. Korpusov, A.G. Sveshnikov. – Berlin: Walter de Gruyter, 2011.

7. Demidenko, G.V. Partial Differential Equations and Systems not Solvable with
Respect to the Highest Order Derivative / G.V. Demidenko, S.V. Uspenskii. – N.Y.,
Basel, Hong Kong: Marcel Dekker, 2003.

8. Sviridyuk, G.A. Sobolev-Type Linear Equations and Strongly Continuous Semigroups
of Resolving Operators with Kernels / G.A. Sviridyuk // Russian Academy of Sciences.
Doklady. Mathematics. – 1995. – V. 50, № 1. – P. 137–142.

9. Zagrebina, S.A. The Generalized Splitting Theorem for Linear Sobolev type Equations
in Relatively Radial Case / S.A. Zagrebina, M.A. Sagadeeva // Известия Иркутского
государственного университета. Серия Математика. – 2014. – № 7. – C. 19–33.

10. Sviridyuk, G.A. A Problem of Showalter / G.A. Sviridyuk // Differential Equations. –
1989. – V. 25, № 2. – P. 338–339.

11. Келлер, А.В. Некоторые обобщения задачи Шоуолтера–Сидорова для моделей
соболевского типа / А.В. Келлер, С.А. Загребина // Вестник ЮУрГУ. Серия: Ма-
тематическое моделирование и программирование. – 2015. – Т. 8, № 2. – C. 5–23.

12. Sagadeeva, M.A. Optimal Control of Solutions of a Multipoint Initial-Final Problem
for Non-Autonomous Evolutionary Sobolev Type Equation / M.A. Sagadeeva,
S.A. Zagrebina, N.A. Manakova // Evolution Equations and Control Theory. – 2019. –
V. 8, № 3. – P. 473–488.

13. Favini, A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in
Space of ≪Noises≫ / A. Favini, G.A. Sviridyuk, M.A. Sagadeeva // Mediterranian
Journal of Mathematics. – 2016. – V. 15, № 1. – P. 185–196.

14. Гликлих, Ю.Е. Изучение уравнений леонтьевского типа с белым шумом мето-
дами производных в среднем случайных процессов / Ю.Е. Гликлих // Вестник
ЮУрГУ. Серия: Математическое моделирование и программирование. – 2012. –
№ 27 (286), вып. 13. – C. 24–34.

Сагадеева Минзиля Алмасовна, кандидат физико-математических наук, до-
цент, доцент кафедры математического и компьютерного моделирования, Южно-
Уральский государственный университет (г. Челябинск, Российская Федерация),
sagadeevama@susu.ru

Загребина Софья Александровна, доктор физико-математических наук, про-
фессор, заведующий кафедрой математического и компьютерного моделирования,
Южно-Уральский государственный университет (г. Челябинск, Российская Феде-
рация), zagrebinasa@susu.ru

Поступила в редакцию 3 декабря 2022.

2023, vol. 10, no. 1 55


