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In this paper the authors investigate the solvability of a non-autonomous Chen —
Gurtin model with a multipoint initial-final condition in the space of stochastic K-processes.
To do this, we first consider the solvability of a multipoint initial-final problem for a non-
autonomous Sobolev type equation in the case when the resolving family is a strongly
continuous semiflow of operators. The Chen — Gurtin model refers to non-classical models
of mathematical physics. Recall that non-classical are those models of mathematical physics
whose representations in the form of equations or systems of partial differential equations
do not fit within one of the classical types: elliptic, parabolic or hyperbolic. For this model,
multipoint initial-final conditions, which generalizing the Cauchy and Showalter-Sidorov
conditions, are considered.
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Introduction

Let IT C C™ be a bounded domain with boundary 02 of C'*™° class. The parameters A,
d € R. On interval (79, 7,) C R consider the modified Chen — Gurtin equation [1]

(A — Auy(z,t) = v(t)(Au(z,t) — idA%u(z, t)) + g(x,t), (x,t) € QX (19, 70), (1)

Au(z,t) = u(z,t) =0, (x,t) € 0 X (10, Tn), (2)

which allows us to take into account the change in system parameters over time and
describes the process of thermal conductivity with <two temperaturess [1], as well as in
the special case at d = 0 the dynamics of fluid pressure in a fractured-porous medium |2]
and the process of moisture transfer in the soil [3]. In addition, if, in the case of A = 0, we
take Au as the searched function, then a linearized classical Ginzburg —Landau equation
can be obtained from this equation, taking into account diffraction and the absence of
diffusion action [4].
The problem (1), (2) is reduced to a non-autonomous equation of the Sobolev type
[5, 6] of the form
Lu(t) = a(t)Mu(t) + g(t), (3)

where operators L € L(4;F) (i.e. linear and continuous) and M € CI(4;F) (i.e. linear,
closed and densely defined in i) defined in some Banach spaces i, §. Equation (3) refers
to equations unresolved with respect to the highest derivative (see more in [7]), since the
operator with the derivative on the left side can be zero for some parameter values. Note
that the non-autonomous model (1), (2) is described by the equation (3) which relating
to the relatively p-radial case [5, 8|, i.e. the operators L and M generates a strongly
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continuous resolving semigroup for a homogeneous autonomous equation (3) (a(t) = 1).
Note that such a class of equations was firstly considered in [8].

Fix u; € i, j = 0,n and take 70 = 0 u 7; € Ry such as 7,1 < 75, j = 1,n. Let us add
the equation (3) with a multipoint initial-final condition [9]

lim Py(u(t) —up) =0,  Pi(u(rj) —u;) =0, j=T1,n, (4)
t—To+

where operators P; are relatively spectral projectors [9]. Condition (4) generalizes the
classical conditions of Cauchy and Showalter — Sidorov [10, 11].

Previously, the problem (3), (4) was considered in the deterministic case [12], and
the stochastic equation (3) with Cauchy and Showalter—Sidorov conditions investigated
in [13]. This article we consider a multipoint initial-final condition for the Chen — Gurtin
model in the stochastic case. The article, in addition to the introduction, conclusion and
list of references, contains four parts. The first part provides information on the solvability
of classical problems for abstract deterministic Sobolev-type equations with relatively p-
radial operators. The second part describes the space of stochastic K-processes, after which
the third part describes the solution of the stochastic problem (3), (4). And in the last
part, solutions of the stochastic non-autonomous Chen — Gurtin model with a multipoint
initial-final condition are constructed.

1. Non-autonomous Sobolev-type Equations
with Relatively p-Radial Operators

Let 4 and § are Banach spaces. Operators L € L(4;§) (i.e. linear and continuous)
and M € CI(L;F) (i.e. linear, closed and densely defined in ). By [5, 8] we call sets
pE(M) = {p e C: (uL — M)™' € L(F; W)} u ¥ (M) = C\ p*(M) L-resolvent set and
L-spectrum of operator M correspondingly. In [5, 8| It is shown that the L-resolvent set is
open, and therefore the L-spectrum of the operator M is always closed. The L-resolvent
set of the operator M can be an empty set, for example, if ker LNker M # {0}. Assuming
that p“(M) # 0, we introduce the operator-functions of a complex variable (uL — M)~}
RIM) = (uL — M)™'L, LY(M) = L(uL — M)~" with the domain p"“(M), which we
call L-resolvent, right and left L-resolvent of operator M correspondingly. Similarly, the
function operator (p + 1) of a complex variable type

)xp) HR)\k 7 Ap) HL 7 )\kEPL(M> (k = Oap)

with the domain [pP(M)]P™ we call right and left (L,p)-resolvent of operator M
correspondingly. Also, due to the results of [5, 8], all the presented operator-functions
are holomorphic in their domain of definition.

Definition 1. [5] Operator M we call p-radial relatively to the operator L (for short
(L, p)-radial) if

(i) Jae R : (a,+00) C p*(M);

(i) 3K > 0 Vi = (po, fia, - - - fp) € (a, +00)PT ¥ne N

max{[| (R, ) (M))" | s 1 (LG (M) e} <
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Denote 4 = ker Rf, (M), §° = ker L{;, ,(M), Ly = L o My = M R By
om MnN
symbols ' and F' we denote the closure of lineals imR{, (M) and im L{, ,(M). Note

that under the condition of (L, p)-radiality of the operator M, there exists an operator
Myt e L(F°uU9).

One-parameter family of operators U® : R, — L(i) we call a strongly continuous
semigroup (Co-semigroup) of operators if

(i) UsUt = Us*t Vs, t € Ry

(i) U* strongly continuous for ¢t > 0 and exists tlir& Ulu = u for all u from some lineal
%

dense in . B
Semigroup {U* € L(U) : t € Ry} we call an exponentially bounded with constants C
and a if 3C' > 03 e RVt e Ry ||U| gy < Ce™.

Theorem 1. [5] Let the operator M be an (L, p)-radial (p € {0} UN). Then there exist
degenerate Cy-semigroup {U" € L(U) : t € Ry} u {F' € L(F) : t € Ry} which are
exponentially bounded with constants K, o from Definition 1. Here by i and § denote the

closure of lineals $°+im R(Lu’p)(M) and F°+im L(Lu’p)(M) by norm of spaces 4 and §.

Remark 1. [5] Units of semigroups {U' € £({) : t € R} and {F' € L(F) : t € R, }
are projectors P = lim U" and Q = lim F' along #4° or §° on subspace {' or F!
t—0+ t—0+
correspondingly.
Introduce the condition

U=waod, F=3"oF. ()
By symbols L; and M, denote the restrictions of L or M on subspace U* or domM,, N U¥
(k=0,1). And introduce one more condition as

there exists an operator L' € L(F';uUb). (6)

Remark 2. A sufficient condition for fulfilling the conditions (5) and (6) is, for example,
the strong (L, p)-radiality of the operator M (p € Ny) [5, Chapter 2|. Here and further

Theorem 2. [5| Let the operator M be an (L, p)-radial (p € Ng) and conditions (5), (6)
are fulfilled. Then

(i) Ly € L(UF:FF), My, € CL(UF; F*), dom My = dom M NU* k= 0,1;

(ii) an operator H = My 'Ly € L(F°) is nilpotent degree not higher than p;

(iii) an operator S = LM, € CI(41) generates Cy-semigroup of resolving operators
for equation i = Su.

On interval (7,7] C R, we consider the Cauchy problem

lim wu(t) = u, (7)

t—7+

for a homogeneous non-autonomous equation
Lu(t) = a(t)Mu(t), (8)

where function a : [7, 7] — R, will be defined below.
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CY((7,T]; 44) which is satisfying this equation on (7,T]. The solution of equation (8) we

Definition 2. [5] A solution of equation (8) we call the vector-function uwe C([r, T]; ) N
)
call a solution of Cauchy problem (7), (8), if it additionally satisfies the condition (7)

Definition 3. [5] Closed set B C U are called a phase space of equation (8) if

(i) any solution u(t) of equation (8) in B for all ¢,

(ii) for arbitrary u, from P there exists the unique solution of the Cauchy problem
(7) for equation (8).

Theorem 3. [12| Let the operator M be an (L, p)-radial (p € Ny), the conditions (5),
(6) are fulfilled and the function a € C(R,R,). Then the phase space of equation (8) is
a subspace U

Remark 3. Under the conditions of Theorem 3 for an arbitrary u, € ' there is a unique
solution to the Cauchy problem (7), (8) of the form u(t) = U(t, 7)u,. If u, ¢ {4, then the
Cauchy problem is fundamentally unsolvable [10]. Here U(t, 7) is a semiflow of resolving
operators of the equation (8) (more see in [12]).

2. Sobolev-type Equations in the Space
of Complex-valued Stochastic K-Processes

Let Q@ = (Q,A,P) be a complete probability space with probability measure P
associated with the o-algebra A of subsets of the set 2, and C is a set of complex numbers
endowed with a Borel g-algebra. The measurable mapping & : 2 — C is called a random
variable. A set of random variables with zero mathematical expectation and finite variance
forms a Hilbert space Ly = Ly(Q;C) = {£ : E§ = 0, D < +oo} with a scalar product
(é1,62) = E&& and the norm [i€]J7, = DE.

Let us take the set J C R and consider two mappings: f : J — Ly, which matches each
t € J with a random variable £ € Ly, and ¢ : Ly x Q — C, which each pair (§,w) matches
the point {(w) € C. Mapping 1 : 3 x Q@ — C (or what is the same 1 : 3 — Lj), having
the form n = n(t,w) = g(f(t),w), we call a complez-valued stochastic process. A stochastic
process 1 = 1)(t) is continuous on the interval J if all its trajectories are continuous (almost
surely) (i.e. with a.a. (almost all) w € A trajectories 7(-,w) are continuous functions). The
set of continuous stochastic processes 1 : J — Ly forms a Banach space with a standard
sup-norm, which we denote by the symbol C(J; Ly).

Let $ be a complex separable Hilbert space with an orthonormal basis {¢r}, a

monotone numerical sequence K = {A\;} C Ry is, what is Z A < +oo, and the

sequence {&x} = &i(w) C Ly of random variables such, what is ||§k]|L2 < C with some
constant maXC € R, and for all £ € N. Let’s construct $-valued random K-value

Z/\k&f w)er. Completion of the linear span of the set {Ap&rpr} according to

1/2

the norm ||n||sxr, = (Z A D& is called space of $H-valued random K-value and are

denoted by $HxL,. That is clear that the space $HkL, is a Hilbert space and the random
K-value £ = ¢£(w) € H L.
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Mapping 1 : 3 — $HkL,, which is defined as n(t) = Z)\knk(t)gok, where {n;} C

k=1
C(3; Ly), are called a continuous $-valued stochastic K-process, if the series in this equality
converges uniformly according to the norm | - |54, on any compact in J and process

trajectories n = n(t) are continuous almost surely. The $)-valued stochastic K-process is
differentiating by Nelson — Gliklikh [13, 14], if the series in 7%(75) = Z Ak %k(t)cpk converges
k=1

uniformly according to the norm || - ||gx1, on any compact in J and process trajectories

n=" (t) are continuous almost surely. Here ;]k is a Nelson — Gliklikh derivation of stochastic
process 7 : J — La. By the symbol C(J;$HkL,) we denote the space of continuous $-
valued stochastic K-processes and analogously by the symbol C*(J; $xL,) we denote the
space $)-valued stochastic K-processes, which are continuous differentiable in Nelson —
Gliklikh sense up to and including the order of ¢ € N.

Now let $ and § be complex separable Hilbert spaces with an orthonormal basis { ¢y}
and {¢x} correspondingly. By symbols UL, and FxL, we denote the Hilbert spaces,
which are completion of linear span of random K-values

E=) Mbpr (& € L) and (=) mGethy (G € Ly) according to the norm
k=1

k=1

HnHﬁKL2 :Z A D¢, and ||u)]|§KL2 :Z p2DC,  correspondingly. Note that in different
k=1 k=1
spaces (UxL, and §kLy) the sequence K can be different (K = {A;} in UxL, and

K = {p} in §xL,), however, all sequences marked with the symbol K must be monotonic
and summable with a square. All results, generally speaking, will be true for different
sequences of {A\;} and {ug}, but for simplicity’s sake we will limit ourselves to the case
Ak = [k

Let A : 44 — § be a linear operator. By the formula A¢ = Z MeCr Ay we define

k=1
linear operator A : UxL, — Fx Ly, moreover, if the series on the right side of this equality

converges (in the metric §xL,), then £ € dom A, and if it diverges, then £ ¢ dom A.
Traditionally , we define spaces of linear continuous operators £(4UkLy; kL) and linear
closed densely defined operators Cl(4kLy; FxLs).

Lemma 1. (i) The operator A € L(UxLy; kL) exactly when A € L(L;F).
(ii) The operator A € Cl(UxLy; FxLo) exactly when A € CL(4; F).

Lemma 2. (i) The operator M € Cl(UxLy; FxLy) be a p-radial relatively to the operator
L € L(UgLy;FxLy) exactly when the operator M € CI(;F) be a p-radial relatively
to the operator L € L(4kLy; FxLs).

(i) L-spectrums of operators M match in both cases.

(iii) Conditions (5), (6) are fulfilled in spaces I, §F exactly when they are fulfilled in spaces
ULy, FxLo.

The proofs of these lemmas are based on the obvious equality

1A€]l5 < > D& Apil3 < const Y ADE, = const [|¢]|s.
k=1

k=1
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So, let the operators L € L(UxLy;FxLy) and M € Cl(MxLy; §xLy) such that the
operator M is (L, p)-radial (p € {0} UN), and conditions (5), (6) are fulfilled. Consider a
linear evolutionary stochastic equation

L= Mn. 9)

The process n € C(R; Uk Ly) we call solution of equation (9), if when substituting it
in (9) it turns this equation into an identity almost surely. Solution n = 7(t) of equation (9)
we call solution of Cauchy problem

lim (1(t) —7-) =0 (10)

t—7+

if it is fulfilled for this function and some random K-value 7, € UxL,. Analogously,
the solution of the Showalter — Sidorov problem

Jim P(n(t) — 1) =0 (1)
for equation (9) is defined.

Definition 4. Set Pk L, C UL, we call stochastic phase space of equation (9) if

(1) almost surely each trajectory of the solution 7 = 7(t) of the equation (9) in PxLs,,
i.e. n(t) € PxL,y, t € R, for almost all trajectories;

(ii) for almost all n, € PkL, there is a unique solution to the Cauchy problem (10)
for equation (9).

Theorem 4. Let the operator M be an (L, p)-radial (p € Ny) and condition (5), (6) are
fulfilled. Then the stochastic phase space for equation (9) is a space U L,.

Remark 4. As above in the remark 3, we note that the Cauchy problem (9), (10) is
solvable only for n, € Ui L,, but the Showalter — Sidorov problem(9), (11) is solvable for
any 7, € UiL,. This solution has the form n(t) = U'""Pn,, where U""" semigroup of
solving operators for a stochastic equation (9), which exists by virtue of Theorem 1 with
taking into account Lemmas 1 and 2, and the projector P from Remark 1 with taking into
account the same lemmas (see more in [13]).

3. Solution of a Multipoint Initial-Final Problem
for a Non-autonomous Evolutionary Equation

Let 4, § be complex separable Hilbert spaces, operators L € L(;F), M € CI(; F)
such that the operator M is (L, p)-radial (p € Np), and the conditions (5), (6) are satisfied.
On the interval (79, 7,,] consider an inhomogeneous stochastic equation

L(t) = a(t)Mn(t) + =(t), (12)
where 1 = n(t) is the searched stochastic K process, t € (79, 7,], and @ : (70, 7,) — Sk L»
is a given one. Introduce an additional condition
ol(M)= U ol (M), n € N, such that o} (M) # () contained in a limited
=0

area D; C C with a piecewise smooth border 0D; = ~; C C. Moreover, (13)

D, Nok(M)=0and D, "D, =0 for all j, k1 =T,n,k+#1.
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Due to the holomorphism of relative resolvents the condition (13) guarantied that
there exist projectors, that have the form [9]

— 1 L
Pi=gg) & {(M)dp e L(Y), Q; =

1
27?2

L%MMueﬁ@% j=Tn,

=P -3 P, Qo=Q—)> Qj, where P and () are defined in Remark 1.
j=1 j=1

Introduce the subspaces 4% = im P;, 7 = im Q;, 7 = 0,n. Then by the contraction
we have N N
= EB)J.U and = EBSU.
j=0 j=0

By symbols L;; we denote the restrictions of operator L on {4, j = 0,n, and by
symbols M;; denote the restrictions of operator M on dom M NUY, j = 0, n. That is clear
that Pjp € dom M for ¢ € dom M, that’s why domain dom M;; = dom M NUY is dense

in U9, 5 =0,n.

Theorem 5. (Generalized spectral theorem) [9]. Let operators L € L(;F) and M €
Cl(L; §) such that operator M is an (L,p)-radial (p € Ny), and condition (5), (6), (13)
are satisfied. Then

(i) operators Li; € L(UY;FY), My, € CL(UY;FY), j =0,n;

(ii) there exist operatprs Ll_jl € L(FY; U, 7=0,n.

Fix n; € gLy (j = 0,n) and take 7 = 0 and 7; € R such that 7;,_1 < 75, j = 1, n.
For them, consider a multipoint initial-final problem [9, 11, 12]

im Py(n(t) —m) =0,  Pi(n(r;) —n;) =0, j=1n (14)

t—T10+

for equation (12). Let’s act on the equation (12) sequentially by projectors I — @ and @),
j = 0,n, and we get a system

{H7O70< ) = a(t)n(t) + My =°(1),
nY(t) = a(t)SinM(t) + Lijw"(t), j=0,n,

which equivalent to this equation. Here operator H = M; 'Ly € £(4°) is nilpotent degree
not higher than p € {0} UN, and operators S; = Li;'My; € CI(UY) such that o(S;) =

J]L(M)7 wO = (H - Q)wa wlj = ij> 770 = (H - P)U’ 771j = pj777 j = Oan'

Definition 5. The process n € C([7o, Tn]; Uk Ly) N CH((70, 7]; Lk Ly) we call solution of
equation (12), if it almost surely turns it into an identity on (79, 7,). Solution n = n(t)
of equation (12) are called solution of a multipoint initial-final problem (12), (14), if it
almost surely satisfies the conditions (14).

Theorem 6. Let the scalar function a € CP*Y([ry, 7,]; R.), the operator M is an (L,p)-
radial (p € Ny), and conditions (5), (6), (13) are satisfied. Then for arbitrary random
K-value n; € gLy (j = 0,n) that are independent from U-valued K-processes Li'Qw :
(70, T) = Uk Lo such that Qw € C((10, ), SkLy) and (I — Q)ww € CPY (70, 7), x L)
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there exists almost surely the unique solution n € C([1y, T,); Uk La) N CH (70, Tn]; U L) of
problem (12), (14), which has the form

75

_ - ka1 1@ kwo(t) - —1_1j
0= v () -3 |vtmmn- /U(t,s>aL1jw (5)ds

Here the symbol d%l) denote the Nelson — Gliklikh derivation, and operator U(t, T) is from
the Remark 4.

The statement of this theorem is a consequence of the corresponding theorem from
[12] taking into account Lemmas 1 and 2.

4. Solutions of a Multipoint Initial-Final Problem
for a Non-autonomous Chen — Gurtin Model
with Complex Coefficients

Let IT € C™ be a bounded domain with boundary OII of class C'™°. Transform the
stochastic equation

(/\ - A) 73 (I,t) - V(t)(A - ZdA2)T](ZE, t) + W(ZL’, t)? (ZE, t) €1l x (7—07 Tn) (15>
with parameters \,d € R and boundary conditions

An(z,t) =n(x,t) =0, (x,t) € 011 X (70, 7%) (16)

to equation (12). To do this let’s take functional spaces $f = WZ(II)N I/?/%(H), § = Lo(IT),

where W2(II), 1W4(IT) are Sobolev spaces. Define operators L€ L(i; F) and M €Cl(; F)
by formulas L = A\ — A and M = A — idA? with domain of definition dom M = {u €
WD) : u(z) = Au(x) = 0, x € Ol1}.

Lemma 3. [13] For arbitrary A € R\ {0}, d € R, the operator M is an (L,0)-radial and
conditions (5), (6) are satisfied.

The statement of the Lemma 3 follows from [13| taking into account the Remark 2.
Denote by {A\x} the sequence of eigenvalues of a homogeneous Dirichlet problem for the
operator Laplace A in the domain of II. Let the sequence {\;} be numbered by non-
increment, taking into account multiplicity. Denote by {¢x} orthonormal (in the sense of
Ly(IT)) a sequence of corresponding eigenfunctions ¢ € C°(II), k£ € N. The L-spectrum
of operator M has the form

A — id\?
Y

In order for the contour v C C to satisfy the condition (13), it is enough to take v; = 9D;

(j = 0,n) so that U D; D o*(M) and each of the area D; (j = 1,n) contained a finite
=0

2023, vol. 10, no. 1 51



M. A. Sagadeeva, S. A. Zagrebina

number of points from ¢”(M). Denote of (M) = o*(M) N D; and construct projectors

‘Pj = Z <'7 ¢k> Qbk, j = Oun'

k:ltkEO']-L (M)

Fix n; € UgLy, j = 0,n and take 70 = 0 and 7; € R, such that 7,1 < 75, j = 1,n. In the
cylinder II x (79, 7,,) find a solution to the equation (15) satisfying the boundary condition
(16) and the conditions

Py(n(z,m) —ms(@) = Y Aln(r) =ny), ) dulx) =0, j=0n  (17)

ki €k (M)

of multipoint initial-final problem.
The following statement follows from Theorem 6 and Lemma 3.

Theorem 7. For an arbitrary A € R\ {0}, d € R, v € C' (10, 7,);Ry), and for
any random K-value n; € ULy (j = 0,n) which independent from U-valued K-process
Li'Qw : (10,7,) — Uk Ly such that the conditions

(Is — Q)w € C' (10, 7); %), Q@ € C((70,7):FY), j=0,m

are satisfied, there exist almost surely the unique solution n € CY((79,7); UkLs) of
multipoint initial-final problem (15), (16), (17), which has the form

o) == 3 s o)+

A=A
" e —idA} |
+ Z exp #/V(C)UK (M, Pr) or(w)+

Jj=0 k:ltkEUJL-’(M) T

oxp | 2= / () | ST 6 ) s

k#kGUL(M s

+

M

Conclusion

In the future, it is planned to develop methods for numerical research of the problems
discussed in this article.
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PEIIIEHUE CTOXACTNYECKOMN HEABTOHOMHOI
MOJJIEJIN YEHA - TETUHA C MHOTOTOYEYHBIM
HAYAJIPHO-KOHEUYHBIM YCJIOBUEM

M. A. Cazadeesa, C. A. 3aepebura

B craTbe uccaemyercs pa3permmMocTh HeaBTOHOMHOM Mogean Yena — ['eTuna ¢ MHOTO-
TOYEIHBIM HAYAJIBHBIM-KOHEYIHBIM YCJIOBUEM B IPOCTPAHCTBE cToxacTudeckux K-mrporeccos.
Jljist 3TOro CHadYaJja PacCMaTPUBAETCS PA3PEITUIMOCTh MHOTOTOUYEYHON HAYAJbHO-KOHEUHOM
3a/1a490 JIJIsi HEABTOHOMHOI'O YPaBHEHHsI CODOJIEBCKOTO B CJIydae KOIJIa Pa3pPEIIaloNiM Ce-
MeHCTBOM SIBJISIETCSI CUJIBHO HEIIPEPBIBHBIN MTOJIYIIOTOK orepaTopos. Mogens Yena —[eruna
OTHOCHUTCS K HEKJIACCHIECKUM MOJIEJISIM MaTeMaTuaeckoii pusuku. HamoManM, 910 HEKIAC-
CUYECKUMU HA3BIBAIOT T€ MOJEJIM MATEMATHIECKON (DU3UKHU, UbU IPEJCTABJICHUS B BUJE
YPaBHEHUN WM CUCTEM YPABHEHUI B YACTHBIX [TPOU3BOMHBIX HE YKJIAIBIBAIOTCS B PAMKAX
OJIHOTO U3 KJIACCUIECKUX THUIIOB — JUIUITUIECKOr0, TaPAOOJINIECKOr0 NN IUIePOOINIECKO-
ro. st 3T0M MOmEN pacCMOTPEeHbl MHOIOTOYEYHbIE HAYAJIbHO-KOHEUHBIE YCIOBHsI, 0000~
matormue yejaosust Kormm u [loyosrrepa — Cuoposa.

Karouesvie caosa: ypasuerus coboresckozo muna; paspewarowue Co-noiynomoxy one-
PAMOPOB; OMHOCUMENDHO CNEKMPAALHBLE NPOEKMOPDL; Npoussodnasn Heavcona — Inukauxa;

npocmpaHcImeo Cmoxracmuvecrur K -Npoyeccos.
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