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The process of solving the problem of biological kinetics, which reduces to the numerical

solution of the three-dimensional diffusion-convection equation, is described. The solution of

the grid equations obtained as a result of the continuous model discretization is performed on

the basis of the adaptive alternating-triangular method. The problem under consideration

was numerically implemented on a distributed memory computing system designed for

massively parallel computing, which significantly reduced the operating time of the software

module. The study of the parallel calculations model on the GPU for a sequence of

thickening grids with a different number of threads allowed us to develop the optimal mode

of operation of parallel algorithms with a different amount of input data. A description of

the software implementation of a mathematical model adapted for hybrid computer systems

is given.
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Introduction

In the field of mathematical modeling of the movement’s processes of pollutants
in water systems, as well as in the development of numerical methods for solving the
problems, a situation has developed in which the conducted research considers individual
phenomena and does not cover them in a complex [1, 2]. Therefore, to solve problems, it
is necessary to develop and theoretically study new algorithms and programs for solving
model problems, including the equations of aero- and hydrodynamics, satisfying the basic
laws of conservation of matter, considering the multicomponence the medium [3, 4, 5, 6].
The grid-characteristic method is proposed to solve this class of problems.

Due to the large amount of computational work on grids containing millions of
computational nodes, considering the complex geometry of the computational domain,
it becomes necessary to develop parallel algorithms for the numerical solution of
mathematical physics problems. An important condition is the presence of parallelism in
the problem, which is just characteristic of the hydrobiological problems being solved.
One of the ways to parallelize computing is the use of MPI technology, as well as
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MPI+OpenMP hybrid technology, which allows you to exchange messages between
processes performing the same task. In the work [7], an improved preconditioner for solving
SLAEs by the conjugate gradient method and a method for using combinations of MPI
and OpenMP technologies for its construction and handling is proposed. The conclusion
about the expediency of switching to hybrid parallelization combining MPI and OpenMP
technologies is also made in the work [8], where various aspects of creating parallel software
for domain decomposition methods are considered. It is shown that as the number of
subdomains increases, the number of iterations of the method used increases: when moving
from 16 subdomains to 128, the number of iterations increases from 138 to 183 and at the
same time the number of vectors stored during the program increases. At the same time,
67% of the time is devoted to the work of the non—parallel part of the program, 14% of
the time is spent on MPI work, and about 18% of the time is spent on OpenMP work. In
the paper [9] describes the results of solving three-dimensional Navier–Stokes equations
on hybrid computing systems built using a combination of MPI and CUDA technologies,
which reduced the total calculation time by 12 times. Comparison of various combinations
of parallelization technologies in paper [10] on the example of solving the non-stationary
problem of liquid filtration to wells with a complex trajectory in a three-dimensional region
showed that the most effective combination is MPI+boost+CUDA, which allows to achieve
acceleration up to 24 times compared to MPI-implementation.

In this regard, parallel algorithms for the implementation of the biological kinetics
problem have been developed, focused on heterogeneous computing systems with
distributed memory.

In parallel implementation, methods of decomposition of grid regions were developed
to solve computationally time-consuming diffusion-convection problems, considering the
architecture and parameters of a heterogeneous multiprocessor computing system.

1. Formulation of the Problem

Consider an approximation of the three-dimensional diffusion-convection equation (1):

c′t + uc′x + vc′y + wc′z = (µc′x)
′

x + (µc′y)
′

y + (νc′z)
′

z + f, (1)

where u, v, w are components of a velocity vector, µ is coefficient of diffusion (turbulent)
exchange, f is a function describing the intensity and distribution of sources.

Let’s build a uniform grid ωτ in time increments τ :

ωτ =
{

tn = nτ, n = 0, Nt, Ntτ = T
}

.

To solve the problem (1) we can use a scheme with weights:
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where cn+σ = σn+1 + (1− σ) cn, σ is scheme weight.
The solution of grid equations is performed on the basis of the adaptive alternating

triangular method [11, 12]. The advantage of this approach compared to the explicit scheme
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is the use of large steps in the transition between time layers at a given accuracy. The
disadvantage of this approach is the high complexity of the transition between layers
(transitions are carried out iteratively).

If the steps along one of the spatial coordinates are significantly smaller than the
steps along the others, for example, when solving problems of heat and mass transfer
in shallow reservoirs, the dimensions of the calculated area in the vertical direction can
be hundreds to thousands of times smaller than the horizontal dimensions. To solve the
problem (1) based on difference schemes with relatively small labor costs for the transition
between time layers, compared with the explicit scheme (1.5 - 2 times larger), with large
time steps (about 30 times more), we will use splitting schemes for two-dimensional and
one-dimensional problems [13]:
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where cn+(σ+1)/2 = σn+1 + (1− σ) cn+1/2, σ – scheme weight.
For numerical implementation a spatial grid is introduced for a discrete mathematical

model of the problem:

wh = {xi = ihx, yj = jhy; i = 0, ..., Nx, j = 0, ..., Ny; Ntτ = T, Nxhx = lx, Nyhy = ly}

where hx, hy are steps through the space, Nx, Ny are boundaries by space, Nt is upper
bound on time, τ is time step, lx, ly are characteristic dimensions of the computational
domain.

To approximate a homogeneous equation (2) we will use splitting schemes in spatial
coordinate directions:
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1.1. Difference Schemes for Solving Convection-Diffusion-Reaction Equations

To solve real problems of hydrophysics of shallow water bodies, three-layer difference
schemes based on a linear combination of Upwind and Standard Leapfrog difference
schemes with weighting coefficients 2/3 и 1/3, respectively, obtained as a result of
minimizing the order of approximation error, are applied. These schemes, when solving the
diffusion-convection problem, have a lower grid viscosity and, as a result, more accurately
describe the behavior of the solution in the case of large grid numbers of Peclet (up
to 20–50) [14]. The three-layer difference scheme used has greater accuracy than the
traditional Standard Leapfrog scheme when solving problems in which convection prevails
over diffusion.

To increase the accuracy of calculations, schemes that consider the fullness of the
calculation cells will also be used [15]. The evaluation of the accuracy of the numerical
solution of the hydrodynamics problem on a sequence of thickening computational grids in
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the case of direct use of rectangular grids (stepwise approximation of boundaries) showed
that the relative error of calculations can reach up to 70% of the exact solution; under
the same conditions, the use of the proposed method reduces the error to 6%. Splitting
a rectangular grid 2–8 times in each of the spatial directions does not lead to the same
increase in accuracy that numerical solutions obtained considering the method of partial
cell occupancy have.

To approximate the system of equations (4), we will use the scheme obtained as a result
of a linear combination of the Upwind and Standard Leapfrog schemes, while considering
the function of cell occupancy [12, 15]:

– the difference scheme for the equation (4), describing the transfer along the Ox,
direction will be written as:
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– the difference scheme for the equation (4), describing the transfer along the direction
Oy, direction will be written as:
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Here q0, q1, q2, q3, q4 are coefficients describing the degree of occupancy of the control
areas.

In order to obtain difference schemes approximating the system of equations (4) for
ui,j < 0 and vi,j < 0, the corresponding coordinate axes Ox and Oy are necessary from
the approximations presented send it in opposite directions. The equation (3) is solved by
the run-through method [11].

For solving non-stationary problems, the splitting scheme into two-dimensional and
one-dimensional problems has an advantage. In this case, the two-dimensional problem is
solved on the basis of explicit schemes, and the one-dimensional one is approximated by
schemes with weights and solved by the run-through method. When solving stationary
problems, schemes with weights are used. Using this approach allows us to reduce the
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original problem to solving grid equations, for which iterative methods are used. In the
class of two-layer iterative methods, one of the most effective is the adaptive alternating-
triangular method [11].

2. Parallel Implementation of the Method of the Biological
Kinetics Problem Solving

2.1. Decomposition of the Computational Domain in one Spatial Direction

We describe the construction of parallel algorithms for solving the problem (4) using
the scheme described in section 1.1 in horizontal directions. The values of the field are
calculated in the nodes of the calculated grid c(x, y): ci,j by i ∈ 1, Nx − 2, j ∈ 1, Ny − 2,
at the same time, along the perimeter (i ∈ {0, Nx − 1}, j ∈ {0, Ny − 1}) there are
fictitious nodes. Let us decompose the computational domain along the spatial direction
Oy with lines, which are parallel to the spatial direction Ox, meanwhile, let us denote wr

is subdomain with number r , 0 6 r 6 p−1, where p is the number of subareas into which
the original area is divided. Settlement nodes of the region wr are the elements cri,j at

i ∈ 1, Nx − 2, j ∈ 1, N r
2 − 2. The splitting of the original area is done in such a way that

adjacent areas wr and wr+1 intersect at two nodes along the direction perpendicular to the
partition lines, and the equalities cri,Nr

2
−2 = cr+1

i,0 , cri,Nr

2
−1 = cr+1

i,1 (Fig. 3). To represent a

field value c(x, y) in vector form a pair of indices (i, j) value can be matched m, describing
the ordinal number of the elements of the vector u: m = i+jNx, 0 6 m 6 n−1, n – vector
length c = (c0, c1, ..., cn−1)

T . This representation is convenient to use when describing and
researching algorithms for solving grid equations by iterative methods.

Fig. 1. Decomposition of the computational domain

For fragments wr, obtained as a result of decomposition of the computational domain
in one spatial direction, it is necessary to know two parameters: the initial index j = N r

1

in the initial computational domain and the width of the fragment N r
2 . The index number

N r
1 from which the corresponding fragment of the computational domain begins, can be

calculated using the formula

N r
1 = ⌊r · (Ny − 2)/p⌋ ,
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where ⌊x⌋ – the function ≪floor≫ is defined as the largest integer less than or equal to x,
⌈x⌉ – the function ≪ceiling≫ is defined as the smallest integer greater than or equal to x.
The width of the subdomain wr along the axis Oy is calculated by the formula

N r
2 = ⌊(r + 1) · (Ny − 2)/p⌋ −N r

1 + 2.

The following parameters are used for the theoretical evaluation of the work of
computing systems:

– ta – execution time of one arithmetic operation;
– tl – time of data transmission organization (latency);
– tx – transmission time of one given.
Figure 4 shows a graph of the dependence of the transmission time on the amount

of data for a different number of exchanges between nodes of the computing system. The
graph shows that the transmission time dependence function has a jump when the amount
of transmitted data is approximately 512 floating point numbers. Let’s denote this value
Nmax = 512.

Fig. 2. Dependence of data transfer time on volume when working

with a different number of computing nodes

The calculation of data on the computer system used allows to significantly reduce
the calculation time. However, the efficiency of the computing system’s operating time
may not always be expected. In this case, it is correct to carry out a theoretical analysis
of calculating the calculation time based on regression analysis. Consider the multiple
regression model. Vector tl is the total operating time of the computing system (seconds),
vectors n, p are explanatory factors: the amount of data transmitted and the number of
computing nodes used. For the latency time, the formula holds:

tl(p, n) =

{

5.21× 10−6 + 1.53× 10−7p, if n 6 512;

6.733× 10−6p, if n > 512.
(5)

Transmission time of one given tx = 3.3× 10−9.
Calculating the transfer along horizontal directions based on explicit difference schemes

using a six–point template requires 10N arithmetic operations, where N is the number of
nodes of the computational grid. The calculation of the transfer along the vertical direction
requires 13N arithmetic operations, of which 5N refers to the calculation of the right parts,
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and 8N is required to solve the grid equation by the run-through method. Thus, the time
spent on one iteration in the case of a sequential version of the algorithm will be written
as:

t = 33ta (Nx − 2) (Ny − 2) . (6)

Let’s estimate the calculation time using a parallel algorithm on a distributed memory
system:

t = 33ta (Nx − 2)max
r

(N r
2 − 2) + 2 (tl (p, (Nx − 2)) + (Nx − 2) tx) ,

⌊

Ny − 2

p

⌋

6 max
r

(N r
2 − 2) 6

⌈

Ny − 2

p

⌉

,max
r

(N r
2 − 2) ≈

Ny − 2

p
.

If the amount of transmitted data is greater than Nx − 2 > Nmax, then k =
⌈

N2−2
Nmax

⌉

exchanges, then the time spent by the parallel algorithm is equal to:

t = 33ta
(Nx − 2) (Ny − 2)

p
+ 2 (tl (p, ⌈(Nx − 2)/k⌉) k + (Nx − 2) tx) . (7)

Acceleration of parallel operation of the algorithm is equal to:

A = p

/(

1 +
2p (tl (p, ⌈(Nx − 2)/k⌉) k + (Nx − 2) tx)

33ta (Nx − 2) (Ny − 2)

)

. (8)

To solve three-dimensional diffusion-convection problems in areas whose linear
dimensions along one direction are significantly smaller than the dimensions in the
remaining two spatial directions, which is typical, for example, for shallow reservoirs,
it is necessary to decompose the calculated area in two spatial directions. When using
decomposition in one direction, the volume of transfers is equal to 2 ·p ·Ny ·Nz, where p is
the number of computing nodes involved. In the case of decomposition in two directions,
the volume of transfers is equal to 2 · (px ·Ny + py ·Nx) ·Nz, where Nx, Ny, Nz is the
number of settlement nodes along the directions of the axes Ox, Oy and Oz, accordingly.
The method of splitting into rectangles of px blocks along one direction and py blocks
along the other is used.

A comparison of the algorithms is given for a different number of computational nodes
with a variable decomposition of the computational domain. Table 1 shows the results of
a parallel version of the algorithm based on MPI technology for the splitting scheme.

The effectiveness of parallel programs on distributed memory systems depends
significantly on the communication environment. The communication environment is
sufficiently fully characterized by two parameters: bandwidth, which determines the
number of bytes transmitted per unit of time, and latency. Communication operations
are performed much slower than accessing local memory, so those parallel programs in
which exchanges are minimized will be the most effective.

2.2. Architecture of the Software Package

The software implementation of the mathematical model (1) is a console application
written in C++, with support for CUDA technology. As a result of object-oriented analysis
and design, a class library has been created that allows you to work with the description
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of the geometry of the computational domain as a set of geometric primitives and generate
computational grids based on it with the required decomposition parameters and arrays of
coefficients of grid equations. The data required for the simulation is stored in a text file,
which is then used by the solver. The results of the numerical solution are saved in a report
file. The library is based on classes that allow you to read and write information about
the geometry of the object under study and the parameters of the calculated grid. These
classes must implement the IGeometrySerializer and IgridSerializer interfaces, respectively.
Initialized objects of these types are used to create Geometry Geometry objects and a Grid
calculation grid, on the basis of which an object of the GridGeometryPreCalculated class
is created, which is a geometry object with a superimposed calculation grid and pre-
calculated parameters, such as, for example, node characteristics: internal, boundary or
dummy.

Table 1

Results of the parallel version of the algorithm based on MPI technology
for the splitting scheme into explicit and implicit problems

p px py Time, s Boost Effectiveness, %
1 1 1 38.16 1.00 100
2 2 1 19.6903 1.94 97
3 3 1 13.5332 2.82 94
4 2 2 10.001 3.82 95.5

4 1 10.2104 3.74 93.5
8 4 2 5.2185 7.31 91.38

8 1 5.36947 7.11 88.88
16 4 4 2.98691 12.78 79.88

8 2 3.00383 12.70 79.38
16 1 3.16188 12.07 75.44

20 5 4 2.499 15.27 76.35
10 2 2.5475 14.98 74.90
20 1 2.68232 14.23 71.15

24 6 4 2.24099 17.03 70.96
8 3 2.24239 17.02 70.92
12 2 2.24567 16.99 70.79
24 1 2.50914 15.21 63.38

In order to provide the possibility of intermediate data storage for continuing
calculations in case of emergency situations or transferring the task to other computing
nodes, the GridGeometryPreCalculated object is connected by an aggregation relationship
with the IgridGeometryPreCalculatedSerializer interface. Classes implementing the
IgridGeometryPreCalculatedSerializer interface solve the tasks of serializing data in
various formats (xml, json, storing data in relational databases, etc.)

The configured GridGeometryPreCalculated object is used when creating a SolverTask
calculation task object, during which the user sets a number of modeling characteristics,
the most important of which are the model parameters and the derivative calculation
template.
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Directly modeling is performed by the Solver class, which uses objects of the SolverTask
class as tasks. The features of the Solver class are the possibility of dynamic control
of computing devices by means of an aggregation relationship with an object of the
IDeviceManager interface and the provision of work with an object of a system of linear
algebraic equations by means of a composition relationship with an object of the SLAE
class.

A distinctive feature of the SLAE class is working with the matrix object Matrix.
The implementation of this interface in the work is the SparseMatrixRepSeq class, which
provides efficient data storage with the elimination of duplication. The class diagram is
shown in Figure 3.

Fig. 3. Class diagram of the developed software package

2.3. Parallel Implementation of the Biological Kinetics Problem

The proposed mathematical model of biological kinetics is numerically implemented
based on the development of parallel algorithms adapted for hybrid computer systems
using the NVIDIA CUDA architecture [16]. Table 2 shows the results of a numerical
solution of a two-dimensional biological kinetics problem for a different number of threads
involved in the implementation of a parallel algorithm on CUDA, for experiments 1–7, p
is the number of threads involved, t is the calculation time in seconds. Calculations were
carried out on a sequence of rectangular grids: from 100×100 to 20000×20000 settlement
nodes.

The developed parallel algorithms for solving the problem of biological kinetics on a
sequence of thickening rectangular computational grids made it possible to increase the
efficiency of the method for solving the problem. Numerical experiments made it possible
to compare the efficiency of the proposed GPU-oriented algorithms in the case of different
numbers of threads involved. For Experiment 6, the number of calculated nodes was 108,
the minimum time on 128 threads was 23.9 s. Analysis of data from experiment 7 on a
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Table 2

Results of the algorithm on CUDA

N 1 2 3 4 5 6 7
Nx = Ny 100 500 1000 2000 5000 10000 20000
t, с; p=128 0.004296 0.0704 0.26099 0.95916 6.4114 23.892 188.767
t, с; p=256 0.004252 0.0705 0.25349 0.97414 6.4082 24.393 220.024
t, с; p=512 0.004301 0.0716 0.25046 0.95707 6.5460 24.981 209.204
t, с; p=1024 0.004080 0.0745 0.25876 0.97980 6.4035 24.993 204.419

rectangular grid of 4× 108 calculated nodes showed that the maximum operating time of
the algorithm was 220 s with 256 threads involved. The results of numerical experiments
on the NVIDIA Tesla K80 graphics accelerator have shown the advantage of running a
parallel algorithm with a large number of computational nodes.

3. Conclusion

The development of effective parallel algorithms for the numerical implementation of
the biological kinetics made it possible to study both intra- and interspecific chemical
communications between planktonic populations of the coastal system – the Azov Sea in a
limited time mode, which is relevant in the event of catastrophic environmental situations,
which include eutrophication and exogenous hypoxia processes. It is established that the
significant heterogeneity of the detritus structure caused by various fractions of natural
organic substances plays an important role in regulating global processes of aquatic ecology.
Parallel algorithms for solving the problem of biological kinetics have been developed,
focused on a computing system with distributed memory, on a sequence of thickening
grids. The study of the dependence of the transmission time on the amount of data for a
different number of exchanges between the nodes of the computing system showed a jump
in the amount of transmitted data equal to approximately 512 floating point numbers.
Their effectiveness in the case of different number of involved flows is analyzed. The results
of numerical experiments on the NVIDIA Tesla K80 graphics accelerator have shown the
advantage of running a parallel algorithm with a large number of computational nodes.

The study was supported by the Russian Science Foundation grant No. 22-71-10102,
https://rscf.ru/project/22-71-10102/.
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РЕШЕНИЕ ЗАДАЧИ БИОЛОГИЧЕСКОЙ КИНЕТИКИ
НА ГЕТЕРОГЕННОЙ МНОГОПРОЦЕССОРНОЙ
ВЫЧИСЛИТЕЛЬНОЙ СИСТЕМЕ

Ю. В. Белова, А. М. Атаян, В. Н. Литвинов, А. Е. Чистяков,

Е. О. Рахимбаева, А. В. Никитина

Описан процесс решения задачи биологической кинетики, сводящейся к числен-

ному решению трехмерного уравнения диффузии-конвекции. Решение сеточных урав-

нений, полученных в результате дискретизации непрерывной модели, выполняется на

основе адаптивного попеременно-треугольного метода. Рассматриваемая задача была

численно реализована на вычислительной системе с распределенной памятью, рассчи-

танной на массивно параллельные вычисления, что позволило значительно сократить

время работы программного модуля. Проведенное исследование модели параллельных

расчетов на GPU для последовательности сгущающихся сеток при разном количестве

потоков позволило разработать оптимальный режим работы параллельных алгорит-

мов при разном объеме входных данных. Приведено описание программной реализации

математической модели, адаптированной для гибридных компьютерных систем.

Ключевые слова: математическое моделирование; явно-неявная разностная схе-

ма; погрешность аппроксимации; декомпозиция расчетной области; вычислительная

система с распределенной памятью.
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