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The article is devoted to the question of the uniqueness or non-uniqueness of solutions
of the Showalter—Sidorov—Dirichlet problem for the Hoff equation on a rectangle. To study
this issue, the phase space method was used, which was developed by G.A. Sviridyuk.
An algorithm is constructed to identify the conditions of multiplicity and uniqueness of
solutions, which allows numerically solving the Showalter—Sidorov—Dirichlet problem based
on the modified Galerkin method. The article considers cases where the dimension of the
operator kernel with a time derivative is equal to 1 or 2. Computational experiments
demonstrating the non-uniqueness of solutions to the Showalter—Sidorov problem depending
on the values of the problem parameters are presented.
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Introduction

Let 2 C R be a bounded domain with a smooth boundary of the class C*°. In the
cylinder @) = €2 x R, consider the Showalter — Sidorov problem:

A+ A) (u(z,0) —up(z)) =0, x € Q, (1)
or the Hoff equation
A+ Ay = au+ pu®, v €Q,t e (0,T), (2)
with the Dirichlet condition
u(z,t) =0, (z,t) € 00 x Ry (3)

The initial boundary value problems for the equation (3) were studied earlier in the
framework of the problems of Sobolev type equations in the following papers [1-6]. In
the works |7, 8|, the case is considered when dimker(A + A) = 1 and there is a unique
solution to the problem. The articles [9-15| describe cases of non-uniqueness of solutions
of the Showalter—Sidorov problem for various Sobolev type equations in the case of
dimker(A + A) = 1. In the work of G.A. Sviridyuk and T.G. Sukacheva a system of
Oskolkov equations was considered for the case when dim ker(A+A) = 2 and the conditions
for the existence of several solutions were found [15].
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The purpose of this paper is to study the problem (1) — (3) on a rectangle and to
identify conditions imposed on the parameters «, 3, under which there are several solutions
to the problem in question in cases when dimker(A + A) = 1 and dimker(A + A) = 2.
The work, in addition to the introduction and the list of references, contains three
paragraphs. The first section presents an algorithm for a numerical method for finding the
conditions of uniqueness and non-uniqueness of solutions to the Showalter—Sidorov problem
on a rectangle. The second paragraph is a description of the software package for the
implementation of the algorithm presented in paragraph 1. The results of computational
experiments in the case when dimker(A + A) = 1 and dim ker(\ + A) = 2 are set out in
the third paragraph.

1. Algorithm a Numerical Method for Finding the Conditions
of Uniqueness and Non-uniqueness of the Solution to the
Showalter—Sidorov Problem

Let Q = (0,7) x (0, 7), consider the Showalter — Sidorov problem
A(u(z,y,0) —up(x, y))+(tea(x, v, 0)F+uy,(z,y,0)—ug(z,y)) = 0,2 € (0,7),y € (0,7) (4)
or the Hoff equation
Mg + Uy + Uy = qu+ pu’, t € (0,7), (5)
with the Dirichlet condition

uw(0,y,t) =u(m,y,t) =0, y € (0,7), t € (0,T), (6)
u(z,0,t) =u(x,m,t) =0, x € (0,7), t € (0,7).

Let us describe an algorithm for the numerical method for finding the conditions of
uniqueness and non-uniqueness of the solution to the Showalter—Sidorov problem. The
algorithm allows you to find approximate solutions to the problem using the Galerkin
method. Consider the homogeneous Dirichlet problem for the equation

Uy — Uyy = MU, (7)

u(0,y) = u(l,y) =0, y € (0,1h), (8)
u(z,0) = u(z,ly) =0, x € (0,ly),
in a rectangle (0,11) x (0,13). Solution of the Sturm—Liouville problem (7), (8) for a given
domain = (0,7) x (0, 7) has the form:
)‘kl,/@ = k% + ]{JS, (9>

Ok ko (2, y) = sin(kyz) sin(kay). (10)

The eigenvalues of the problem (7), (8) are single or double. In the numerical study of the
problem (4) — (6) we get two cases.
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(a) If X = Ag,, k, and ky = ko, then dimker(A + A) = 1, then the considered eigenvalue
Ak, ky cOrresponds to one eigenfunction ¢y, j,. In this case, the function u(x,y,0)
will be represented as u(z,y,0) = s108, r, + ut, ut € Ut = {u € Ly(Q) :
<u7 Pk, k2> = O}

(b) If A= A, &, and ki # ko, then dimker(A + A) = 2, then the considered eigenvalue
iy, ko corresponds to two eigenfunction ¢y, &, and ¢, ,. In this case, the function
u(z,y,0) will be represented as u(z,y,0) = $1Pk,. ky + S20ky, by + ut, ut € Ut =
{u S L4(Q) : <’LL, P, k2> =0, <u730/€2, k1> = 0}

Check the uniqueness or multiplicity of the solution of the Showalter—Sidorov problem
for given initial function u(zx,y,0): For case (a) we will consider the set 9B:

B = {(Slvuj_) € R x L4(Q) 51||90/€1 k2HL4(Q + 331 ff@il, kgul dxdy+
00 (11)

+81 3

©—x

J et )2 dxdy + ™ + ffgakl, r (ut)? dxdy = 0}.
0

The equation defining the set 8 are cubic equation of general form
asi +bs; +csy +d = 0. (12)

According to Cardano’s formulas, any cubic equation of general form with the help of
replacement s; =y — % can be reduced to canonical form y3 + py + ¢ = 0 with coefficients

a= H‘Pkl, szZ]:(Q

o%ﬁ

f . kQUL dxdy,
0

[ en, )2 dxdy +af™ d =
0

3
3ac—b? 1 ( 2
Q(Sl,u)=<“§a2 ) t1 (W—WJF

=3

O—x

f Pk, kg 3d:1:dy (13>
0
2

b>f

(1) The uniqueness or multiplicity of the solution of the Showalter—Sidorov problem will
depend on the following cases: For @) < 0 the equation defining the set (11), the
problem has three solutions, therefore, the system of algebra-differential equations
will have three solutions. In this case, all subsequent steps must be performed three
times for each of the functions wuy, x,(t) with its own set of initial values.

(2) For @ > 0, the equation defining the set (11) has one solution, therefore, the system
of algebra-differential equations will have one solution.

In case (b), the selection of conditions for uniqueness or multiplicity of solutions to
the Showalter-Sidorov problem is individual for each specific eigenvalue Ag, j,, k1 # ko.

Following the Galerkin method, we search for approximate solution for an approximate
solution of the problem under consideration as sums

m

um(x,y,t) = Z Z Uy, kz(t%pkl, kz(x7y>' (14)

ki1=1ko=1
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Substitute Galerkin sums in (4). Then multiply the resulting equation scalar in Lo(£2) on
eigenfunctions ¢, r,(7,y), k1, k2 = 1,m, and get a system of equations with respect to
the unknowns ug, ,(t).

At the same time, depending on the parameter \, the equations in this system can be
differential or algebraic. Consider these cases in more detailes:

(i) f A # Mg Ky, then in this case all the equations of the system will be
ordinary differential equations of the first order. To solve this system relatively
Uk, ky(t), k1, ko = 1,m, from the conditions (6), multiplying them scalar in
Ly(Q2) on eigenfunctionsyy, . &, (,y), k1, ks = 1,m, we find m initial conditions.
Next, the resulting system of nonlinear first-order differential equations with initial
conditions is solved numerically, and unknown functional coefficients are found
Uk, ko (1), k1, kg =1, m, in an approximate solution u,,(z,y,t).

(ii) If A = Ag,, ky, then then one or two equations is algebraic, and the rest ones
are differential. Consider separately a system composed of first-order differential
equations and an algebraic equations. To solve a system of first-order ordinary
differential equations with respect to uy, k,(t),k1, k2 = I,m, from the conditions
(4), multiplying them scalar in Ly(€2) on eigenfunctions ¢y, ,(z,y), k1, ko = 1,m,
we find (m — 1) or (m — 2) initial conditions depending on the number of algebraic
equations of the system. Let us proceed to the numerical solution of a system of
algebra-differential equations with initial conditions (m — 1) or (m — 2).

Description of the Operation of Computer Program

The algorithm of the numerical method built in clause 1 was implemented in the
Maple 2017 computer mathematics system for Windows 7, 8.1, 10 in the form of a software
package. This system of computer mathematics differs from its analogues in the presence
of a built-in apparatus for analytical calculations of integrals student, a package of
commands for solving differential equations, including systems, DEtools. The software
package is designed to find an approximate solution to the Showalter—Sidorov problem for
the I-beam deformation model in the case of uniqueness or multiplicity of solutions on a
rectangle. The modified Galerkin method and the phase space method are implemented
in the program.

The coefficients of the equation «, 3, function of the initial value ug(z, y) for the initial
Showalter—Sidorov condition are fed to the input of the software package. At the output,
the program outputs approximate solutions of w,,(z,y,t) and plots them. The scheme of
the algorithm of the software package is shown in Fig. 1.

The following steps are performed while the program is running.

Step 1. The coefficients of the equation «, §, the function of the initial value ug(z, y)
for the initial Showalter—Sidorov condition are introduced, as well as the number of
Galerkin approximations m.

Step 2. The procedure unapply allows you to present the desired approximate
solutions in the form of sums

U = unapply(ukl, kQ(t>¢k1, kQ(x7 y) + Uy, ky (t)(pkz, k1 (33', y) ..t um(t>30m,m(x7 y)) (15)

Step 3. A check is made for the degeneracy of the equation, that is, whether X is the
eigenvalue of the operator (—A). If the verification condition is met, we solve the resulting
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algebraic equation with respect to the unknowns wg, x,, k1, k2 = 1, m, using the built-in
procedures subs, solve. The solution of the system of differential equations is found using
the built-in procedure dsolve.

Step 4. Using the built-in procedure if... else ... fi, a one-time or two-time check
of the own solutions of the Sturm—Liouville problem is performed. In the case of one-time
own solutions, u(z,y,0) will be set using the procedure unapply as follows:

ul = unapply(slﬁplﬂ, ko (33', y) + ul('x’ y> (16)

If the proper solutions of the Sturm-Liouville problem are twofold, then u(z,y,0) will be
set as

u0 = unapply(s105,. by (T,Y) + S0Pky. 1 (T,9) +u(2,7)). (17)
Step 5. Substitute the obtained values into formulas (13). Using the built-in procedure
if. .. else ... fi, the presence of one or more solutions to the Showalter—Sidorov problem
is checked under given initial conditions.

Step 6. The expressions compiled in step 3 are substituted into the algebraic equation
of the system and in the nested loop for k£, to 1 do m end do and for k; to 1 do m end
do the resulting equation is multiplied on the eigenfunctions ¢y, », and is integrated in
the domain under consideration €2 using the procedure int. Using the built-in procedures
subs and solve, with the setting RealDomain, we solve the resulting system of algebraic
equations with respect to the unknowns wuy, x,(0), k1, ko = 1,m.

In the case when the system of equations has three solutions, we get three functions
wo, (2,9, 0), uo,(z,9,0), ug,(z,y,0) for each of the solutions, accordingly. All subsequent
steps must be done three times for each of the functions. To realize the possibility of finding
three different solutions using the built-in procedure save, the initial conditions are saved
in the file usl.mw, the first function w, (x, y,0) is stored in the file reshl.mw, the second
function wue, (x,y,0) is stored in the file resh2.mw, the third function wug,(z,y,0) is stored
in the file resh3.mw.

In the case when the system of equations has nine solutions, we get nine functions
uo, (2,9, 0), .., up, (2, y,0) for each of the solutions, respectively. All subsequent steps must
be done nine times for each of the functions. To realize the possibility of finding nine
different solutions using the built-in procedure save, the initial conditions are saved in the
file usl.mw, the first function wug, (z,y,0) is stored in the file reshl.mw and etc.

Step 7. The built-in procedure read reads the initial conditions and ug, (z,y,0), ..,
uo, (2,9, 0) stored in files reshl.mw, .., resh9.mw. In the double loop for k; to 1 do
for ky to 1 do m end do m end do, the left and right sides of the differential equation
obtained in the third step are multiplied by the proper function ¢y, », and are integrated
int). As a result of steps 5 and 6, we obtain a system of algebra-differengialn equations
for determining the approximation coefficients ug, g, .

Step 8. The system obtained in step 6 is solved with the initial conditions saved in
the file reshl.mw, ... resh9.mw using the built-in procedure dsolve.

Step 9. The solution is compiled and displayed on the screen as a graph by the built-in
procedures plot3d.
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2. Numerical Experiment

Let us consider examples of numerical investigation of the non-uniqueness of solutions
to the Showalter—Sidorov problem for the I-beam deformation model based on the
implementation of the algorithm and program described above.

Fig. 3. Numerical solution of the u(x,y,t) problem (18) — (20) in the case of uniqueness
of the solution at time ¢ =0

Fig. 4. Numerical solution of the u(x,y,t) problem (18) — (20) in the case of uniqueness
of the solution at time ¢ =1
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Example 1. [t is required to find a numerical solution to the Showalter—Sidorov problem

2 (u(z,y,0) — 2sinzsiny) +

+ (um(x,y, 0) + uyy(z,y,0) — %sinxsiny) =0, z€ (0,m),y € (0,m) (18)
for the equation
Uy + Uggr + Uyye = qu + Bu’, t € (0,1) (19)
with Dirichlet boundary condition
uw(0,y,t) =u(m, y,t) =0, y € (0,7), t € (0,1), (20)
u(z,0,t) =u(x,m,t) =0, x € (0,7), t € (0,1).

Since under the conditions of this experiment A coincides with the first eigenvalue
A1 = 2 of the homogeneous Dirichlet problem for (—A), the considered eigenfunction

@, correspond to single eigenvalues, satisfying the condition dimker(A + A) = 1.
Following the algorithm described in paragraph 1, we represent the function wu(z,y,0)
at the initial moment of time as u(z,y,0) = s1p, + u*, where ¢, = %sinxsiny and
ut = %sinxsin 2y + % sin 2z siny + % sin 2x sin 2y. By virtue of <<pg, uL> =0, we get that
the set B will take the following form:

%:{SIER:—asl—%—%—g—g:O}. (21)

Using the formulas (13) for the equation describing the set (21), we find Q. Following
the algorithm described above, we obtain conditions imposed on the parameters of the
problem (18) — (20), under which there may be several solutions to this problem

3845.556777a? + 14026.90912a25 + 17054.676413? + 909933 -
B

Consider a special case when o = 1,5 = —0.5, then the condition (22) is met, the
task (18) — (20) will have one solution. The phase space is shown in Fig. 2. For clarity,
Fig. 3 one numerical solution u(x,y,t) of this problem at time ¢ = 0 is presented, Fig. 4 is
represented at time ¢t = 1. When o = 1,5 = —0.1, then the conditions (22) are not met,
the task (18) — (20) will have three solutions. In Fig. 5 presents three numerical solutions
u(z,y,t) of this problem at time ¢ = 0, in Fig. 6 presents three numerical solutions of this
problem at time t = 1.

0. (22)

Example 2. It is required to find a numerical solution to the Showalter—Sidorov problem

5 (u(x, y,0) — %sinxsiny — % sin 2x sin 2y) + (tge(,y,0) +

+ (uyy(z,y,0) — Zsinasiny — 2sin2xsin2y) =0, z € (0,7),y € (0,7) (23)
for the Hoft’s equation
DUt + Uggt + Uyyr = QU + pu, t € (0,1) (24)
with Dirichlet boundary condition
u(0,y,t) =u(m y,t) =0, y € (0,7), t € (0,1), (25)
u(z,0,t) =u(x,m,t) =0, x € (0,7), t € (0,1).
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Fig. 5. Numerical solution of the u(x, y,t) problem (18) — (20) in the case of non-uniqueness

of the solution at time ¢t =0

Fig. 6. Numerical solution of the u(z, y, ) problem (18) — (20) in the case of non-uniqueness

of the solution at time t = 1

Fig. 7. The phase space of the equation (23)

Since under the conditions of this experiment A coincides with the second eigenvalue
A2 = 5 of the homogeneous Dirichlet problem for (—A), the considered eigenfunctions ¢,
and g, correspond to double eigenvalues, satisfying the condition dimker(\ + A) = 2.
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Fig. 8. Numerical solution of the u(x,y,t) problem (23) — (25) in the case

of uniqueness of the solution at time t = 0 and time ¢t = 1

Represent the function u(x,y,O) at the initial moment of time for (23) — (25)
as u(x,y,O) = S1Pg —i— S20g, + ut, where ¢, = sinxsin2y Pgo = gsiansiny
and vt = 2sinwsiny + 2sin 2zsin2y. By virtue of (cpgl,%l) =1, (cpgl,%Q) = 0 and
<gogl, u > =0, we get that the sets 2B, u B, will take the following form

‘ 38s1s5  9Bs;  6Bsy  9Bs?

B, ={s1,8 ER: sy + = + = + = + 2 0}, (26)
33s? 6 9 9853

B, = {s1,8 ER: sy + bsis2 + fs1 + Pso + Bsy =0}. (27)
2 2 72 472

Following the algorithm described in paragraph 1, the problem can have several
solutions. To identify the conditions of non-uniqueness of solutions, we perform the
following operations on the equations (26) and (27) describing the sets B, u B,. Let’s
express from each equation (a + fr—ﬁ):

s (as 65 3Bsis3  3Bsi 68sy  9Bs)
! 2 w2 2 w2 472’ (28)
N 603 3Bs?sy  3Bsy  68s;  9Bss
ssla+—= ] =— — - —
2 2 2 2 2 A2’
65 3353 38 6Bsy 983s?
& S G )
2 2 T2 w28 472 (29)
N 603 3852 38 6Bs;  9Bs3
o+ —|l=——=-— - —— -
72 72 w2 72, Am?
We equate the resulting expressions to each other:
39835 69s,_ 985t 38535 66 983 0
w2 72 7w2s; 4w g2 w2 m2sy  Am?’
2 2

42 472 m28; 28y
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Fig. 9. Numerical solution of the u(z, y, t) problem (23) — (25) in the case of non-uniqueness

of the solution at time ¢t = 0

Take out f;—é* and get:

52 82 2 2
st 2 20
4 4 S1 S9

Let’s group the terms and bring them to a common denominator:

2 2 2 2
Sy — 57 Sy — 57

= 0.

2
4 * S1592

Let’s take s3 — s? out of brackets:

(83 B 3%) <43132 + 2> 0

5152

(32)

(33)

(34)
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Fig. 10. Numerical solution of the wu(z,y,t) problem (23) — (25) in the case of non-
uniqueness of the solution at time ¢ =1

Based on this, we get the following solution:

==+
S (35)
182 = —35-
Substituting (35) into (26), (27), we obtain the following conditions imposed on the
parameters of the problem (23) — (25), under which there may be several solutions to
this problem:
Ao+ 1258
—_—— >
213
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Consider a special case when o = 1, f = —3.5, then the condition (36) is not fulfilled, the
task (23) — (25) will have one solution. The phase space is shown in Fig. 7. For clarity,
Fig. 8 one numerical solution u(x,y,t) of this problem is presented at time ¢t = 0 and at
time ¢ = 1 respectively.

If « =1, = —0.1, then the condition (36) is met, the task (23) — (25) will have nine

solutions. For clarity, Fig. 9 and Fig. 10 presents nine numerical solutions u(x,y,t) of this
problem at time ¢ = 0 and time ¢ = 1 accordingly.
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YN CJIEHHOE NCCJIEJJOBAHUE BOITPOCA
HEEJIMHCTBEHHOCTUW PEINIEHNA 3ATAYN
IIIOYOJITEPA — CUJIOPOBA OJId MATEMATNYECKON
MOJEJINN XOPDPA HA ITPAMOYI'OJIBHUKE

H.I'. Huxoaaesa, O.B. I'aspuaosa, H.A. Manaxosa

CraTbsi MOCBSIIIEHA UCCJIEI0OBAHIIO €IMHCTBEHHOCTU WJIU HEeIMHCTBEHHOCTU PeIleHMi
sagaun [Tloyosrepa — Cugopoa — lupuxiie jyist ypaaenusi Xodda Ha MpsiMOyTroJbHUKE.
g wccieioBanms JJAHHOTO BOIPOCA MCIIOJIB30BAH MeTOJ (ha30BOr0 MPOCTPAHCTBA, KOTO-
poiit 6611 paspaboran [A. Ceupumiokom. [TocTpoer ajropuT™ BBISBIEHUS YCIOBHIT MHO-
JKECTBEHHOCTHU U eMHCTBEHHOCTH PEIIEHUH, KOTOPBI MO3BOJISIET YUCJIEHHO PEIIUTh 3a/1aTy
MToyonrepa — CumoposBa — Jlupuxje Ha OCHOBe MOIUMDUIMPOBAHHOIO MeTosa [ajlepKuHa.
B crarpe paccMOTpeHBI Cilydan pasMepPHOCTB sipa OlEpaTopa MPU IPOU3BOIHON 110 Bpe-
menu pasta 1 win 2. [IpejcrapiieHbl BBIYUCIUTEIbHBIE IKCIIEPUMEHTHI, JIEMOHCTPUPY FOIIIe
HeeIMHCTBeHHOCTh pertennii 3ayaan [loyonrepa — CujopoBa B 3aBUCUMOCTH OT 3HAYEHUI
[apaMeTpoB 3a/adH.

Karoueswie caosa: ypasuerus coboresckozo muna; sadava Ioyoamepa — Cudoposa;
ypasrernue Xogpa; needuncmeennocms peweruil; memod @gaszos020 NpocmparHcmea; Memod

Tarepruna.
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