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The article contains a research of the solvability of the Cauchy problem for the linear
Oskolkov equation in specially given spaces, namely the spaces of differential forms with
stochastic coefficients defined on some Riemannian manifold without boundary. This work
presents graphs of coefficients of differential forms that are solutions to the Cauchy problem
for Oskolkov equations. Since the equations are studied in space of differential forms,
the operators themselves are understood in a special form, in particular, instead of the
Laplace operator, we take its generalization that is the Laplace—Beltrami operator. Graphs
of coefficients of differential forms obtained within other computational experiments are
presented for various values of parameters of the Oskolkov equation.
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Introduction

Consider the Oskolkov linear homogeneous equation [1]:
(1 — kA)Ap, = al?p, (1)

If we use substitution

u = Agp, (2)
then we reduce it for the Barenblatt-Zheltov-Kochina equation [2]
(A — A)u, = aAu. (3)

In the functional spaces {, § chosen by us, (3) are reduced [3] to the linear equation
of Sobolev type
Li = Mu (4)

with the irreversible operator L.
Consider the Cauchy problem [4]

u(0) = ug (5)

for equations (1) after substitution (2) when it seems (3).
The paper [5] propose a transition of (4) to the stochastic Sobolev type equations

L= Mpy (6)
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with the condition Cauchy
1(0) = 19 (7)

in spaces of Wiener stochastic processes in the case of an abstract (L, p)-bounded operator
M. Since Wiener processes are continuous, but nondifferentiable in the usual sense at
each point, we use the Nelson-Gliklikh derivative [6]. In this article, we study numerical
solutions to the Oskolkov linear equation |7] in spaces of differential forms defined on a
torus as (6).

1. Structure of Differentiable <Noises> Spaces

Consider the complete probability space 2 = (£2, X, P) with the probability measure P
associated with the o-algebra ¥ of subsets of the space ). If R is the set of real numbers
endowed with a og-algebra, then the mapping & : ¥ — R is called a random variable. The
set of random variables &, the mathematical expectation of which is equal to zero, i.e.
M¢ = 0, while variance is finite, i.e. D§ < 0o, form the Hilbert space Ly with the scalar
product (&1, &) = ME& & and with the norm denoted by [|£]|1,. If we take the subalgebra ¥
of the o-algebra ¥, then we obtain the subspace of random variables LY C Ly measurable
with respect to Xg.

A measurable mapping n = n(t,w) : J x ¥ — R, where J = (a,b) C R, is called a
stochastic process, a random variable n(-,w),w € Q is said to be a section of the stochastic
process, and a function 7(t,-),t € J is said to be a trajectory of the stochastic process.
The stochastic process n = n(t,w) is called continuous, if the trajectories n = n(t,wy) are
continuous functions almost sure (i.e. for a.a. (almost all) wy € X). The set n = n(t,w) of
continuous stochastic processes forms a Banach space CLs.

By the Nelson — Gliklikh derivative of the stochastic process n € CL2 at the point
t € J we mean the random variable

i %( lim MY (n(HAt,-)—n(tw)) © lm M (n(t,-)—n(t—ﬁt,-)))’ (8)

Ats0+ At

if the limit exists in the sense of a uniform metric on ¢t € J. Here M, is the expectation on
a subalgebra of the o-algebra X that is generated by the random variable n = n(t,w). If

there exist the Nelson — Gliklikh derivatives 7 (+,w) of the stochastic process 1 at almost
all points of the interval J, then we say that there exists the Nelson — Gliklikh derivative

o

7 (-,w) almost sure on J.
The set of continuous stochastic processes with continuous Nelson — Gliklikh
derivatives 77 form the Banach space C'Ly. Further, by induction, we obtain the Banach

spaces C’La, ¢ € N of the stochastic processes having continuous Nelson — Gliklikh
derivatives on J up to the order ¢ € N inclusively with the norms of the form

L o) :
HnHCle = sup (E DT] (t7 w)) )
ted \ 4=

0(0)
where 1 (t,w) = n(t,w).
Note that such processes we also can investigate in complex numbers [8].
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2. Resolving Groups of Operators

Let 4 and § be real separable Hilbert spaces. Denote by L£(4;§) the space of linear
bounded operators, and by CI(L;F) the space of linear closed and densely defined
operators. Let us construct the Hilbert spaces UkLs and FgLo, where K = {\;} C R is
a monotone sequence of numbers such that > A7 < +oc.

k=1
The operator M is called spectrally bounded with respect to the operator L (or, shortly,

(L,o)-bounded), if Ir >0 VYueC (lul >r)= (ue p=(M)).
In complex plane C, for the (L, o)-bounded operator M, we choose a closed circuit of
the form v = {pu € C: |u| = R > r}. Then the integrals

P [ REODA Q= o [ i

271 21
v ¥

make sense as the integrals of analytic functions on a closed circuit. Moreover, the operators
P: 4 — Yand Q : §F — § are projectors [3|. Denote by Ly, M, the restrictions of the
operators L, M on the subspace 4*, k =0, 1.

Theorem 1. [3] Let the operator M be (L, o)-bounded. Then
(ii) there exist operators Li' € L(F4;UY), My € L(F°;U0).

If the operator M is (L,o)-bounded, then by virtue of Theorem 1, there exist the
operators H = My 'Ly € L(U°) and S = L;'M; € L(U).

Definition 1. The (L, 0)-bounded operator M is called
(i) (L,0)-bounded, if H = O
(i1) (L, p)-bounded, if H? # O and HP*! = O for some p € N.

Theorem 2. [7| Let the operator M be (L, p)-bounded, p € {0} UN. Then there exists an
analytical group of the operators on the space UgL,, FxLs.

The stochastic Sobolev type equation
L= M (9)
can be reduced to two equations of the form
A v= Bu.
Let us formulate

Lemma 1. The following statements are true:
(i) the operator A € L(;F) ezactly if A € L(UgLa; FxLa);
(ii) the operator B € Cl(Y;F) exactly if B € Cl(UgLa; FxLa).

Denote 4! = {UkLz} (' = {FkL2}), which form a closure imRY(M) (imL*(M)) in
the norm of the space 4 = UgLs (§ = FkLs). The spaces UgL, and FgL, are splitted
into the direct sum

UkL, = UYL, ® ULLy, FxL, = F§ L, & Fi Ly, (10)
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The following theorem takes place.

Theorem 3. If the operator M is (L, p)-bounded and there exist splittings (10), then
imU* = UkLa and imF* = FiLo.

Previously, the Cauchy problem

n(0) = no (11)

was investigated [7] in the spaces 4 = UgkLs (§F = FkLz), where there exist
representations of the form

() = Mt )pr. (12)

Theorem 4. Suppose that the operator M is (L,p)-bounded and there exist splittings
(10), then Vny € Ut C U there exists the unique solution to problem (9), (11).

3. Differential Forms and Computational Experiments

Consider a two-dimensional torus obtained by the direct product of two segments
T = [0, 7] x [0,27]. The torus is a 2-dimensional smooth compact oriented Riemannian
manifold without boundary. Using theory presented in Sections 1 and 2, we construct
spaces of smooth differential ¢-forms with stochastic processes as the coefficient:

w(t,w,x,x2) = Z Xityooiiq (b W, 1, T2)dxsy A o A dyy, (13)
[i1,...,%q|=¢

where |iy, ..., 74| is a multi-index, and, according to (12), the coefficients have the form

o0
Xil,ig ..... z‘q(t,&),l‘l,l’g) - Z)\k‘gk,’h ..... Zq(t)@k
k=1

Take the Oskolkov linear homogeneous equation [1]:
(1 — kA)Ap; = al?p. (14)

If we define this equation in the space of differential form [9] we must use Laplace-Beltrami

operator
Au=dx*d*u+ *d* du, (15)

where * —Hodge operator and d —differential of differential forms. It change sign before A.
In these spaces it is possible to introduce the inner product

(6. )0 = / YA #Edr, X, € € CLy. (16)
T

Because of Hodge—Kodair theorem, spaces of differential forms of norms current and
complete in accordance with the norm obtained with the help of inner product (16)
splitting in direct sum of potential, solenoidal and harmonic differential form. If we use
substitutions

u=Ap,\A=1/k, (17)
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then we reduce (14) for the homogeneous Barenblatt-Zheltov-Kochina equation [2], but
only in the case when the space contains differential forms orthogonal to harmonic ones.

A+ A)uy = aAw. (18)
Then we take the stochastic version of the Barenblatt—Zheltov—Kochina equation
(A+A4) = aAn. (19)

Denote the operators L = (A + A), M = «aA and arrive at

Those operator L, M : C*Ly — COLs.

C =

Input of the initial data: local coordinates of the manifold M,

the operators L and M by the parameters A and a, the
inhomogeneousterm and the number of splitting steps

Check the homogeneity: f # 0

Project the inhomogeneous part onto the chosen subspace

le
Project the Barenblatt — Zheltov — Kochina equation
ontothe chosen subspace

I

Construct a numerical analogue for the equation and compute

its solutions in the chosen subspace

l

Output of the solution in the form of a graph

T

v >

Fig. 1. Block diagram of the algorithm for the equation (18)
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For (20) equation, the paper [7| proves (L, 0)-boundedness of the operator M and

constructs the relative spectrum
Oé/\k

=

In [7] the algorithm of solution of the Cauchy problem for the Barenblatt—Zheltov—Kochina

equation was presented by the block diagram given in Fig. 1.

25
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Fig. 2. The graph of the solution in space 0-form for (20) with A =3, = 0.5

An implementation of this algorithm has been registered under the name <«Numerical
Solutions in the Stochastic Barenblatt—ZHeltov—Kochina Model in Spaces of Differential
Forms> and certificate number 2022661554 RU of state registration of a computer program
was issued. The graphs show the solutions at the time moments t;,k = 1,...,8, by the

corresponding colors: pink, green, blue, black, yellow, brown, red, white.

Fig. 2 shows the graph of the solution to the Cauchy problem with A = 3, = 0.5 in

0-form space.
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Fig. 3. The graph dz; coefficient of the Cauchy problem solution for (20) with A = 1, =1
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Fig. 3 draw before dx; coefficient and Fig. 4 draw before dxs coefficient of the solution

to the Cauchy problem with A =1, = 1 in 1-form space.
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Fig. 4. The graph dxs coefficient of the Cauchy problem solution for equation (20) with

A=1a=1
Further on Fig. 5, we present graph coefficient before (dx; A dxs) of the solution for

equation (20) with A = 1, = 2 in 2-form space.
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Fig. 5. The graph coefficient before (dz; Adxs) of the Cauchy problem solution for equation

(20) with A =1, =2
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Conclusion

Numerical solutions of the Cauchy problem for the linear Oskolkov equation were

studied. The linear equation of Oskolkov linearized Oskolkov’s system of equations. In
the future, we should study the Cauchy and Showalter — Sidorov problems for the
general Okolkov’s system of equation or it linearization in spaces of differential forms
with stochastic coefficients.
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UUNCJIEHHBIE PEINTEHNA 3AJIAYN KOIIIN

OJ1d INMHENHOI'O YPABHEHU A OCKOJIKOBA

B ITIPOCTPAHCTBAX /JUOPEPEHIINAJIBHBIX ®OPM
CO CTOXACTNUYECKUMU KOOPUITNEHTAMU

. E. Ilagparos

CraTbsi COIEPKUT UCCTIeJOBAHIE PA3PENINMOCTH 3aa4u Ko 1j1st JIMHeRHOTO ypaBHe-
Hust OCKOJIKOBa B ClIlelMa/IbHO 3aJaHHBIX [IPOCTPAHCTBAX, & UMEHHO IIpocTpaHcTBax audde-
PEHIUAJIBHBIX (POPM CO CTOXACTUIECKUMU KO3(MDPUIIMEHTAMU, OIIPEIEJIEHHBIX Ha, HEKOTOPOM
PUMaHOBOM MHOroobOpasuu 6e3 Kpasi. B manHoil pabore rpejicTaB/ieHbl pUCYHKU KoM dUIm-
eHTOB M pepeHInATBHBIX (POPM sIBJISIOIIUXCS PEIIeHUsIMU 3a1a49u KoIu Jjisi ypaBHEHUSI
OckouikoBa. ITocko/IbKY ypaBHEHNs N3y YalOTCsl B IPOCTPaHCTBe Aud depeHnraabHbIX hopM,
caMU OITepaTOPbI MOHUMAIOTCS B CIEIUAJILHON (hopMe, B TaCTHOCTH, BMECTO omepaTopa Jla-
mraca bepercs ero 0606tmenune — oreparop Jlamnaca—bensrpamu. ['padukn koaddunmenton
nuddepeHuaIbHbIX (POPM I0JIyUEeHHbIE IIPU IPOBEIEHUN BHIYUCINTEIbLHBIX KCIIEPUMEH-
TOB IIPUBEJIEHBI JIJIsI PA3JIMYHBIX 3HAYEHUI TapaMeTpoB ypaBHeHusi OCKOJIKOBA.

Karouesvie caosa: ypasHenue cobosesckozo muna; u@@eperyuansvhoie Gopmol; puma-
1060 MH02006pasue; onepamop Jlanaaca — Beavmpamu; wuciennoe peuserue.
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